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Abstract 

Background:  To objectively assess a patient’s gait, a robust identification of stride borders is one of the first steps in 
inertial sensor-based mobile gait analysis pipelines. While many different methods for stride segmentation have been 
presented in the literature, an out-of-lab evaluation of respective algorithms on free-living gait is still missing.

Method:  To address this issue, we present a comprehensive free-living evaluation dataset, including 146.574 semi-
automatic labeled strides of 28 Parkinson’s Disease patients. This dataset was used to evaluate the segmentation 
performance of a new Hidden Markov Model (HMM) based stride segmentation approach compared to an available 
dynamic time warping (DTW) based method.

Results:  The proposed HMM achieved a mean F1-score of 92.1% and outperformed the DTW approach significantly. 
Further analysis revealed a dependency of segmentation performance to the number of strides within respective 
walking bouts. Shorter bouts ( < 30 strides) resulted in worse performance, which could be related to more hetero-
geneous gait and an increased diversity of different stride types in short free-living walking bouts. In contrast, the 
HMM reached F1-scores of more than 96.2% for longer bouts ( > 50 strides). Furthermore, we showed that an HMM, 
which was trained on at-lab data only, could be transferred to a free-living context with a negligible decrease in 
performance.

Conclusion:  The generalizability of the proposed HMM is a promising feature, as fully labeled free-living training data 
might not be available for many applications. To the best of our knowledge, this is the first evaluation of stride seg-
mentation performance on a large scale free-living dataset. Our proposed HMM-based approach was able to address 
the increased complexity of free-living gait data, and thus will help to enable a robust assessment of stride parameters 
in future free-living gait analysis applications.
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Background
In typical clinical gait analysis settings, a physician or 
clinical expert observes a patient’s gait in a hospital hall-
way to assess, for example, postural instability or motor 
function, which are major symptoms of the neurodegen-
erative Parkinson’s Disease (PD) and strongly related to 
independence, quality of life or risk of falls [1]. There-
fore, new tools and technologies to quantitatively and 
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objectively assess various gait-related parameters are 
of increased interest to understand pathophysiological 
mechanisms, investigate treatment effects or quantify 
the disease state in PD [2]. Especially wearable sensors 
and, in particular, inertial measurement units (IMUs) 
are often used in clinical applications to measure spatio-
temporal gait parameters in order to objectively monitor 
disease progression or fluctuations [3, 4].

Due to advancements in size, energy consumption, and 
usability of wearable sensors, mobile gait analysis systems 
are getting started to be used beyond the borders of labo-
ratory assessments in home-monitoring as well as free-
living scenarios [5, 6]. Here, mobile gait analysis solutions 
enable a continuous and detailed insight into a patient’s 
mobility and motor performance under more natural and 
realistic conditions compared to clinical snapshot assess-
ments [5, 6].

However, independent of the recording environment, 
a robust segmentation of individual strides from the 
continuous sensor data is one of the first steps in most 
wearable gait analysis systems and a crucial part of the 
underlying signal processing pipeline [7]. Various dif-
ferent approaches have been proposed in the literature 
to solve the problem of stride segmentation for clini-
cal gait analysis applications [8–22]. Methods vary with 
sensor location, ranging from the upper body like wrist, 
chest or lower back [9, 10] to the lower body with sensors 
attached to ankles or feet [11–15, 17–22] as well as with 
sensor modalities like IMUs or pressure sensors [7]. Peak 
detection [8, 9], wavelet-based approaches [10–13], tem-
plate matching [14, 15] as well as probabilistic machine 
learning models like the Hidden Markov Model (HMM) 
[16–20], and deep learning approaches like convolutional 
neural networks [21, 22] have been successfully applied 
in supervised laboratory conditions.

Although all of the aforementioned studies obtained 
good results, they were constrained in most cases by a 
controlled and supervised laboratory setting. Further-
more, most studies only provide a limited amount of 
heterogeneity within the dataset due to the inclusion of 
only healthy subjects, a rather small number of strides, or 
evaluation on standardized gait tests.

In contrast, a continuous full day free-living recording 
contains a variety of different unstructured activities as 
well as different stride types like initiation, termination, 
turnings, or transitions between activities. Influences of 
the external environment like context, location, different 
undergrounds, or cognitive challenges are known to be 
confounding factors for certain gait parameters [6, 23]. 
For PD patients, day-to-day and intra-day fluctuations of 
motor symptoms (related to health and medication state) 
increase the heterogeneity and irregularity of strides even 
further [1].

Recent studies already highlighted the differences 
between laboratory and free-living gait analysis [24–26], 
but a technical evaluation of gait analysis pipelines on 
free-living data is still an open challenge. A major issue 
is the lack of free-living evaluation datasets, includ-
ing ground truth information. For this reason, evalua-
tion studies usually focus on at-lab recordings where for 
example pressurized mats [19] or motion capture sys-
tems [27] are used as gold-standard references. However, 
such system cannot be used for fully unconstrained free-
living studies.

Martindale et al. [20] tried to address this issue by col-
lecting data of several semi-realistic scenarios covering 
different activities with providing stride level annotations 
of a large cohort of 80 healthy subjects. They used video 
recordings combined with pressure insoles and a smart 
annotation approach to generate labels for all activities. 
However, the study still followed a supervised protocol 
with scripted scenarios and only healthy subjects.

Hickey et  al. [28] also emphasized the lack of evalua-
tion of gait analysis algorithms on free-living data. To 
address this issue, they equipped ten young and healthy 
subjects with a waist-mounted accelerometer together 
with a body-mounted camera filming the subject’s feet 
on two consecutive days for one hour each. Subjects 
could then perform free-living activities in a completely 
unsupervised setting, while the video streams were used 
to generate reference labels. However, Hickey et al. only 
evaluated macro gait parameters like walking bout dura-
tion and step counts, but did not investigate actual stride 
border locations.

To address this lack of missing evaluation of stride seg-
mentation algorithms on free-living data, we present a 
fully unconstrained and unsupervised free-living data-
set including stride border annotations of 146.574 single 
strides of a cohort of 28 PD patients. Due to stigmatiza-
tion and privacy concerns, we decided to not use body-
worn cameras or similar reference systems but opted for 
a semi-automated manual labeling approach of the IMU 
data itself. For this semi-automated labeling approach, 
an existing template matching implementation based on 
subsequent Dynamic Time Warping (DTW), presented 
by Barth et al. [14], was combined with extensive manual 
post-processing.

Furthermore, a new HMM-based segmentation 
approach was implemented for evaluation, as a proba-
bilistic model is a promising candidate to be robust and 
at the same time flexible enough to handle the expected 
variety and heterogeneity within free-living patient data. 
Haji Ghassemi et  al. [29] compared different stride seg-
mentation approaches for PD patients and found that an 
HMM-based segmentation could outperform template 
matching methods like DTW or simple peak detection 
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methods, reaching F1-Scores above 95% in laboratory 
settings. Additionally, HMMs showed the potential to 
handle also classification or sub-phase segmentation 
tasks. Martindale et al. [30] and Mannini et al. [19] pre-
sented HMMs, which can be applied beyond pure stride 
segmentation for gait phase segmentation and gait event 
detection by modelling swing and stance phase by indi-
vidual models. Panahandeh et al. [31] used a combination 
of multiple individual HMMs for activity classification 
based on a cycle level identification. Furthermore, HMMs 
were successfully applied for at-lab gait analysis in hered-
itary spastic paraplegia (HSP) patients, where the hetero-
geneity of the disease required the need of personalized 
models and proofed their applicability in segmentation of 
severely impaired and strongly heterogeneous gait [30].

Although the first steps towards the development and 
evaluation of stride segmentation algorithms on free-
living data have been taken, this topic remains an open 
field in research with the need for optimized and robust 
methods. In this paper, we make the following contribu-
tions to the field of mobile gait analysis: first, we present a 
comprehensive, free-living dataset of PD patients, includ-
ing semi-automatically labeled stride borders. Second, a 
new custom HMM-based stride segmentation approach 
was developed. The model architecture was chosen to 
best fit the available training labels as well as to model 
the expected heterogeneity within free-living gait data. 
Therefore, two HMMs, one for modelling strides and 
one for modelling transitions from and to gait, were indi-
vidually trained and finally combined to a single flattened 
HMM for segmentation. Configurable model parameters 
were thoroughly optimized by a grid search to enable 
the best possible segmentation performance for future 
applications. Additionally, to test the generalizability of 
the data-driven HMM-method, model training was per-
formed first only on available laboratory data and second 
also on the free-living dataset. To estimate the relative 
performance of the proposed HMMs, their segmentation 
results were compared to a non-data-driven state-of-the-
art DTW-based approach [14], which was initially used 
to support the manual annotation process of the dataset. 
Finally, we further investigated the influence of walk-
ing bout length on segmentation performance to better 
understand the limitations and challenges associated 
with stride segmentation on such free-living datasets. A 
graphical abstract summarizing this work can be found 
in the supplementary material (Additional file 1).

Materials and methods
Data acquisition
The dataset used for this work was acquired in the Fall-
RiskPD study (DRKS-ID: DRKS00015085) and consists 
of a cohort of 28 PD patients (Table 1). Inclusion criteria 

for the study were a diagnosis of Parkinson’s syndrome 
according to the guideline of the German Society for 
Neurology (Hoehn and Yahr stage I-III), the ability to 
walk 4x10 m without support as well as being predomi-
nantly ambulatory without walking aids (for the pre-
sented population, none of the participants required a 
walking aid during their daily life). Participants had to 
be able to read and to understand a set of instructions 
to operate a wearable sensor-based gait analysis system 
self-reliantly during a two-week unsupervised free-living 
phase. Exclusion criteria included , a maximum walking 
distance of less than 100 m , decompensated cardiopul-
monary limitations, and other pronounced musculoskel-
etal disorders that severely limit the ability to move and 
walk.

The study was approved by the local ethics committee 
Re-No. 165_18B (Friedrich-Alexander-University Erlan-
gen-Nuremberg, Germany). All patients gave written, 
informed consent, prior to the data collection, which can 
be divided into two subsets for this work:

At‑lab dataset
The patients visited the clinic for a routine checkup and 
performed standardized gait tests in a laboratory envi-
ronment and under the supervision of clinical experts. 
Gait tests like the 4x10 m test (in self-selected, slow and 
fast speed), a 2 min walk test as well as the timed-up-and-
go test were recorded using a mobile gait analysis system.

Free‑living dataset
After the clinical visit, the patients were equipped with 
the same mobile gait analysis system and sent home for 
two weeks for a continuous home-monitoring approach. 
During this period, the patients wore the sensor system 
in their wake-time as much as possible (indoors and out-
doors), and followed their normal daily activities.

All recordings for this study were acquired using the 
Mobile GaitLab (Portabiles HealthCare Technologies, 
Erlangen, Germany). The recording system consists of 
two IMUs (one per foot), attached to the instep position 

Table 1  Patient characteristics (N = 28). Parameters are either 
given by class or by mean ± standard deviation

Characteristic

Gender [f/m] 7/21

Age [years] 63.7± 7.2

Height [cm] 174.6± 8.8

Weight [kg] 77.1± 15.3

UPDRS-III 17.0± 8.1

Hoehn & Yahr 2.5± 0.6
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of orthopedic shoes (Fig.  1). Each sensor unit incorpo-
rates a 3D-accelerometer (range ±16  g) and a 3D-gyro-
scope (range ±1000  deg/s). The data were recorded at 
102.4 Hz and left-right synchronized, such that both 
sensor units share a common time axis. For the first 
patients in the study (N  =  15), the dataset had to be 
manually aligned on a bout level, while the rest of the 
dataset (N = 13) was recorded with an updated version 
of the Mobile GaitLab featuring hardware synchroniza-
tion based on a proprietary 2.4 GHz protocol, which was 
presented in [32]. Both synchronization methods were 
confirmed to be sufficient for walking bout level defini-
tions by visual inspection. Therefore, all recordings will 
be handled as a single dataset for this study without any 
further differentiation between the two utilized hardware 
versions.

All IMU data were calibrated using the Ferraris method 
to convert the raw measurement to meaningful physi-
cal units of m/s2 for the accelerometer and deg/s for the 
gyroscope [33].

Coordinate system
To be able to perform stride segmentation on the left and 
right foot using a single segmentation pipeline, the indi-
vidual sensor coordinate systems were transformed to 
a shared body-frame notation with the three main axes 
defined as medial to lateral (ml), posterior to anterior 
(pa), and superior to inferior (si) directions (Fig. 1). This 
coordinate notation will be used throughout the whole 
manuscript. Additionally, the accelerometer si-axis was 
aligned to gravity based on static frames within each 
new walking bout. This ensures a consistent alignment 
between the sensor- and world frame over the full day 
recordings and accounts for intra-day coordinate system 

variations due to the patients putting their shoes on/off 
as well as attaching/detaching the sensor units.

Semi‑automated stride‑ and walking bout annotation
To lower the overall annotation effort of the at-lab as well 
as the free-living dataset, a custom semi-automated labe-
ling tool was used. Therefore, the tool featured an auto-
matic pre-segmentation pipeline consisting of two major 
steps: First an extraction of activity windows, based on 
a gyro-norm threshold, and second a pre-segmentation 
of stride borders within those respective windows. For 
this purpose, an available DTW-based template match-
ing approach introduced by Barth et al. [14] was used as 
it did not require any prior training. After applying this 
first “naïve”, automatic pipeline, each sensor data stream 
together with the initially generated stride labels was 
entirely inspected by a human annotator and stride bor-
ders were manually added, corrected or deleted wherever 
necessary. Hence, the overall accuracy of the final refer-
ence labels was only dependent on the human annotator 
performance, this is why a basic yet easy to label stride 
border definition was chosen.

Stride definition
The stride definition used for this work was chosen 
based on previous studies featuring foot-worn IMUs 
[14, 29], which enabled a consistent manual labeling of 
clearly visible sensor signal features. A stride was defined 
based on the angular velocity of the foot in the sagittal 
plane (gyrml ). The negative peak just before the start of 
the swing phase was defined as the beginning of a stride, 
while the negative peak right after the stance phase was 
defined as its end (Fig. 2).

To achieve consistent labels, the timings of the semi-
automated DTW borders, as well as of the manually set 
borders were corrected by snapping the border to the 
respective signal minimum within a 200 ms centered 
window on the gyrml-axis. The strides were labeled for 
both the left and the right foot individually. However, the 
sensor streams were inspected on a shared time axis to 
be able to identify walking bouts and strides more easily. 
Manual stride border annotations used within this work 
were performed by the same single human annotator. A 
quantitative overview of the number of annotated strides, 
as well as walking bouts, is given in Table 2. Due to the 
extensive labeling amount required, the free-living data-
set was restricted to one randomly selected day for each 
subject of the 14 day recording period.

Walking bout definition
In literature, walking bout definitions range from three 
steps to more than 60 s , based on the used sensor config-
uration and stride definition [6]. For this work, a walking 

left

posterior to
anterior

medial to
lateral

superior to 
inferior

medial to
lateral

X

Y

ZX

Y

Z

right

Fig. 1  Shoe-/ body-frame coordinate system definition with IMU 
sensors attached to the instep position of the shoes
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bout was defined by a minimum number of four strides 
(based on the synchronized information of both feet) as 
at least two consecutive strides per foot are required for 
spatio-temporal parameter calculation using the afore-
mentioned stride border definition. Additionally, a max-
imum resting period of 2.5 s within a bout was allowed 
(Fig. 2), as already suggested in other studies [28, 34, 35]. 
For this work only walking bouts following the given defi-
nition were included for the evaluation. Strides outside 
of walking bouts and non-gait activity windows were not 
considered.

Preprocessing and feature extraction
Preprocessing
For the segmentation task, the data were low-pass filtered 
using a fourth-order forward-backward Butterworth fil-
ter with a cut-off frequency of 10 Hz to minimize motion 
noise and at the same time, retain stride border features. 

Additionally, the data were downsampled by a factor of 
two to 51.2 Hz using a decimation filter to increase the 
sample to sample difference and lower the computational 
effort.

Feature extraction
To include additional temporal information for the seg-
mentation process, a sliding, centered window feature 
extraction was applied, and used as the input for the seg-
mentation model. Windows were shifted by one sample 
to guarantee a maximum temporal resolution. Features 
considered for this work where: the raw data itself, the 
gradient of the linear regression fit, the signal variance, 
and the second-order polynomial fit, which were partially 
derived from literature [29]. Finally, z-score standardiza-
tion was applied per feature axis per predefined walking 
bout. Different window sizes and feature combinations 
were tested during the parameter optimization step.

Hidden Markov Model
To model the sequential nature of human gait, a Hid-
den Markov Model (HMM) based approach was cho-
sen for this work. An HMM is characterized by a 
doubly embedded stochastic process [36] of which one 
stochastic process is described by Markov chains and 
is referred to as hidden (in this work the sequential 
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Fig. 2  Example data of one walking bout with 20 manually annotated strides and a maximum resting period of 2.5 s . Solid lines represent 
semi-automatically labeled stride borders, while dashed lines correspond to the borders of the opposite foot

Table 2  Number of strides and number of walking bouts per 
subject (N = 28) for the at-lab as well as the free-living dataset

N strides N bouts

Mean ± std Total Mean ± std Total

At-lab dataset 713± 176 19.964 13± 3 379

Free-living dataset 5234± 2915 146.574 189± 84 5318



Page 6 of 15Roth et al. J NeuroEngineering Rehabil           (2021) 18:93 

human gait model) because it can only be observed 
through a second stochastic process (the measured 
IMU data).

The proposed HMM architecture was chosen in a 
way to fit the available data and labels best. As only 
stride borders were available, the stride segmentation 
was formulated as a two-class problem, where each 
class was modeled as an individual HMM: namely, 
strides, which correspond to the labeled data, as well 
as transitions, which represent the unlabeled part of 
the data (but might also include resting). Emission 
distributions for each HMM were represented using 
Gaussian mixture models (GMMs) to describe the hid-
den states. GMMs were chosen to model the expected 
heterogeneity of different transitions as well as stride 
characteristics, which are expected in free-living data. 
HMMs were trained in an unsupervised manner using 
the Baum-Welch (BW) algorithm, which iteratively 
refines model parameters using expectation-maximi-
zation. BW-training was limited to a maximum of ten 
iterations, which was found to be sufficient during 
preliminary testing. To be able to represent the multi-
class structure of the given data, the trained models 
for strides and transitions were finally combined to the 
actual segmentation model (Fig. 3).

HMMs were implemented using the open source 
python package pomegranate v0.13.3 [37].

Stride Model architecture
Based on the assumption, that a stride must follow a pre-
defined and repetitive bio-mechanical order (swing and 
stance phase), the stride model was based on a strict left-
to-right Markov chain. Each hidden state was linked to a 
sub-phase of a stride. The time-granularity of those sub-
phases was defined by the overall number of states within 
the model. This means that each stride was represented 
by a monotonic raising state sequence from s0 to sn with 
self transition probabilities pn,n and transition probabili-
ties to the adjacent state pn,n+1 as illustrated in Fig. 4.

For initialization and training of the stride model, all 
individual strides (according to the manual stride bor-
der annotations) were extracted from each walking 
bout within the training dataset resulting in N training 
sequences for N labeled strides.

Hidden states were initialized by naïvely dividing 
each stride into n equally spaced sections to derive ini-
tial parameters for n GMMs, with n being the number 
of hidden states. Existing edges within the transition 
matrix were initialized uniformly. Transition probabili-
ties, as well as, GMM parameters, were then optimized 
iteratively using the BW-algorithm in an unsupervised 
manner.

Transition Model architecture
Although transitions can also be referred to as a simple 
“non-stride” or “null-class”, a single hidden state would 

Fig. 3  Schematic of a two-class HMM: The transition model and the stride model were trained separately on the respective parts of the training 
dataset. In a second step, the missing edges were calculated based on the complete training set to connect both models
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not be sufficient to model the rather complex nature of 
transitions to and from gait in free-living data. There-
fore, the transition class was modeled as a separate 
HMM. To account for the fact, that a transition will not 
follow a strict repetitive bio-mechanical order for a sin-
gle sequence (compared to a stride), a left-right Markov 
chain was extended by a transition between the last 
and the first state. Additionally, a transition sequence is 
allowed to start and end from any state, resulting in the 
model architecture as illustrated in Fig. 5.

Parameter initialization and optimization of the tran-
sition model was performed in the same way as for the 
stride model, by naïve linear split and unsupervised 
BW-training.

The training was performed on M transition sequences, 
where each walking bout of the training dataset included 
at least two (for start and end of the walking bout) or 
more transitions. Additional transitions within a valid 
walking bout were possible following the minimum rest-
ing period definition from Section .

Model combination
To be able to classify strides and transitions simultane-
ously and find corresponding stride borders, both indi-
vidually trained models had to be combined to a single 
flattened HMM. Therefore, their respective transition 
matrices were concatenated, so that the resulting matrix 
was of size ( n+m× n+m ) with n being the number of 
states of the stride model and m the number of states in 
the transition model. To find the edges, which connect 
both individual models, first, the hidden state sequence 

was predicted for each training sequence individually 
(per stride and per transition using the respective class 
model). Second, the predicted hidden states were merged 
to a continuous sequence for each walking bout. Based 
on this now fully hidden state labeled dataset, all possible 
state transitions could be derived to update the combined 
transition matrix. The already learned emission distribu-
tions were unchanged as these were already optimized 
during the previous BW-training.

Model parameters like number of states for the stride- 
and transition model as well as number of GMM compo-
nents were optimized during grid search (Table 3).

Stride border prediction
To perform stride segmentation on unseen IMU data (see 
Fig. 6), first, the most likely hidden state sequence for the 
respective sensor signal was predicted based on the com-
bined segmentation model using the Viterbi algorithm 
for inference. Second, any change from a transition state 
to a stride state or vice versa, plus transitions between the 
last and first state of the stride sub-model are considered 
as stride borders. To match the exact stride border defi-
nition of the manual labeling process, the borders were 
set to the minimum value of the gyrml axis in the region 
defined by the two hidden states, between which the 
transition occurred.

Evaluation
Performance metrics
The aim of the stride segmentation was to maxi-
mize the number of correctly segmented strides  /  true 

Start s0 s1 s2 sn−1 sn End

p0,0 p1,1 p2,2 pn−1,n−1 pn,n

p0,1 p1,2 pn−2,n−1 pn−1,n

Fig. 4  HMM structure of the stride sub-model: A left-right Markov chain from state s0 to sn , with transition probability pn,n+1 , and self transition 
probability pn,n . The sequence is enforced to always start with state s0 and end with sn

Start s0 s1 s2 sm−1 sm End

p0,0 p1,1 p2,2 pm−1,m−1 pm,m

p0,1 p1,2 pm−2,m−1 pm−1,m

pm,0

Fig. 5  HMM structure of the transition sub-model: A left-right Markov chain from state s0 to sm , with transition probability pm,m+1 , and self transition 
probability pm,m . Additionally, a transition from sm to s0 was added. Sequences may start and end from any state
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positives (TPs) while at the same time the number of 
missed strides  /  false negatives (FNs) and the number of 
falsely detected strides  /  false positives (FPs) should be 
minimized. These metrics are commonly represented in 
terms of precision and recall. As both precision and recall 
should be maximized for the evaluation of segmentation 
performance, the F1-score is used, which combines recall 
and precision by their harmonic mean:

Because the stride definition used for this study did not 
correspond to a specific stride event and small variations 
of stride borders will not have any impact on a following 
event detection and stride parameter calculation, a stride 
border was considered valid if it was located within a cen-
tered ±60 ms window ( ±3 samples) around the ground 

precision =
TP

TP + FP
, recall =

TP

TP + FN

F1 =2 ·
precision · recall

precision+ recall

truth border. Still, a stride was only counted as TP if both, 
the begin and the end, are within the described margins.

Evaluation on at‑lab data
For baseline evaluation, a 4-fold, nested leave-N-sub-
jects-out cross-validation (CV) was performed on the at-
lab dataset. The inner folds were used for grid search and 
parameter optimization, while the outer folds were used 
for the performance evaluation. Inner and outer folds 
were split such that no subject data, which were used 
during parameter optimization, were used for evaluation 
to prevent the model from overfitting.

HMM grid search
The grid search parameters (Table 3) used for the model 
training were partly derived from previous literature [16, 
29] and partially from pre-study experiments. The sensor 
axis was fixed to gyrml for this study as it contained the 
main signal features, which were used to define the stride 
borders.

DTW grid search
The DTW implementation, which was used for the semi-
automated labeling tool, was selected as a state-of-the-
art reference method for the proposed HMM. For a fair 
comparison between the two methods, a parameter grid 
search was performed for the DTW approach on the at-
lab dataset, as well. As for DTW, no actual training step 
is necessary, the parameter optimization and evaluation 
were performed only on the outer folds, where the same 
train-test split as for the HMM evaluation was used. For 
DTW the maximum warping cost (max. cost) threshold 
was grid searched in a range from 2.0 to 5.0 in steps of 
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Fig. 6  Input signal of a walking bout with predicted hidden state sequence and derived stride borders. States 0 to 4 represent transitions, while 
states 5 to 29 refer to the stride model

Table 3  Grid search values for HMM hyperparameter 
optimization. Grad = gradient of the linear regression fit, var = 
signal variance and poly fit = the first three coefficients of the 
second-order polynomial fit

Parameters Values

Window size [ms] 100, 220, 500

Feature combinations [raw] / [raw, grad] 
/ [raw, var, poly 
fit]

Number of GMM components 1, 3, 5, 8

Number of states for stride model 5, 10, 15, 20, 25

Number of states for transition model 3, 5, 8, 12
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0.25 with the input feature fixed to the raw data of the 
gyrml axis.

For each fold, a new stride template was generated 
using all strides over all subjects of the train split. For the 
template generation, each stride was linearly interpolated 
to the mean number of samples over all strides. After-
wards, the mean per sample over all strides was calcu-
lated and used as the template.

Evaluation on free‑living data
For the final evaluation on the free-living dataset, a 
repeated nested CV including a grid search was omit-
ted due to the high computational demand required for 
training the model on free-living data. Instead, a leave-
one-subject-out CV with a single optimized hyperparam-
eter set was conducted.

Hyperparameter selection
To select an optimal hyperparameter set for the HMM 
training, the mean F1-score per parameter set over 
all grid search folds (4x4 inner folds) of the previous 
nested CV on the at-lab dataset was considered. Thus, 
the parameter set, which reached the on average highest 
F1-score on the at-lab dataset, was chosen for the free-
living evaluation. The optimal max. cost threshold for the 
evaluation of the DTW method on the free-living dataset 
was directly derived from the at-lab CV as well.

HMM training paradigm
To test the generalizability of the proposed HMM, two 
different training scenarios were applied:

At‑lab training
Here, the model was trained only on laboratory data 
recorded during the clinical visit ( HMMlab ). This train-
ing scenario was chosen to test the possibility to transfer 
a lab-trained model to a free-living context. A laboratory 
setting is still one of the most commonly used gait analy-
sis settings and often used to develop and evaluate mod-
els which shall later be used in unsupervised free-living 
conditions.

Free‑living training
In this scenario, the model was trained solely on the 
free-living dataset ( HMMfree-living ). Here, a much higher 
diversity of different stride types, like initiation-, termi-
nation-, or turning-strides, or shuffling-gait is expected 
within the dataset. As the number of walking bouts and, 
therefore, the number of strides can vary substantially 
between subjects for the free-living data, a randomly 
chosen subset of 50 walking bouts per patient was used 
for training. This was done to balance the influence of 
individual subjects on the free-living model.

Results
Evaluation on at‑lab data
Both DTW and HMM achieved promising segmenta-
tion results on the at-lab dataset (Table  4), while the 
HMM achieved a slightly better segmentation perfor-
mance, reaching a F1-score of 96.2± 1.1 % compared to 
94.6± 1.3 % for the DTW approach.

Evaluation on free‑living data
Hyperparameter selection
For the HMM method, the optimal hyperparameters set 
derived from the nested CV were: 8 components for the 
GMMs, 25 states for the stride model, and 5 states for the 
transition model, respectively. The best values for feature 
extraction were a window size of 220 ms as well as a com-
bination of the raw data together with the linear gradient 
derived from the sliding window view. For DTW, the best 
performing max. cost threshold was 3.5.

Evaluation
Compared to the results of the at-lab dataset (Table  4), 
the segmentation performance on the free-living data-
set dropped by almost 10 % for DTW and by 4 % for the 
HMM (Table 5). To identify significant differences, paired 
t-tests were performed for statistical analysis. While no 
relevant difference between the two training paradigms 
( HMMlab vs HMMfree-living ) could be found, the HMM 
outperformed the DTW method significantly reaching a 
maximum F1-score of 92.4 ± 4.1 % for the HMMfree-living 
compared to only 85.1± 9.0 % for the DTW approach 
( p ≤ 0.0001 ). While the precision is similar for DTW as 

Table 4  Results of the stride segmentation performance, in 
controlled laboratory settings. All values are given as mean ± std 
over the 4 outer evaluation folds

Method Precision [%] Recall [%] F1-Score [%]

DTW 94.6± 1.3 92.1± 1.4 94.6± 1.3

HMM 96.1± 1.1 96.4± 1.4 96.2± 1.1

Table 5  Results of the stride segmentation performance, for the 
free-living dataset. All values are given as mean ± std across the 
28 subjects, over all strides per day, per patient

Method Precision [%] Recall [%] F1-Score [%]

DTW 87.2± 8.4 83.3± 10.1 85.1± 9.0

HMMlab 89.4± 5.6 95.2± 3.0 92.2± 4.2

HMMfree-living 89.4± 5.7 95.6± 2.8 92.4± 4.1
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well as the HMMs, especially the recall value is consid-
erably higher for the HMMfree-living approach reaching 
95.6± 2.8 % compared to only 83.3± 10.1 % for DTW.

Impact of bout length
Due to the complex nature of free-living data (like the 
influence of context, environment or disease fluctua-
tions), the drop of segmentation performance between 
the at-lab recordings and free-living data was fur-
ther investigated. Therefore, the different bout groups 
introduced by Del Din et  al. [24] were adopted but 
converted into the respective number of strides. This 

resulted in the following walking bout subgroups: 
4 ≤ N ≤ 15 , 15 < N ≤ 30 , 30 < N ≤ 50 , 50 < N ≤ 100 , 
100 < N ≤ 200 , N > 200.

Performance metrics were re-calculated for each of the 
defined bout groups per patient and visualized by box 
plots in Fig.  7. Exact values of performance metrics are 
summarized in Table 6 as well as in Supplementary Tables 
S1-S3 (Additional file  2), including respective p-values 
and Cohen’s d effect sizes. Grouping the segmentation 
results by the number of strides per bout revealed a rela-
tion between segmentation performance and bout length 
for all methods. The segmentation F1-score for walking 

Fig. 7  Segmentation performance on the free-living dataset, grouped by the number of strides per walking bout. Significant differences between 
methods were identified using paired t-tests with *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001 and ****: p ≤ 0.0001

Table 6  Segmentation performance on the free-living dataset, grouped by the number of strides per walking bout. All values are 
given as mean ± std

N Strides per bout Precision [%] Recall [%] F1-Score [%]

DTW HMMlab HMMfree-living DTW HMMlab HMMfree-living DTW HMMlab HMMfree-living

4 ≤ N ≤ 15 69.2± 10.2 75.7± 4.5 75.5± 4.5 59.6± 12.4 92.7± 3.7 93.2± 3.7 63.5± 10.2 83.3± 3.7 83.4± 3.8

15 < N ≤ 30 85.5± 8.9 88.2± 4.7 88.7± 4.7 80.5± 10.4 94.1± 3.3 94.7± 3.3 82.8± 9.1 91.1± 3.8 91.6± 3.5

30 < N ≤ 50 90.8± 5.1 92.7± 4.2 92.6± 4.2 88.6± 7.9 95.0± 3.7 95.5± 3.7 89.6± 6.1 93.8± 3.7 94.0± 3.6

50 < N ≤ 100 93.9± 3.8 95.7± 2.8 95.9± 2.8 91.8± 5.7 96.2± 2.5 96.5± 2.5 92.8± 4.6 95.9± 2.4 96.2± 2.0

100 < N ≤ 200 95.1± 3.6 96.3± 3.0 96.4± 3.0 92.8± 5.1 95.8± 2.9 96.1± 2.9 93.9± 4.2 96.0± 2.9 96.2± 3.0

N > 200 97.9± 2.2 98.4± 1.8 98.7± 1.8 96.4± 4.0 97.4± 2.6 97.8± 2.6 97.2± 3.0 97.9± 2.1 98.2± 1.7
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bouts ≤ 30 strides was below the overall free-living aver-
age, while bouts ≥ 50 strides were above average and 
reached comparable performance to the at-lab results for 
both the HMM as well as the DTW approach.

The HMM-based segmentation approach significantly 
outperformed the baseline DTW method for all bout 
groups in terms of precision, recall and F1-score. The 
biggest difference between DTW and HMM were found 
within the recall metric over all bout groups. While the 
performance of all segmentation methods increased with 
larger bouts, the difference between DTW and HMM 
became smaller for longer bouts.

Impact of training paradigm
Although significant differences between the two train-
ing paradigms for the HMM were found in some bout 
groups, the effect size in terms of Cohen′  s d was always 
below 0.2. This indicates only small differences between 
HMMlab and HMMfree-living , which is again reflected by 
the results in Table 6.

Discussion
To the best of our knowledge, this is the first study, which 
evaluated stride segmentation performance in foot worn 
IMU data not only on a large number of 19.964 strides 
in standardized laboratory settings but also on unsu-
pervised, free-living PD patient data including a total of 
146.574 annotated strides. To obtain the required stride 
borders on both datasets, a semi-automatic manual 
annotation approach was applied using an existing tem-
plate matching method based on DTW [14].

Next, a simple yet robust HMM-based segmenta-
tion approach was developed. The proposed model was 
adapted to learn only from manual stride border anno-
tations and best fit the requirements for free-living data 
analysis. Basic architecture parameters were derived 
from previous work, where HMM-based stride seg-
mentation was successfully applied on laboratory data 
[16, 18, 29, 30]. Segmentation performance of the pro-
posed HMM was compared to a state-of-the-art DTW 
based template matching method [14]. The evaluation of 
stride segmentation algorithms was continued beyond 
controlled laboratory settings by validating their per-
formance on free-living PD patient data in a continu-
ous home-monitoring setting. To better understand the 
impact of the context within free-living gait data, the final 
evaluation was extended by an in-depth analysis of the 
impact of bout length on the segmentation performance 
of the presented methods.

Performance on laboratory data
To evaluate the baseline performance and find opti-
mal hyperparameters for the presented segmentation 

methods, a nested CV including an extensive grid search, 
was conducted on the laboratory dataset. At-lab perfor-
mance in terms of F1-score was found to be promising for 
both methods, while the HMM achieved a higher value of 
96.2± 1.1 % compared to the DTW approach performing 
slightly worse with 94.6± 1.3 %. These results are almost 
in perfect agreement compared to previous studies in 
the literature [29]. However, since the at-lab dataset con-
sists of mainly standardized gait test (performed under 
supervision in clinical hallways), these results cannot be 
directly transferred to free-living conditions.

Performance on free‑living data
Hence, in the second part of the experiment, the segmen-
tation performance was validated on continuous unsu-
pervised free-living data. Here, two different training 
paradigms were considered for the HMM method. First, 
the model was only trained on laboratory data to test the 
generalizability of the approach as annotated free-living 
training data might not be available in many cases. Sec-
ond, the model was trained on actual free-living data as 
a reference. Additionally, DTW was again applied as a 
baseline method.

As expected, the segmentation performance was worse 
for both HMM models as well as for the DTW approach, 
compared to the performance on the lab dataset. This is 
most likely related to the increased complexity and het-
erogeneity of free-living data compared to the controlled 
laboratory data.

Both HMMs performed almost identical in terms of 
mean F1-score reaching 92.2± 4.2 % for the HMMlab 
and 92.4 ± 4.1 % for the HMMfree-living , respectively. 
Although performance dropped by approx. 4 % com-
pared to the laboratory data for the HMM models, they 
significantly outperformed the reference DTW approach, 
which only could reach a F1-score of 85.1 % with a high 
standard deviation of 9.0 %. The lower F1-score of the 
DTW approach can be explained because of the use of 
a single stride template, which was not able to cover the 
expected heterogeneity of strides expected within a free-
living dataset. By averaging multiple annotated strides 
for template generation, information about the variety of 
different stride types will be lost. Especially non-steady 
strides will have a high euclidean distance compared to 
the template resulting in high warping costs. Therefore, 
such strides were not segmented correctly or at all by the 
DTW method. For the HMM-based approach, in con-
trast, the underlying probability distributions of each 
state of the model were optimized during the training 
step. Due to the use of GMMs with multiple components 
per state, the HMM could model and represent a wider 
variety of different stride types within a single model. 
This increased complexity and the probabilistic approach 
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make the HMM-based method flexible enough to better 
handle the heterogeneity of strides within the free-liv-
ing dataset. Hence, the HMM also correctly segmented 
unseen and irregular strides resulting in an improved 
F1-score compared to DTW.

Impact of bout length
To gain deeper insights into the stride segmentation 
performance on free-living patient data, results were 
grouped by previously proposed bout definitions [24]. 
This revealed a dependency of segmentation perfor-
mance to bout length for the free-living dataset. Espe-
cially for shorter walking bouts with less than 30 strides, 
F1-scores dropped below average values (reported in 
Table 5) for all methods, while both HMMs still outper-
formed DTW significantly. For bouts with more than 50 
strides, both, HMM and DTW, achieved a comparable 
performance as on the at-lab dataset reaching F1-scores 
of 96.2± 2.0 % up to 98.2± 1.7 % for HMMfree-living and 
92.8± 4.5 % up to 97.2± 3.0 % for DTW.

This relation of segmentation performance and bout 
length could be explained by an increased percentage 
of non-steady-strides for shorter bouts. Here, various 
different stride types like initiation-, termination- or 
turning-strides as well as shuffling are suspected of gen-
erating artifacts or blurring the signal features, which 
were required to define the stride borders. This could also 
be confirmed during the manual annotation approach, 
where stride borders were not always clearly defined par-
ticularly for short walking bouts. However, these shorter 
walking bouts with less than 30, mostly non-steady-
strides, make up more than 40 % of total strides taken per 
day on average for the presented cohort (Fig. 8). This also 
explains their considerable impact on the overall result. 
Although the importance of these non-steady strides is 
still poorly understood within free-living gait data, some 
studies already showed that this group of strides might 
yield additional clinical information [38, 39].

In contrast, for longer walking bouts, the proportion of 
such “non-steady” strides will be lower, while the regu-
larity of strides is expected to rise with increased bout 
length. This, in turn, would result in a decreased com-
plexity of the underlying IMU signals with clear stride 
border features and hence explain the better segmenta-
tion performance.

The overall F1-score performance of the HMM-based 
segmentation was dominated by its recall values, which 
yield significant differences between HMM and DTW up 
to bouts with ≤ 200 strides, while the precision was only 
noticeably different for the first bout group with < 15 
strides.

This could be explained by the fact that a two-class 
model for the HMM method might not capture the 

entire complexity of free-living data and hence the HMM 
switches into its stride sub-model too often. However, 
such false positives might be easily eliminated by a sub-
sequent post-processing step like an event detection. 
Therefore, methods presented by Rampp et al. [40] could 
be used for a detection of heel-strike, toe-off, and mid-
stance to validate a segmented stride candidate, which 
should boost the overall precision, while preserving the 
already high recall.

Impact of training paradigm
For the overall F1-score no significant difference between 
the two models HMMfree-living and HMMlab could be 
found. Although the HMMfree-living achieved a signifi-
cantly better recall value compared to the HMMlab , the 
absolute difference between the two training paradigms 
was always below the standard deviation with Cohen’s d 
values < 0.2 for all bout groups. The major disadvantage 
of training the HMM on free-living data is the extensive 
amount of manual labeling and verification, which was 
necessary to generate the required ground truth labels. 
In contrast, the HMMlab has the advantage that reference 
stride borders required for training can be obtained easier 
and with less effort, for example, during routine clinical 
checkups. Therefore, the presented results might indicate 
a reasonable generalizability of the proposed HMM with 
the flexibility to handle completely unseen data from a 
different context due to its probabilistic approach. Thus, 
a lab trained model could be directly transferred to the 
free-living domain with some additional improvements 
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regarding the precision using post-processing steps as 
mentioned before.

Limitations
Generating reference labels on completely unsuper-
vised free-living data is still an open and unsolved chal-
lenge in IMU-based gait analysis. In this work, we tried 
to address this problem by a time costly manual annota-
tion approach. As no alternative gold-standard reference 
system was available, annotation had to be performed 
directly on the IMU time-series signal. Although foot-
mounted IMUs have the advantage of a high biomechani-
cal resolution, stride borders were not always completely 
clear and, therefore, dependent on the subjective assess-
ment of the annotator. Hence, the presence of isolated 
human annotation errors cannot be avoided entirely in 
the used reference labels. However, due to a large num-
ber of almost 150.000 annotated strides, the influence of 
human annotation errors should be on a negligible scale 
for the primary outcome of this work.

Furthermore, only predefined walking bouts were 
considered for the evaluation within this work. Walking 
bouts were derived from the manual stride border anno-
tations, to avoid potential biases due to additional pre-
processing steps (which will require individual evaluation 
in the future). This means that the presented segmenta-
tion model will be dependent on a robust gait sequence 
detection as a preceding step to be used for continuous 
free-living data. Methods based on the analysis of har-
monic frequencies, as presented by Ullrich et  al. [41], 
could solve this problem.

Conclusion
For this work, a comprehensive evaluation dataset for 
free-living stride segmentation was presented, includ-
ing 146.574 semi-automated labeled strides of 28 PD 
patients. A custom HMM-based stride segmentation 
approach was introduced and evaluated together with 
an available state-of-the-art DTW-based reference 
method on laboratory as well as free-living data. The 
proposed HMM method was able to outperform the 
DTW-based approach on both datasets significantly. 
Further investigations revealed a relation between 
walking bout length and segmentation F1-score. Espe-
cially bouts with ≤ 30 strides showed a reduced per-
formance below average, while bouts with > 50 strides 
reached a similar performance compared to results in 
the laboratory setting. Using free-living data compared 
to lab data for training did not improve the overall seg-
mentation performance noticeably, which could indi-
cate a good generalizability of the model. The HMM 
demonstrated its strength, especially for the recall met-
ric, while the precision needs further improvement. 

This issue might be solved by additional post-process-
ing steps to reliably identify false positive strides, for 
example, by a subsequent event detection or a simple 
stride-feature based classifier.

Although the presented HMM could improve seg-
mentation performance significantly, compared to the 
DTW baseline approach, especially the shorter and more 
challenging walking bouts will require further technical 
attention. For this purpose, deep learning models based 
on convolutional neural networks (CNNs) [21, 22] or 
recently proposed recurrent neural networks (RNNs) 
[42] might be able to improve segmentation performance 
even further and help to model the expected heterogene-
ity within those specific bout groups. Hence, in future 
work, additional segmentation benchmarks should be 
carried out on free-living gait datasets to identify other 
suitable stride segmentation methods for upcoming 
applications in the field of continuous free-living mobile 
gait analysis.

Nevertheless, our proposed probabilistic HMM-based 
stride segmentation approach proved to be a promis-
ing candidate to handle the increased heterogeneity and 
complexity within free-living gait. The presented results 
highlight the challenges of stride segmentation on free-
living datasets compared to controlled laboratory assess-
ments as well as the influence of walking bout length on 
respective segmentation performance. Also, environ-
mental factors like underground or the number of cor-
ners during unsupervised free-living studies might affect 
gait patterns and therefore require robust segmentation 
methods with respective evaluations. Therefore, our pre-
sented work is an important step towards a robust and 
reliable assessment of stride parameters for future free-
living gait analysis applications and respective clinical 
insights into neurological diseases.
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