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Abstract

perspective.

system, and clinical outcome measures.

respectively, to match feedback to motor imagery.

efficacy can be developed.

Background: Hand rehabilitation is core to helping stroke survivors regain activities of daily living. Recent studies
have suggested that the use of electroencephalography-based brain-computer interfaces (BCl) can promote this
process. Here, we report the first systematic examination of the literature on the use of BCl-robot systems for the reha-
bilitation of fine motor skills associated with hand movement and profile these systems from a technical and clinical

Methods: A search for January 2010-October 2019 articles using Ovid MEDLINE, Embase, PEDro, PsycINFO, IEEE
Xplore and Cochrane Library databases was performed. The selection criteria included BCl-hand robotic systems for
rehabilitation at different stages of development involving tests on healthy participants or people who have had a
stroke. Data fields include those related to study design, participant characteristics, technical specifications of the

Results: 30 studies were identified as eligible for qualitative review and among these, 11 studies involved testing a
BCl-hand robot on chronic and subacute stroke patients. Statistically significant improvements in motor assessment
scores relative to controls were observed for three BCl-hand robot interventions. The degree of robot control for the
majority of studies was limited to triggering the device to perform grasping or pinching movements using motor
imagery. Most employed a combination of kinaesthetic and visual response via the robotic device and display screen,

Conclusion: 19 out of 30 studies on BCl-robotic systems for hand rehabilitation report systems at prototype or pre-
clinical stages of development. We identified large heterogeneity in reporting and emphasise the need to develop a
standard protocol for assessing technical and clinical outcomes so that the necessary evidence base on efficiency and
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Background

There is growing interest in the use of robotics within
the field of rehabilitation. This interest is driven by
the increasing number of people requiring rehabilita-
tion following problems such as stroke (with an ageing
population), and the global phenomenon of insufficient

*Correspondence: fmushtag@leeds.ac.uk
2 School of Psychology, University of Leeds, Leeds LS2 9JZ, UK
Full list of author information is available at the end of the article

B BMC

numbers of therapists able to deliver rehabilitation
exercises to patients [1, 2]. Robotic systems allow a
therapist to prescribe exercises that can then be guided
by the robot rather than the therapist. An important
principle within the use of such systems is that the
robots assist the patient to actively undertake a pre-
scribed movement rather than the patient’s limb being
moved passively. This means that it is necessary for the
system to sense when the patient is trying to gener-
ate the required movement (given that, by definition,
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the patient normally struggles with the action). One
potential solution to this issue is to use force sensors
that can detect when the patient is starting to generate
the movement (at which point the robot’s motors can
provide assistive forces). It is also possible to use meas-
ures of muscle activation (EMGs) to detect the intent
to move [3]. In the last two decades there has been a
concerted effort by groups of clinicians, neuroscien-
tists and engineers to integrate robotic systems with
brain signals correlated with a patient trying to actively
generate a movement, or imagine a motor action, to
enhance the efficacy and effectiveness of stroke rehabil-
itation- these systems fall under the definition of Brain
Computer Interfaces, or BCIs [4].

BClIs allow brain state-dependent control of robotic
devices to aid stroke patients during upper limb therapy.
While BClIs in their general form have been in develop-
ment for almost 50 years [5] and were theoretically made
possible since the discovery of the scalp-recorded human
electroencephalogram (EEG) in the 1920s [6], their appli-
cation to rehabilitation is more recent [7-9]. Graimann
et al. [10] defined a BCI as an artificial system that pro-
vides direct communication between the brain and a
device based on the user’s intent; bypassing the normal
efferent pathways of the body’s peripheral nervous sys-
tem. A BCI recognises user intent by measuring brain
activity and translating it into executable commands usu-
ally performed by a computer, hence the term “brain—
computer interface”.

Most robotic devices used in upper limb rehabilita-
tion exist in the form of exoskeletons or end-effectors.
Robotic exoskeletons (i.e., powered orthoses, braces) are
wearable devices where the actuators are biomechanically
aligned with the wearer’s joints and linkages; allowing the
additional torque to provide assistance, augmentation
and even resistance during training [11]. In comparison,
end-effector systems generate movement through apply-
ing forces to the most distal segment of the extremity
via handles and attachments [11]. Rehabilitation robots
are classified as Class II-B medical devices (i.e., a thera-
peutic device that administers the exchange of energy,
mechanically, to a patient) and safety considerations are
important during development [12, 13]. Most commer-
cial robots are focused on arms and legs, each offering a
unique therapy methodology. There is also a category of
device that target the hand and finger. While often less
studied than the proximal areas of the upper limb, hand
and finger rehabilitation are core component in regaining
activities of daily living (ADL) [14]. Many ADLs require
dexterous and fine motor movements (e.g. grasping and
pinching) and there is evidence that even patients with
minimal proximal shoulder and elbow control can regain
some hand capacity long-term following stroke [15].

Page 2 of 25

The strategy of BCI-robot systems (i.e. systems that
integrate BCI and robots into one unified system) in
rehabilitation is to recognise the patient’s intention to
move or perform a task via a neural or physiological sig-
nal, and then use a robotic device to provide assistive
forces in a manner that mimics the actions of a therapist
during standard therapy sessions [16]. The resulting feed-
back is patient-driven and is designed to aid in closing
the neural loop from intention to execution. This process
is said to promote use-dependent neuroplasticity within
intact brain regions and relies on the repeated experi-
ence of initiating and achieving a specified target [17, 18];
making the active participation of the patient in perform-
ing the therapy exercises an integral part of the motor re-
learning process [19, 20].

The aforementioned scalp-recorded EEG signal is a
commonly used instrument for data acquisition in BCI
systems because it is non-invasive, easy to use and can
detect relevant brain activity with high temporal reso-
lution [21, 22]. In principle, the recognition of motor
imagery (MI), the imagination of movement without
execution, via EEG can allow the control of a device inde-
pendent of muscle activity [10]. It has been shown that
MlI-based BCI can discriminate motor intent by detect-
ing event-related spectral perturbations (ERSP) [23, 24]
and/or event-related desynchronisation/synchronisation
(ERD/ERS) patterns in the p (9—11 Hz) and f (14—30 Hz)
sensorimotor rhythm of EEG signals [24]. However, EEG
also brings with it some challenges. These neural mark-
ers are often concealed by various artifacts and may be
difficult to recognise through the raw EEG signal alone.
Thus, signal processing (including feature extraction and
classification) is a vital part of obtaining a good MI sig-
nal for robotic control. A general pipeline for EEG data
processing involves several steps. First, the data undergo
a series of pre-processing routines (e.g., filtering and
artifact removal) before feature extraction and classi-
fication for use as a control signal for the robotic hand.
There are variety of methods to remove artifact from
EEG and these choices depend on the overall scope of the
work [25]. For instance, Independent Component Anal-
ysis (ICA) and Canonical Correlation Analysis (CCA)
can support real-time applications but are dependent
on manual input. In contrast, regression and wavelet
methods are automated but support offline applications.
There also exist automated and real-time applications
such as adaptive filtering or using blind source separa-
tion (BSS) based methods. Recently, the research com-
munity has been pushing real-time artifact rejection by
reducing computational complexity e.g. Enhanced Auto-
matic Wavelet-ICA (EAWICA) [26], hybrid ICA—Wave-
let transform technique (ICA-W) [27] or by developing
new approaches such as adaptive de-noising frameworks
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[28] and Artifact Subspace Reconstruction (ASR) [29].
Feature extraction involves recognising useful informa-
tion (e.g., spectral power, time epochs, spatial filter-
ing) for better discriminability among mental states. For
example, the common spatial patterns (CSP) algorithm
is a type of spatial filter that maximises the variance of
band pass-filtered EEG from one class to discriminate it
from another [30]. Finally, classification (which can range
from linear and simple algorithms such as Linear Discri-
minant Analysis (LDA), Linear Support Vector Machine
(L-SVM) up to more complex techniques in deep learn-
ing such as Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN) [31, 32] involves the
translation of these signals of intent to an action that pro-
vides the user feedback and closes the loop of the motor
intent-to-action circuit.

The potential of MI-based BCIs has gained consid-
erable attraction because the neural activity involved
in the control of the robotic device may be a key com-
ponent in the rehabilitation itself. For example, MI of
movement is thought to activate some of the neural net-
works involved in movement execution (ME) [33-36].
The resulting rationale is that encouraging the use of MI
could increase the capacity of the motor cortex to con-
trol major muscle movements and decrease the necessity
to use neural circuits damaged post-stroke. The scientific
justification for this approach was first provided by Jean-
nerod [36] who suggested that the neural substrates of
MI are part of a shared network that is also activated dur-
ing the simulation of action by the observation of action
(AO) [36]. These ‘mirror neuron’ systems are thought to
be an important component of motor control and learn-
ing [36]—hence the belief that activating these systems
could aid rehabilitation. The use of a MI-BCI to control
a robot in comparison to traditional MI and physical
practice provides a number of benefits to its user and the
practitioner. These advantages include the fact that the
former can provide a more streamlined approach such
as sensing physiological states, automating visual and/or
kinaesthetic feedback and enriching the task and increas-
ing user motivation through gamification. There are also
general concerns around the utility of motor imagery
without physical movement (and the corresponding mus-
cle development that comes from these) and it is possi-
ble that these issues could be overcome through a control
strategy that progressively reduces the amount of support
provided by the MI-BCI system and encourages active
motor control [37, 38].

A recent meta-analysis of the neural correlates of action
(MI, AO and ME) quantified ‘conjunct’ and ‘contrast’ net-
works in the cortical and subcortical regions [33]. This
analysis, which took advantage of open-source historical
data from fMRI studies, reported consistent activation in
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the premotor, parietal and somatosensory areas for MI,
AO and ME. Predicated on such data, researchers have
reasoned that performing MI should cause activation of
the neural substrates that are also involved in control-
ling movement and there have been a number of research
projects that have used AO in combination with MI in
neurorehabilitation [39-41] and motor learning studies
[42, 43] over the last decade.

One implication of using MI and AO to justify the
use of BCI approaches is that great care must be taken
with regard to the quality of the environment in which
the rehabilitation takes place. While people can learn
to modulate their brain rhythms without using motor
imagery and there is variability across individuals in their
ability to imagine motor actions, MI-driven BCI sys-
tems require (by design at least) for patient to imagine a
movement. Likewise, AO requires the patients to clearly
see the action. This suggests that the richness and vivid-
ness of the visual cues provided is an essential part of an
effective BCI system. It is also reasonable to assume that
feedback is important within these processes and thus
the quality of feedback should be considered as essen-
tial. Afterall, MI and AO are just tools to modulate brain
states [40] and the effectiveness of these tools vary from
one stroke patient to another [44]. Finally, motivation
is known to play an important role in promoting active
participation during therapy [20, 45]. Thus, a good BCI
system should incorporate an approach (such as gaming
and positive reward) that increases motivation. Recent
advances in technology make it far easier to create a
rehabilitation environment that provides rich vivid cues,
gives salient feedback and is motivating. For example, the
rise of immersive technologies, including virtual real-
ity (VR) and augmented reality (AR) platforms [45-47],
allows for the creation of engaging visual experiences
that have the potential to improve a patient’s self-efficacy
[48] and thereby encourage the patient to maintain the
rehabilitation regime. One specific example of this is vis-
ually amplifying the movement made by a patient when
the movement is of limited extent so that the patient can
see their efforts are producing results [49].

In this review we set out to examine the literature to
achieve a better understanding of the current value and
potential of BCI-based robotic therapy with three spe-
cific objectives:

(1) Identify how BCI technologies are being utilised in
controlling robotic devices for hand rehabilitation.
Our focus was on the study design and the tasks
that are employed in setting up a BCI-hand robot
therapy protocol.

(2) Document the readiness of BCI systems. Because
BCI for rehabilitation is still an emerging field of
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research, we expected that most studies would be
in their proof-of-concept or clinical testing stages
of development. Our purpose was to determine the
limits of this technology in terms of: (a) resolution
of hand MI detection and (b) the degree of robotic
control.

(3) Evaluate the clinical significance of BCI-hand robot
systems by looking at the outcome measures in
motor recovery and determine if a standard proto-
col exists for these interventions.

It is important to note that there have been several
recent reviews exploring BCI for stroke rehabilitation.
For example, Monge-Pereira et al. [50] compiled EEG-
based BCI studies for upper limb stroke rehabilitation.
Their systematic review (involving 13 clinical studies on
stroke and hemiplegic patients) reported on research
methodological quality and improvements in the motor
abilities of stroke patients. Cervera et al. [51] per-
formed a meta-analysis on the clinical effectiveness of
BClI-based stroke therapy among 9 randomised clinical
trials (RCT). McConnell et al. [52] undertook a narra-
tive review of 110 robotic devices with brain—machine
interfaces for hand rehabilitation post-stroke. These
reviews, in general, have reported that such systems
provide improvements in both functional and clini-
cal outcomes in pilot studies or trials involving small
sample sizes. Thus, the literature indicates that EEG-
based BCI are a promising general approach for reha-
bilitation post-stroke. The current work complements
these previous reports by providing the first systematic
examination on the use of BCI-robot systems for the
rehabilitation of fine motor skills associated with hand
movement and profiling these systems from a technical
and clinical perspective.

Methods

Protocol registration

Details of the protocol for this systematic review were
registered on the International Prospective Regis-
ter of Systematic Reviews (PROSPERO) and can be
accessed at http://www.crd.york.ac.uk/PROSPERO (ID:
CRD42018112107).

Table 1 Keyword combinations
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Search strategy and eligibility

An in-depth search of articles from January 2010 to
October 2019 was performed on Ovid MEDLINE,
Embase, PEDro, PsycINFO, IEEE Xplore and Cochrane
Library. Only full-text articles published in English were
selected for this review. Table 1 shows the combination of
keywords used in the literature searching.

The inclusion criteria for the articles were: (1) publi-
cations that reported the development of an EEG-based
BCI (2) studies targeted towards the rehabilitation of the
hand after stroke; (3) studies that involved the use of BCI
and a robotic device (e.g., exoskeleton, end-effector type,
platform-types, etc.); (4) studies that performed a pilot
test on healthy participants or a clinical trial with people
who have had a stroke. The articles were also screened
for the following exclusion criteria: (1) studies that tar-
geted neurological diseases other than stroke; (2) studies
that used other intention sensing mechanisms (electro-
myography/EMG, electrooculography/EOG, non-paretic
hand, other body parts, etc.).

Two authors performed independent screenings of
titles and abstracts based on the inclusion and exclusion
criteria. The use of a third reviewer was planned a priori
in cases where a lack of consensus existed around eligi-
bility. However, consensus was achieved from the first
two authors during this stage. Full-text articles were then
obtained, and a second screening was performed until
a final list of studies was agreed to be included for data
extraction.

Data extraction

The general characteristics of the study and their corre-
sponding results were extracted from the full-text articles
by the reviewers following the Preferred Reporting Items
for Systematic Reviews and Meta-Analysis (PRISMA)
checklist. Data fields were extracted and categorised as
follows:

+ Participant characteristics: sample population,
healthy or stroke patients, handedness, age, sex, acute
or chronic stroke classification, and mean duration
since stroke

+ Study design: general description of study design,
experimental and control groups

Set 1 (OR) Set 2 (OR)

Set 3 (OR)

Brain—-computer interface/BCI AND
Electroencephalography/EEG
Brain-machine interface/BMI

Neural control interface

Mind-machine interface

Neurorehabilitation
Neurotherapy

Stroke (rehabilitation/ therapy/treatment/recovery)
Motor (rehabilitation, therapy/treatment/recovery)

AND Robotic (exoskeleton/ orthosis)
Powered (exoskeleton/ orthosis)
Robot

Device

Hand (rehabilitation/therapy/ recovery/exercises/movement)
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+ Task design: description of the task instructed, and
stimuli presentation (cue and feedback modalities,
i.e.: visual, kinaesthetic, auditory, etc.)

+ Technical specifications of the system: EEG system
used (including number of channels), robot device
used (e.g. hand exoskeleton, end-effector, etc.), actua-
tion mode, and control strategy

+ Main outcomes of the study: clinical outcomes (for
studies involving stroke patients), classification accu-
racies (participant, group and study-levels), other sig-
nificant findings

This data extraction strategy allowed us to further eval-
uate the technology and clinical use of the BCI-robot sys-
tems used in this study.

Technology evaluation

EEG acquisition

The signal acquisition element of an EEG-based BCI is
critical to its success in recognising task-related intent.
To better understand current practice, we gathered the
type of electrode used (i.e., standard saline-soaked, gel
or dry electrodes), the number of channels and its cor-
responding placement in the EEG cap. To illustrate where
signals are recorded from, we plotted the frequency with
which electrodes were used across studies on a topo-
graphical map using the 10-20 international electrode
placement system.

Signal processing

We evaluated the signal processing strategies used by
each study looking specifically at the feature extraction
and classification techniques within the data pipeline. For
the studies that reported classification accuracies (i.e.,
comparing the predicted class against the ground truth),
we were able to compare their results among the current
state-of-the-art classification accuracies published in
literature.

Robot-assisted rehabilitation

As the receiving end of the BCI pipeline and the provider
of kinaesthetic feedback to the user, the robot-assisted
device for hand rehabilitation plays a key role in provid-
ing the intervention in this therapy regimen. The robot
components were evaluated based on their actuation
type, targeted body-part (i.e., single-finger, multi-finger,
whole hand), and control strategy. We also reported on
commercially available systems, which having passed a
series of regulatory processes making them fit for com-
mercial use, were classified as gold standard devices.
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Technological readiness

We assessed the development stages of the system as a
whole by performing a Technological Readiness Assess-
ment (TRA). Using this strategy, we were able to deter-
mine the maturity of the systems through a Technology
Readiness Level (TRL) scale of 1-9 and quantify its
implementation in a research or clinical setting [56].
Since a BCI-robot for rehabilitation can be categorised
as a Class II-B medical device we have adapted a cus-
tomised TRL scale to account for these requirements
[56]. The customised TRL accounts for prototype
development and pilot testing in human participants
(TRL 3), safety testing (TRL 4-5), and small scale (TRL
6) to large scale (TRL 7-8) clinical trials. Perform-
ing a TRA on each device should allow us to map out
where the technology is in terms of adoption and per-
ceived usefulness. For example, if most of the studies
have used devices that have TRL below the clinical tri-
als stage (TRL 6-8), then we can have some confidence
that said BCI-robot system is not yet widely accepted
in the clinical community. In this way we can focus on
questions that improve our understanding on the fac-
tors that impede its use as a viable therapy option for
stroke survivors.

Clinical use

Clinical outcomes measures

For studies involving stroke patients, clinical outcomes
were obtained based on muscle improvement measures
such as Fugl-Meyer Motor Assessment Upper Extrem-
ity (FMA-UE) scores [53], Action Research Arm Test
(ARAT) scores [54], United Kingdom Medical Research
Council (UK-MRC) muscle grade [55], Grip Strength
(GS) Test and Pinch Strength (PS) Test scores (i.e., kilo-
gram force collected using an electronic hand dynamom-
eter) among others.

Physiotherapy evidence database (PEDro) scale

for methodological quality

A methodological quality assessment was also performed
for clinical studies based on the PEDro Scale [57]. This
scale evaluates studies with a checklist of 11 items based
on experts’ consensus criteria in physiotherapy practice.
The complete details of the criteria can be found online
[58]. A higher score in the PEDro scale (6 and above)
implied better methodological quality but are not used
as a measure of validity in terms of clinical outcomes.
Pre-defined scores from this scale were already pre-
sent in studies appearing in the PEDro search. However,
studies without PEDro scores or are not present in the
PEDro database at all had to be manually evaluated by
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the authors against the 11-item checklist (five of seven
studies).

Results

Search results

Figure 1 shows the study selection process and the num-
ber of articles obtained at each stage.

A total of 590 studies were initially identified. After
deduplication, 330 studies underwent title and abstract
screening. Forty six studies passed this stage and among
these, 16 were removed after full-text screening due to
the following reasons: insufficient EEG and robotic data
[59-65], the study was out of scope [66—68], the study
design was not for hand/finger movement [69-72], no
robot or mechatronic device was involved in the study
[73, 74]. A final sample of 30 studies were included in
the qualitative review. Among the 30 studies, 11 [75-85]
were involved in testing the BCI-hand robot system on
chronic and subacute stroke patients ([75, 80] are RCTs)
while the rest involved testing on healthy participants
[86—104]. Table 2 shows a summary of the relevant data
fields extracted from these studies.

UE Upper Extremity, MI Motor Imagery, BCI Brain—
Computer Interface, RCT Randomised Clinical Trial,
SATStandard Arm Therapy, EMG Electromyography,
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EOG Electrooculography, ERD/ERS Event-Related
Desynchronisation/Synchronisation, FMMA Fugl-Meyer
Motor Assessment, ARAT Action Research Arm Test, GS
Grip Strength, DOF Degrees-of-Freedom.

Studies with Healthy Participants (Prototype Group)

The studies which involved pilot testing on healthy
human participants had a combined total of 207 individu-
als (sample size ranging from 1 to 32) who had no history
of stroke or other neurological diseases. Right-handed
individuals made up 44.24% of the combined popula-
tion while the other 55.76% were unreported. These
studies aimed to report the successful implementation
of a BCI-robot system for hand rehabilitation and were
more heterogeneous in terms of study and task designs
than those studies that involved clinical testing. The most
common approach was to design and implement a hand
orthosis controlled by MI which accounted for 9 out of
the 19 studies and were measured based on classifica-
tion accuracy during the calibration/training period and
online testing. Li et al. [88] and Stan et al. [94] also aimed
to trigger a hand orthosis but instead of MI, the triggers
used by Li et al. is based on an attention threshold while
Stan et al. used a vision-based P300 speller BCI. Bauer
et al. [97] compared MI against ME using a BCI-device

Records identified in databases
(MEDLINE, Embase,
PsycINFO, Cochrane Library)
590

Records identified in
PEDro database

Records identified in
IEEE Xplore database

97

v

Records screened after
deduplication >

330

Records excluded after title and
abstract screening

187

!

Full-text articles analysed

46

v

Full-text articles excluded

16*

*Reasons for Exclusion:

EEG data insufficient=7

Study out of scope =3

Study design not for hand/finger
movement =4

l

Final list of studies for
qualitative analysis

30

Fig. 1 Study selection flowchart

No robot/device control =2
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while Ono et al. [100] studied the implementation of an
action observation strategy with a combined visual and
kinaesthetic feedback or auditory feedback. Five more
studies [91, 95, 96, 98, 99] focused on varying the feed-
back while two more [89, 101] assessed the performance
and safety of a hybrid BCI with EMG, EOG or both.

Studies with Stroke Patients (Clinical Group)

A total of 208 stroke patients (with sample size vary-
ing 3-74) were involved in the 11 clinical studies. One
study [75] reported a 3-armed RCT with control groups
as device-only and SAT while another study [80] was a
multi-centre RCT with sham as the control group. Five
studies were uncontrolled—where the aims were either
to study classification accuracies during sessions [76],
to monitor clinical outcomes improvement from Day 0
until the end of the programme [77, 85] or both [79, 82].
Two studies [83, 84] compared effects of the intervention
against SHAM feedback. Another study [78] compared
the classification accuracies of healthy and hemiple-
gic stroke patients against two BCI classifiers while the
remaining study [81] compared classification accuracies
from stroke patients who receive congruent or incongru-
ent visual and kinaesthetic feedback.

Technology evaluation

EEG acquisition

The EEG acquisition systems involved in the studies
ranged from low-cost devices having few electrode chan-
nels (2-15 gel or saline-soaked silver/silver chloride
[Ag/AgCl] electrodes) to standard EEG caps that had
higher spatial resolution (16-256 gel or saline-soaked
Ag/AgCl electrodes). The placement of EEG channels
was accounted for by studies involving MI (N =21). This
allowed us to determine the usage frequency among elec-
trodes and is presented in Fig. 2 as a heat map generated
in R Studio (using the packages: “akima’, “ggplot2” and
“reshape2”) against the 10-20 international electrode
placement system.

It can be seen that the EEG channels used for MI stud-
ies are concentrated towards electrodes along the cen-
tral sulcus (C) region and the frontal lobe (F) region of
the placement system where the motor cortex strip lies.
Among these, C3 (N=17) and F3 (N=14) were mostly
used, presumably because a majority of the participants
were right-handed. The next most frequent were C4
(N =13) and the electrodes F4, Cz and CP3 (N=10).

Signal processing: feature extraction and classification

In the EEG-based BCI studies examined, it was found
that the feature extraction and classification tech-
niques were variable between systems. Table 3 provides
a summary of pre-processing, feature extraction and
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classification techniques across the studies. There was
a wide variation in the implemented signal processing
strategies, but a unifying theme across studies was the
attempt to: (i) discriminate mental states recorded in
EEG across different manual tasks; (ii) classify the differ-
ent states to produce a viable signal.

Robot-assisted rehabilitation

Robotic hand rehabilitation systems provide kinaes-
thetic feedback to the user during BCI trials. Most of
these devices are powered by either DC motors, servo-
motors or pneumatic actuators that transmit energy via
rigid links or Bowden cables in a tendon-like fashion.
The studies in this review included single-finger [84—86],
multi-finger [82] (including EMOHEX [78, 79, 87]), full
hand gloves [88, 89] (including mano: Hand Exoskeleton
[90] and Gloreha [91]) and full arm exoskeletons with
isolated finger actuation (BRAVO-Hand [76]). Nine of
the studies [77, 87, 88, 90, 92—-96] presented their novel
design of a hand rehabilitation device within the arti-
cle while some reported on devices reported elsewhere
(i.e., in a previous study of the group or a research col-
laborator). Two commercially-available devices were also
used: AMADEO (Tyromotion, Austria) is an end-effector
device used in 3 studies [97-99], and Gloreha (Idrogenet,
Italy) is a full robotic hand glove used by Tacchino et al.
[91]. AMADEO and Gloreha are both rehabilitation
devices that have passed regulatory standards in their
respective regions. AMADEO remains the gold standard
for hand rehabilitation devices as it has passed safety and
risk assessments and provided favourable rehabilitation
outcomes. The International Classification of Function-
ing, Disability and Health (ICF) provides three specific
domains that can be used to assess an intervention of this
kind: improving impairments, supporting performance
of activities and promoting participation [109, 110]. In
this case, a gold standard device not only prioritises user
safety (established early in the development process) but
also delivers favourable outcomes in scales against these
domains. Figure 3 shows the main types of robotic hand
rehabilitation devices.

Technology readiness assessment

A Technology Readiness Assessment (TRA) [56] was
performed for each study and the Technology Readiness
Levels (TRL) are presented in Table 4. While some of the
system components (especially among robotic devices)
were commercially available (having TRL 9+), we per-
formed a TRA on the whole system (the interaction
between BCI and robotics) to provide an evaluation of its
maturity and state-of-the-art development with regard to
rehabilitation medicine. We further assessed the TRL of
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each system at the time of the publication and its subse-
quent development.

Clinical use

Clinical outcomes measures

Most of the studies adopted FMA-UE, ARAT and GS
measurements to assess clinical outcomes. Six studies
[75, 77, 79, 80, 83, 85] reported patient improvement
in these measures when subjected to BCI-hand robot
interventions; in contrast with their respective con-
trols or as recorded through time in the programme.
For Ang et al. [75], FMA-UE Distal scores were
reported in weeks 3, 6, 12 and 24 and the BCI-device
group (N=6) yielded the highest improvement in
scores across all time points as compared to the device
only (N=28) and SAT (N =7) groups. Bundy et al. [77]
reported an average of 6.20 £ 3.81 improvement in the
ARAT scores of its participants (N =10) in the span of
12 weeks while Chowdhury et al. [79] reported a group
mean difference of+6.38 kg (p=0.06) and+ 5.66
(p<0.05) in GS and ARAT scores, respectively (N =4).
Frolov et al’s [80] multi-centre RCT reported a higher
improvement in the FMA-UE Distal, ARAT Grasp and
ARAT Pinch scores of the BCI-device group (N =55)
when compared to the control/SHAM group (N=19),
but not in the ARAT Grip scores where the values
are both equal to 1.0 with p<0.01 for the BCI-device
group and p = 0.045 for the control.

Physiotherapy evidence database (PEDro) scale

for methodological quality

For the studies that had a clinical testing component, a
methodological quality assessment by the PEDro Scale
was performed. Two studies which appeared on the
PEDro search [75, 80] had predetermined scores in the
scale and were extracted for this part while the rest were
manually evaluated by the authors. Table 5 shows the
results of the methodological quality assessment against
the scale. Note that in the PEDro Scale, the presence of
an eligibility criteria is not included in the final score.

Discussion

To the best of our knowledge, this is the first systematic
examination of BCI-driven robotic systems specific for
hand rehabilitation. Through undertaking this review we
found several limitations present from the studies identi-
fied and we examine these in more detail here and pro-
vide recommendations for future work in this area.

To provide clarity on the state of the current devel-
opment of BCI-hand robot systems, we looked into the
maturity of technology used in each study as determined
by its readiness level (TRL). All but one in the prototype
group was rated as having TRL 3 while the clinical group
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was more varied in their TRL (ranging from 5 to 7). The
system used by Witkowski et al. [101], a prototype study,
was rated TRL 4 due to the study being performed on the
basis of improving and assessing its safety features. It is
also worth noting that while a formal safety assessment
was not performed for the TRL 3 prototypes of Stan et al.
[94], Randazzo et al. [90] and Tacchino et al. [91], safety
considerations and/or implementations were made; a
criterion to be satisfied before proceeding to TRL 4. The
system used by Chowdhury et al. is a good example of
improving a TRL from 5 to 6 with a pilot clinical study
published within the same year [78, 79]. The two systems
used in the RCT studies by Ang et al. [75] and Frolov
et al. [80] achieved the highest score (TRL 7) among all
of the studies which also meant that no BCI-hand robot
system for stroke rehabilitation has ever been registered
and commercially-released to date. This suggests that
such systems lack the strong evidence that would propel
commercialisation and technology adoption.
Heterogeneity in the study designs was apparent in
both the clinical and prototype groups. The lack of con-
trol groups and random allocation in clinical studies
(e.g., only 2 out of 7 studies are in the huge sample size
RCT stage) made us unable to perform a meta-analysis
of effects and continue the study by Cervera et al. [51]
with a focus on BCI-hand robot interventions. Results
from the methodological quality assessment showed that
only two studies [83, 84] had a score of 7 in the PEDro
scale. Although non-conclusive, these results support the
notion that most of the studies are not aligned with the
criteria of high-quality evidence-based interventions.
Almost all the clinical studies (except for Carino-
Escobar et al. [85] and Frolov et al. [80]) limited their
recruitment to chronic stroke patients. The reason may
be due to the highly variable rates of recovery in patients
at different stages in their disease [112]. Baseline treat-
ments were also not reported among the clinical studies.
Instead, the BCI-robot interventions were compared to
control groups using standard arm therapy; an example
of this was done by Ang et al. [75]. The heterogeneity of
experimental designs reported in this review raises the
need to develop clearly defined protocols when conduct-
ing BCI-hand robot studies on stroke patients. Until new
systems have been assessed on this standard, it will be
difficult to generate strong evidence supporting the effec-
tiveness of BCI-robotic devices for hand rehabilitation.
In the development of any BCI-robotic device there are
several design and feature considerations that need to be
made to ensure that the systems are both fit for purpose
and acceptable to the end-user. These design consid-
erations must go beyond the scope of understanding the
anatomy of the hand and the physiology of motor recov-
ery in response to therapy. Feedback from stroke patients
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Fig. 2 EEG Channel Usage across Motor Imagery Studies (N=21)

Table 3 BCI feature extraction and classification
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should also be an essential part of this design process.
Among the extracted studies, we surveyed the extent of
end-user involvement in the initial stages of develop-
ment (i.e., through consultations, interviews and therapy
observations) and we found that there were no explicit
statements about these in the reports. We recommend, as
good practice, for future work in this area to report the
type and degree of patient and/or physician involvement
in device development to allow reviewers and readers to
more readily gauge the potential usability of the system.

We were able to profile the BCI-hand robot systems
regarding their technical specifications and design fea-
tures. In hardware terms, a BCI-hand robot system
involves three major components: (1) An EEG data
acquisition system with several electrodes connected to
a signal amplifier; (2) A computer where raw EEG data
is received then processed by filters and classifiers and
where most of the cues and feedback during training is
presented via a visual display; (3) a robotic hand rehabili-
tation system for providing the physical therapy back to
the user.

Study Pre-processing Feature extraction Classification Hand task
Ang et al. [75] Band-pass (0.05-40 Hz) Filter Bank Common Spatial ~ Calibration model (unspeci- Ml vs rest
Pattern (FBCSP) algorithm fied)
[105]
Barsotti et al. [76] Band-pass (8-24 Hz) ERD (B and p-decrease), CSP SYM with linear kernel MI vs rest
Bauer et al. [97] Band-pass (6-16 Hz using ERD (B-decrease) Linear autoregressive model Ml vs rest

Bundy et al. [77]

Chowdhury et al. [78]

Coffey et al. [92]

Diab et al. [103]

Frolov al. [80]

Ono et al. [81]

Ramos-Murguialday et al.
[95]

Vukelic and Gharabaghi [99]

Witkowski et al. [101]

zero-phase lag FIR
Unspecified

Band-pass (0.1 Hz-100 Hz),
Notch (50 Hz)

Band-pass (0.5 Hz-30 Hz),
Notch (50 Hz)

Unspecified

Band-pass (5-30 Hz), FIR
(order 101), IIR notch Che-
byshev type | filter (50 Hz)

Band-pass (0.5-30 Hz), notch
(50 or 60 Hz)

Unspecified
High-pass (unspecified)

Band-pass (0.4-70 Hz), Lapla-
cian filter

ERD (B and p-decrease)

CSP Covariance-based, ERD/
ERS (B and p-change)

CSP Covariance-based

Time epochs (unspecified)

Time epochs
(10s)

Time epochs (700 ms), ERD
(u-decrease)

Time epochs (5 s), Spatial
filter, ERD/ERS ( and
p-change)

ERD (B-decrease)

ERD/ERS (B and p-change)

based on Burg Algorithm
Linear autoregressive model

SVM with linear kernel,
Covariate Shift Detection
(CSD)-based Adaptive
Classifier

Linear Discriminant Analysis
(LDA) classifier

Artificial Neural Network
(ANN)-based Feed Forward
Back Propagation

Bayesian-based EEG covari-
ance classifier [106]

Linear Discriminant Analysis
(LDA) classifier

Linear autoregressive model

Linear autoregressive model
based on Burg Algorithm

Linear autoregressive model
based on Yule-Walker
algorithm

MI (affected, unaffected)
Vs rest

left vs right Ml

MI vs rest

Non-MI open vs closed

MI (affected, unaffected)
Vs rest

MI vs rest

MI vs rest

Ml vs rest

MI vs rest

SVM Support Vector Machines, FIR Finite Impulse Response, /IR Infinite Impulse Response
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Fig. 3 Robotic hand rehabilitation devices: a An end-effector device (Haptic Knob) used in one of the extracted studies [75, 111], b a wearable
hand exoskeleton/orthosis

Table 4 Technology readiness assessment of the BCl-hand robot systems

Levels Description

Studies

TRL1  Lowest level of technological readiness
Literature reviews and initial market surveys
Scientific application to defined problems
TRL2  Generation of hypotheses
Development of research plans and/or protocols
TRL3  Testing of hypotheses — basic research, data collection and analysis
Testing of design/prototype - verification and critical component speci-
fications
Initial proof-of-concept in limited amount of laboratory/animal models
TRL4  Proof-of-concept of device/system in defined laboratory/animal models
Safety testing — problems, adverse events and potential side effects
TRL5  Comparison of device/system to other existing modalities or equivalent
devices/systems
Further development - testing through simulation (tissue or organ mod-
els), animal testing
Drafting of Product Development Plan
TRL6  Small scale clinical trials (Phase 1) — under carefully controlled and
intensely monitored clinical conditions
TRL7  Clinical trials (Phase 2) — safety and effectiveness integration in opera-
tional environment
TRL8  Clinical trials (Phase 3) — evaluation of overall risk-benefit of device/sys-
tem use
Confirmation of QSR compliance
Awarding of PMA for device/system by CDRH or equivalent agency
TRL9  The device/system may be distributed/marketed

Most studies from the prototype group (N=18) [86-100, 102-104]

Witkowski et al., 2014 [101]

Barsotti et al,, 2015 [76], Ono et al,, 2016 [81], Chowdhury et al,,
2018-b [78], Tsuchimoto et al,, 2019 [84]

Carino-Escobar et al,, 2019 [85], Chowdhury et al., 2018-c [79], Nor-
man et al,, 2018 [82], Wang et al.,, 2018 [83]

Ang et al,, 2014 [75], Frolov et al., 2017 [80]

QSR Quality System Requirements, PMA Premarket Approval, CDRH Center for Devices and Radiological Health

The majority of the studies (N=19) used a BCI solely
based on EEG while the rest were combined with other
sensors: EEG with EMG [75, 78, 87, 91, 95-98], EEG with
force sensors [79] and an EEG-EMG-EOG hybrid sys-
tem [89, 101]. The purpose of this integration is mainly
to improve signal quality by accounting for artifact or

to provide added modalities. Action potentials such as
those caused by ocular, muscular and facial movements
interfere with nearby electrodes and the presence of an
added electrophysiological sensor accounting for these
would enable the technician to perform noise cancella-
tion techniques as a first step in signal processing.
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The choice of EEG system as well as the type of elec-
trodes provides a technical trade-off and affects the
session both in terms of subjective experiences (i.e., ease-
of-use, preparation time, cleaning, comfortability) and
data performance. Due to the presence of a conducting
gel/solution, standard “wet” electrodes provide a degree
of confidence in preventing signal disruption within
a short duration usually enough for a standard stroke
therapy session. However, this also makes the setup, use
and cleaning in the experiment more challenging, non-
ambulatory and reliant on a specialised laboratory setup
[10]. Conversely, dry electrodes offer an accessible, user-
friendly and portable alternative by using dry metal pins
or coatings that comb through hair and come in contact
directly with the scalp. The signal fidelity of dry elec-
trodes is still a matter of debate in the BCI community. A
systematic comparison between dry passively-amplified
and wet actively-amplified electrodes reported similar
performance in the detection of event-related potentials
(ERP) [113]. However, for a study involving dry active
electrodes [114], high inter-electrode impedance resulted
in increased single-trial and average noise levels as com-
pared to both active and passive wet electrodes. In clas-
sifying MI, movement-related artifacts adversely affect
active dry electrodes, but these can be addressed through
a hybrid system of other physiological sensors to separate
sources [115].

Almost all of the studies included used a standard EEG
system with “wet” electrodes (e.g., g.USBamp by g.tec
and BrainAmp by Brain Products) while three used Emo-
tiv EPOC+, a semi-dry EEG system that uses sponge
conductors infused with saline solution. While the use of
dry electrodes has been observed in pilot and prototype
studies of BCI-hand robot systems [64, 67, 93, 102] and
other motor imagery experiments [116-119], no dry EEG
system was used in the final 30 studies that tested healthy
or stroke participants. It is expected that as dry EEG sys-
tems continue to improve, their use in clinical studies of
BCI will also become increasingly prominent.

The degree of BCI-robotic control for the majority of
the studies (N =26) was limited to triggering the device
to perform grasping (opening and closing of hand) and
pinching (a thumb-index finger pinch or a 3-point
thumb-index-middle finger pinch) movements using MI
and other techniques. A triggered assistance strategy
provides the minimum amount of active participation
from the patient in a BCI-robot setup [37]. The main
advantages of this is that it is easy to implement; requir-
ing less computational complexity in signal processing.
However, a higher spatial or temporal volitional control
over the therapeutic device increases its functionality
and can be used to develop more engaging tasks for the
stroke therapy. Among the studies, no robotic control
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setup was able to perform digit-specific MI which corre-
sponds to the spatial aspects of volitional control. This is
a limitation caused by the non-invasive setup of EEG and
is due to the low spatial resolution brought by the dis-
tances between electrodes [120]. The homunculus model,
a representation of the human body in the motor strip,
maps the areas of the brain where activations have been
reported to occur for motor processes. The challenge of
decoding each finger digit MI in one hand is that they
only tend to occupy a small area in this strip. Hence even
the highest resolution electrode placement system (i.e.,
the five percent or 10-5 system — up to 345 electrodes)
would have difficulties accounting for digit-specific MI
for BCI. In contrast to EEG, electrocorticography (ECoG)
have been used to detect digit-specific MI. The electrodes
of ECoG come in contact directly with the motor cortex
and is an invasive procedure; making it non-ideal for use
in BCI therapy [121].

It is worth noting however that some studies were
successful in implementing continuous control based
on ERD/ERS patterns. A continuous control strategy
increases the temporal volitional control over the robot
as opposed to triggered assistance where a threshold
is applied, and the robot finishes the movement for the
participant. Bundy et al. [77] and Norman et al. [82] were
both able to apply continuous control of a 3-DOF pinch-
grip exoskeleton based on spectral power while Bauer
et al. [97] provided ERD-dependent control of finger
extension for an end-effector robot. These continuous
control strategies have been shown to be very useful in
BCI-hand robots for assistive applications (i.e., partial or
full device dependence for performing ADL tasks [122]).
Whether this type of control can significantly improve
stroke recovery is still in question as the strategy of
robots for stroke rehabilitation can be more classified as a
therapeutic “exercise” device.

Signal processing and machine learning play a vital
role in the development of any EEG-based BCI. The pre-
processing techniques (e.g., filtering, artifact removal),
types of features computed from EEG, and the classifier
used in machine learning can significantly affect the per-
formance of the robotic system in classifying the user’s
intent via MI [123]. False classification, especially during
feedback, could be detrimental to the therapy regime as
it relates to the reward and punishment mechanisms that
are important in motor relearning [124]. For example,
false negatives hinder the reward strategy that is essential
to motivate the patient while false positives would also
reward the action with the wrong intent. In this review,
a critical appraisal of the signal processing techniques
was done on each system to recognise the best practices
involved. The current list of studies has revealed that
approaches to develop MI-based EEG signal processing
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cue

feedback

virtual hand representation through VR/AR

Fig. 4 Visual cue and feedback during Ml trials in different conditions. (a) Graz Ml visualisations, (b) video recordings of hand movement and (c)

Table 6 Exemplary features and specifications of future BCl-hand robot systems

Component Features and specifications

Data acquisition system and software

Dry EEG system with 8-16 channels, comfortable and easy to use

Inclusion of other bio-signal sensors such as EMG, EOG, force, accelerometers to remove artifacts and improve

classification

Robust and reliable signal processing software: machine learning-based algorithms that discriminate brain
states such as Ml or evoked potentials with high classification accuracies (> 95%) and lower calibration times

Hand Robot

Safe, comfortable and aligned with the hand's range of motion

Effective in providing kinaesthetic feedback
Use of back-drivable or soft actuators that effectively assist movement without additional injury
Multiple levels of safety and emergency features (mechanical, electronic, software), clear and obvious operation

Visual cue and feedback

Provide rich visual cue and feedback to intended tasks, geometric representation of the hand (video or

simulated environment), can be in multiple platforms such as display monitors or VR/AR on a head-mounted

device

Gamification of therapy exercises to provide an engaging regime to stroke patients

are highly diverse in nature, which makes it difficult to
compare across the systems and hinders the development
of new BCI systems informed by the strengths and weak-
nesses of existing state-of-the-art systems. The diversity
in the design process can be beneficial to develop com-
plex MI EEG-based BCI systems to achieve high effi-
ciency and efficacy. However, such newly developed
systems should be open sourced and easily reproducible
by the research community to provide valid performance
comparisons and drive forward the domain of robotic-
assisted rehabilitation.

In addition to MI, other strategies for robotic control
were reported. Diab et al. [103] and King et al. [104] both
facilitated the movements of their respective orthoses by
physical practice while Stan et al. [94] utilised a P-300
evoked potential speller BCI, where the user visually
focused on a single alphanumerical character situated
in a grid. The chosen character then corresponded to a
command for the hand orthosis thereby producing the
desired stimulus for the patient. While the latter study
reported 100% accuracy rate in terms of intention and
execution, the EEG channels were situated in the visual
cortex rather than the motor strip which deviates from
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the goal of activating the desired brain region for plastic-
ity. This highlights a broader issue on the intent behind a
BClI-robotic system. Given that any potential signal that
can be reliably modulated by a patient can be used to
trigger a robot, and that such an approach would be anti-
thetical to the goal of many MI-based systems, engineers
may consider how they can tailor their systems to ensure
that the appropriate control strategy (and correspond-
ing neural networks) are implemented by a user (e.g. by
taking a hybrid approach that includes EMG and force
sensors).

In order to facilitate hand MI and account for sig-
nificant time-points in the EEG data, all the studies
employed a cue-feedback strategy during their trials. 19
of the studies presented a form of visual cue while the
rest, except for two unspecified [84, 102], involved cues
in auditory (“bleep”) [91, 95-98], textual [93, 94, 104]
or verbal [103] forms. As for the provision of a match-
ing sensory feedback, 16 studies presented a combina-
tion of kinaesthetic and visual feedback with some also
providing auditory feedback during successful movement
attempts. All the studies provided kinaesthetic feedback
through their robotic devices. Some systems with visual
feedback, such as Wang et al. [83], Li et al. [88], Chowd-
hury et al. in both of their clinical studies [78, 79] and
Ono et al. in their clinical [81] and pilot testing experi-
ments [100], used a video of an actual hand performing
the desired action. Ang et al. [75] and Stan et al. [94], in
a different strategy, provided visual feedback through
photo manipulation and textual display, respectively.
While these two studies reported promising results, it
should also be considered that such cue and feedback
types (including Graz visualisations and auditory forms)
are non-representative of hand movement and may not
provide the same stimuli as an anthropomorphic repre-
sentation of a hand moving its desired course. This may
be essential when we base principles of stroke recovery in
alignment with how MI correlates with AO — an under-
lying theme of the motor simulation theory proposed
by Jeannerod [36]. Figure 4 shows how different kinds of
visual cue and feedback can be presented to participants
to help facilitate MI.

Future directions

There is clearly great potential for the use of BCI-hand
robots in the rehabilitation of an affected hand following
stroke. Nevertheless, it is important to emphasise that
there is currently insufficient evidence to support the use
of such systems within clinical settings. Moreover, the
purported benefits of these systems rest on conjectures
that require empirical evidence. In other words, there
are grounds for supposing that MI could be useful within
these rehabilitation settings but no supporting evidence.
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This systematic review has also revealed that there are a
number of technological limitations to existing BCI-hand
robotic systems. We stress an urgent need to address
these limitations to ensure that the systems meet the
minimum required levels of product specification (in
measuring brain activity, processing signals, delivering
forces to the hand and providing rich feedback and moti-
vating settings). We question the ethics or usefulness of
conducting clinical trials with such systems until they can
demonstrate minimum levels of technological capability.
We consider below what standards these systems should
obtain before subjecting them to a clinical trial and dis-
cuss might constitute an acceptable standard for a clini-
cal trial.

Ideal setup for a BCl-hand robot

We summarise the information revealed via the system-
atic review about what constitutes an acceptable setup
for a BCI-hand robot for stroke rehabilitation. We focus
on improving individual components in data acquisi-
tion, data processing, the hand rehabilitation robot, and
the visual cue and feedback environment. Table 6 pre-
sents the features and specifications of a fully integrated
acceptable system.

The implementation of these features in an ideal
BCI-robot setup needs to be weighed against socio-
economic factors in healthcare delivery for it to be
considered market ready. An ideal BCI system should
primarily provide above chance-level classification after
the first session on the first day of therapy. Ideally, the
classification algorithm should also translate and adapt
to following sessions or days; reducing the number of
training sessions and focusing on the main therapy
tasks. An alternative approach is to focus on making
the setup an engaging experience. In other words, the
delivery of intervention can be started immediately
when the patient wears the EEG cap and runs the BCI
system. For the hand robot system, more straightfor-
ward criteria can be followed with the existence of the
numerous design protocols, regulation standards and
assessment matrices mentioned in this review. Never-
theless, end-user involvement in the design with the
prioritisation of safety while allowing the most natural
hand movement and ROM as possible is the recom-
mended goal.

Ideal setup for clinical trials

We also propose a set of specialised criteria for BCI-hand
robot systems in addition to the standard motor improve-
ment scores (e.g. ARAT, FMA-UE) evaluated during
clinical trials. Firstly, classification accuracies between
intended and interpreted actions from the data acquisi-
tion and software component should always be accounted
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to track the effectiveness of BCI in executing the clinical
task. In addition to this, system calibration and training
procedures, especially its duration, should be detailed in
the protocol to document the reliability of the classifica-
tion algorithm. There is not much to consider in the use
of robotic devices as they are most likely to be mature
(if not yet commercially available) before being used as
the hardware component in the study. However, the
devices’ functionality (i.e., task to be performed, degree
of control and motion, actuation and power transmis-
sion etc.) should always be stated as they contribute to
the evaluation of interactions between other components
in the system. Lastly, controls for the clinical study must
always be included, even with small-scale patient stud-
ies. As discussed in this article, these controls may be in
the form of sham, standard arm therapy (SAT), stand-
ard robotic therapy, congruency feedback and quality of
stimuli among others. Having regarded and implemented
these criteria would help homogenise the clinical data for
future meta-analyses, strengthen evidence-based results
and provide a reliable way of documentation for individ-
ual and/or interacting components.

Proposed roadmap

We suggest that the immediate focus for BCI-controlled
robotic device research should be around the engineering
challenges. It is only when these challenges have been met
that it is useful and ethical to subject the systems to clini-
cal trials. We recommend that the challenges be broken
down into the following elements: (1) data acquisition;
(2) signal processing and classification; (3) robotic device;
(4) priming and feedback environment; (5) integration
of these four elements. The nature of these challenges
means that a multidisciplinary approach is required (e.g.
the inclusion of psychologists, cognitive neuroscientists
and physiologists to drive the adoption of reliable neu-
ral data acquisition). It seems probable that progress will
be made by different laboratories tackling some or all of
these elements and coordinating information sharing
and technology improvements. Once the challenges have
been met (i.e. there is a system that is able to take neural
signals and use these to help drive a robotic system capa-
ble of providing appropriate forces to the hand within a
motivating environment) then robust clinical trials can
be conducted to ensure that the promise of this approach
does translate into solid empirical evidence supporting
the use of these systems within clinical settings.
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