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Abstract

help guide the direction of future research.

Chemotherapy agents used in the standard treatments for many types of cancer are neurotoxic and can lead to last-
ing sensory and motor symptoms that compromise day-to-day movement functions in cancer survivors. To date, the
details of movement disorders associated with chemotherapy are known largely through self-reported symptoms
and functional limitations. There are few quantitative studies of specific movement deficits, limiting our understand-
ing of dysfunction, as well as effective assessments and interventions. The aim of this narrative review is to consoli-
date the current understanding of sensorimotor disabilities based on quantitative measures in cancer survivors who
received chemotherapy. We performed literature searches on PubMed and found 32 relevant movement studies. We
categorized these studies into three themes based on the movement deficits investigated: (1) balance and postural
control; (2) gait function; (3) upper limb function. This literature suggests that cancer survivors have increased postural
sway, more conservative gait patterns, and suboptimal hand function compared to healthy individuals. More studies
are needed that use objective measures of sensorimotor function to better characterize movement disabilities and
investigate the underlying causes, as required for developing targeted assessments and interventions. By updating
our understanding of movement impairments in this population, we identify significant gaps in knowledge that will
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Introduction

Chemotherapy agents used in the standard treatments
for many types of cancer—including platinum com-
pounds, taxanes, and vinca alkaloids—exhibit neurotoxic
adverse effects. Depending on individual compounds,
chemotherapy can damage the nervous system via vari-
ous mechanisms (e.g., interference with axonal transport,
mitochondrial damage, and altered ion channel activity)
[1]. These adverse effects are commonly referred to as
chemotherapy-induced peripheral neuropathy or neu-
rotoxicity (CIPN). Although the ‘P’ in CIPN is included
to describe damage to the peripheral nervous system,
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there is also evidence of central neurotoxicity [2, 3]. To
acknowledge the central involvement that is not captured
by peripheral neuropathy, we adopted CIN as chemo-
therapy-induced neurotoxicity for this review.

The prevalence of CIN varies from 19% to more than
85%, with the highest reported for platinum compounds
(70-100%) and taxanes (11-87%) [4]. Although the
mechanisms and prevalence of CIN may vary with drug
type, the clinical presentations of patients with CIN share
similar characteristics. Sensory symptoms associated
with chemotherapy are most common and may include
numbness/tingling, neuropathic pain, increased sensi-
bility to hot/cold temperatures, and decreased vibration
and pinprick sensitivity. Motor symptoms may include
hyporeflexia, weakness, and muscle cramps. Autonomic
symptoms, although less common, may include dizzi-
ness, hearing loss, and constipation [5, 6]. CIN symptoms
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can present immediately or progress after several cycles
of treatment, and their severity usually increases with
drug accumulation. These symptoms often improve over
time after treatment cessation but can persist for years
in a subset of patients, limiting their quality of life across
the entire cancer illness trajectory [7—10]. A major issue
associated with these sensory and motor symptoms is
compromised movement function that contributes to
functional impairments in day-to-day tasks [11, 12].
However, few studies quantify the specific movement
deficits linked to sensory and motor signs and symptoms
that reduce the quality of life in cancer survivors post-
treatment. Specifying which components of a movement
are impaired could focus the assessment of disability and
recovery as well as possibly help identify more targeted
interventions.

Descriptions of movement dysfunction associated
with chemotherapy have come largely from self-reported
symptoms and functional limitations, with few quantita-
tive evaluations of movement function. Patient-reported
outcome measures are the common clinical tools for
assessing chemotherapy-induced neurotoxicity [13].
These measures are useful for tracking functional impair-
ments and promoting communication of adverse symp-
toms and activity limitations among patients, oncologists,
infusion nurses and personnel within cancer care teams
[14]. However, self-reports are subjective, potentially
biased (depending on the patient’s recall) and inconsist-
ently interpreted among patients and health care provid-
ers [15]. Most importantly, they provide no insight into
the etiology of movement disability. Conventional neu-
rological assessments, including nerve conduction stud-
ies, sensitivity of light touch, pin-prick and vibration, and
deep-tendon reflexes may provide complementary infor-
mation on CIN [13], though it is often noted that changes
in neurophysiological signs do not reflect patient’s symp-
toms or function [16]. To address the limitations of self-
reports and conventional neurological assessments on
understanding the CIN-related movement dysfunction,
quantitative and objective tools that directly evaluate the
movement deficits are needed.

With the rising number of long-term survivors of
cancer [17], there is a greater emphasis by the National
Cancer Institute on improving quality of life and miti-
gating disability associated with the long-term effects
of cancer treatment. A critical first step is to improve
the understanding of chemotherapy-related movement
deficits. Quantitative and instrumented movement stud-
ies have been widely used in other neurological popu-
lations to identify the characteristics and underlying
causes of movement deficits [18—20]. In recent decades,
more researchers have adopted this approach to inves-
tigate chemotherapy-induced movement dysfunction.
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Therefore, the objectives of this narrative review are to
consolidate current knowledge of which movement func-
tions are most commonly impaired in cancer survivors
who received neurotoxic chemotherapy, to identify areas
of research needed to improve the understanding of the
movement deficits in this population, and to help guide
improved assessment and treatments.

Methods

We performed a literature search on 5/15/2020 in Pub-
Med, with a combination of search terms including
derivations related to movement deficits (sensorimotor,
movement, physical) and the disease (chemotherapy-
induced neurotoxicity, chemotherapy-induced periph-
eral neuropathy, cancer, cancer patient, cancer survivor).
Six hundred and eighty-six articles were identified from
the search. Articles were included if they met all of the
following inclusion criteria: (1) published within 2000—
2020; (2) human subjects of any age, any cancer type;
(3) most of the participants had received or were receiv-
ing neurotoxic chemotherapy, including platinum com-
pounds, taxanes, and vinca alkaloids; (4) provided
quantitative and instrumented assessments of movement
deficits; (5) published in English. Articles were excluded
if they (1) were a review or abstract; (2) assessed move-
ment deficits only based on patient-reported outcome
measures, functional outcome measures, or electrophysi-
ological methods. Sixteen articles were selected after
reviewing the titles and abstracts. We then used the ‘Sim-
ilar Articles’ feature of Pubmed and identified 127 addi-
tional articles using Kneis et al. 2016 [21] as the search
article. After reviewing the titles and abstracts of the 127
articles and checking for duplicates, we added eight arti-
cles to the list. We further reviewed the reference lists of
the 24 selected articles and added eight additional arti-
cles. A total of 32 articles are included in this review
(Fig. 1). The list of the 32 reviewed articles is shown in
Tables 1, 2, and 3.

Results and discussion

Thirty-two movement studies related to chemotherapy-
induced neurotoxicity were identified. All of the reviewed
movement studies focused on one of the three areas of
movement function: (1) balance and postural control;
(2) gait function; (3) upper limb function; therefore, we
organized the results and discussion using these three
themes.

Characteristics of balance and postural control
impairments in cancer survivors with CIN

Postural imbalance is one of the most common move-
ment dysfunctions reported by cancer survivors.
The ability to maintain postural balance, therefore, is an
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Fig. 1 Flow diagram of article selection process

area commonly investigated in cancer survivors. Main-
taining postural balance is a complex process involv-
ing various components of postural control, including a
neural representation of body segments and position of
the center of gravity, multisensory inputs that monitor
the orientation and stability of body segments, and reac-
tive or anticipatory responses for balance recovery after
perturbations or postural stabilization during voluntary
actions [22]. Most of the postural studies on cancer sur-
vivors evaluated this by measuring spontaneous postural
sways (Table 1). Spontaneous postural sways are the
natural oscillations of our body during normal stance,
but they can become maladaptive in various patholo-
gies [23]. Characterization of spontaneous postural sway
in cancer survivors with CIN reveals postural instability.
Nine studies compared the spontaneous sway of cancer
survivors to that of healthy controls when standing with
eyes open [21, 24-30]. Sway amplitude, including the
root mean square (RMS) of the resultant sway [30], the
mediolateral (ML) sway [25, 29], and the total sway area
[25, 26, 28] were greater in cancer survivors than healthy
controls. Sway velocity, including the mean velocity of
ML sway [25, 28] and mean velocity of the resultant sway
[24] were also greater in cancer survivors than that in
controls. Three studies (the majority of participants had
breast cancer) [31-33] assessed the longitudinal effect of
chemotherapy on spontaneous sway and found that sway
amplitude (area, ML RMS, AP RMS) and sway veloc-
ity (AP mean velocity, ML mean velocity) parameters

worsen after treatment. This evidence suggests that can-
cer survivors with CIN are unstable in standing. Among
the eight studies that investigated direction-dependent
sway characteristics, seven identified ML sway defi-
cits (RMS, velocity, and frequency) [25, 27-29, 31-33],
whereas two also identified AP deficits [30, 33], suggest-
ing that cancer survivors may be more unstable in frontal
balance control. Impaired ML sway has been shown to be
an important predictor of retrospective and prospective
falls in older adults [34—36]. Fino et al. 2019 used prin-
cipal component analyses on sway data and confirmed
the association of ML sway frequency and falls in cancer
survivors with severe neuropathic symptoms [27]. Unlike
balance control in the sagittal plane that uses both distal
ankle and proximal hip strategies, balance in the frontal
plane is predominantly controlled via the load-unload
mechanism accomplished by hip adductors and abduc-
tors while the ankle inversion-eversion plays a minimal
role [37, 38]. The association of the impaired ML postural
control with falls is likely due to the lack of a compensa-
tory control scheme for ML balance.

These existing spontaneous sway studies suggest that
there is excessive postural sway in cancer survivors, espe-
cially in the ML direction, but the factors underlying the
amplified postural sway in this population have yet to be
clarified. One hypothesis is that excessive postural sway is
caused by the peripheral sensory neuropathy associated
with CIN. This hypothesis is well motivated as the soma-
tosensory system contributes more to postural stability
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than the visual and vestibular systems [39]. The periph-
eral sensory system constitutes different perceptual sub-
systems involving mechanoreceptors in skin, muscles,
tendons, and ligaments, but the precise determination of
the diminished peripheral sensory capability associated
with CIN is not straightforward. Researchers investigat-
ing the relationship between increased postural sway and
peripheral sensory neuropathy relied on various meas-
ures to assess the state of the peripheral sensory system,
including subjective reports of sensory symptoms (e.g.,
severity of numbness/tingling, Functional Assessment of
Cancer Therapy-Gynecologic Oncology Group-neuro-
toxicity (FACT&GOG-Ntx), and CIPN 20-item quality of
life questionnaire (CIPN20)) [21, 29, 32, 33, 40], vibration
perception threshold [29, 40], and conduction studies of
peripheral nerves [33]. Composite scores that combine
subjective symptoms and objective measures of sensory
signs and reflexes (e.g., modified Total Neuropathy Score
(mTNS)) [24, 41] were also used [33]. Zahiri et al. 2019
identified a significant correlation between the ML sway
and plantar vibration perception threshold in patients
reporting feet numbness/tingling [29]. Kneis et al. 2016
correlated the total center of pressure sway during mono-
pedal stance with perceived symptom severity measured
by the FACT&GOG-Ntx in breast cancer survivors with
CIN [21]. Monfort et al. 2017 investigated the longitu-
dinal effects of taxanes chemotherapy on breast cancer
patients and found a significant correlation between ML
sway and sensory symptoms measured by CIPN20 [32].
Muller et al. 2020 also investigated the longitudinal effect
of neurotoxic chemotherapy, but on a cohort of patients
with mixed cancer diagnoses. In contrast to Monfort
et al. 2017, Muller et al. did not find a significant corre-
lation between sway measures and sensory symptoms;
instead, they found a significant correlation between
sway measures and conduction speeds of the peroneal
and sural nerves [33]. Wampler et al. 2007 and Varedi
et al. 2018 observed a similar inconsistency. Both stud-
ies quantified a composite score of postural sway during
six standing conditions and mTNS. Wampler et al. found
a significant association between the composite score
and the mTNS score in a group of breast cancer patients,
but Varedi et al. studying a cohort of adult survivors of
childhood acute lymphoblastic leukemia did not find the
same association [24, 41]. Although different measures
of postural sway and neuropathy were used in these cor-
relational studies, the majority support an association of
excessive postural sway with peripheral sensory deficits.
The inconsistent findings between Monfort et al. 2017
and Muller et al. 2020 and between Wampler et al. 2007
and Varedi et al. 2018 suggest that the link between pos-
tural deficits and CIN might be specific to the type of
cancer and/or type of chemotherapy used. Future studies
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should consider the impact of these variables on chem-
otherapy-induced impairments of posture and balance
control.

The correlational studies, however, do not suffice to
conclude a causal relationship between peripheral sen-
sory deficits and excessive postural sway or rule out other
contributing factors. In fact, McCrary et al. 2019 found
that cancer patients, regardless of sensory symptoms,
had greater postural sway compared to age-matched
normative values. Among the five factors contributing to
increased postural sway (patient-reported balance/mobil-
ity deficits, abnormal vibration, numbness/tingling, self-
reported weakness, and age >65), only two were related
to peripheral sensory deficits [40]. These results suggest
that motor deficits such as weakness may also affect pos-
tural balance [40, 42], but few have directly assessed their
impact. One study with a cohort of mixed cancer types
found no difference in grip or knee extension strength
between control subjects and cancer survivors and no
correlation between these strength measures and pos-
tural sway [26]. In contrast, a separate study on cancer
survivors who had received vincristine chemotherapy
found that impaired dorsiflexion strength was correlated
with balance score [43]. These variable findings under-
score the need for assessing the impact of motor function
on postural control in more tightly controlled patient
cohorts and treatment types, as it could be a major con-
tributor to chemotherapy-induced disability along with
sensory deficits.

Postural balance depends on the integration of sensory
inputs from the somatosensory, visual, and vestibular sys-
tems to elicit appropriate motor responses [44]. Although
current evidence suggests a link between CIN-induced
somatosensory deficits and postural instability, it is not
clear if there are also deficits in the visual and vestibu-
lar system contributing to postural instability and how
cancer survivors adapt their control strategies. Systemati-
cally altering or removing one or more sensory inputs has
been used to investigate the contribution of an individ-
ual sensory system to postural stability and the sensory
integration process. Among the six studies that occluded
vision to investigate the visual dependency of changes
in postural sway, four observed a greater effect of visual
occlusion on postural sway in cancer survivors than that
in controls [28-31], whereas two did not [24, 26]. The
greater weighting of the visual system by cancer survivors
suggests potential deficits in the somatosensory and/or
vestibular systems. Kneis et al. 2020 ruled out potential
vestibular dysfunction via the rotational chair test [30].
They further dissociated the relative weighting of soma-
tosensory and vestibular systems in postural control
by perturbing standing posture using a tilting platform
and measuring the subsequent excursions of the upper
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(shoulder-hip) and lower (hip-ankle) body and center of
pressure displacements. They found that cancer survivors
had smaller body excursions than controls in response
to platform tilts, suggesting that cancer survivors use
vestibular rather than proprioceptive cues for pos-
tural control as proprioceptive cues may drag the body
along platform movements (greater body excursions),
whereas vestibular cues would stabilize the body in space
(smaller body excursions). A postural-control model fit-
ting the experimental data was consistent with a down-
weighting of the proprioceptive cues in cancer survivors.
The underutilization of the somatosensory system was
also supported qualitatively by Monfort et al. 2019 [28].
Their data revealed that the symptomatic group exhib-
ited smaller postural deteriorations when somatosensory
input was altered (standing on foam) compared to that
of healthy controls and the asymptomatic group, imply-
ing that the symptomatic group relied less on somatosen-
sory feedback for postural balance. Although it appears
that cancer survivors rely more on the vestibular system
for postural control, whether the vestibular function is
intact after chemotherapy remains debatable. Kneis et al.
2020 is the only postural study that assessed vestibu-
lar function, finding no vestibular dysfunction in their
cohort. However, the rate of abnormal vestibular func-
tion after chemotherapy ranges from 0 to 50% [45]. Fur-
thermore, Wampler et al. 2007 found two of the largest
postural sway differences between cancer survivors and
controls occurred in standing conditions relying on ves-
tibular input, suggestive of vestibular impairments [24].
This agrees with the study by Winters-Stone et al., which
identified balance deficits of vestibular origin contribut-
ing to falls among breast cancer survivors who received
chemotherapy, although the authors also assessed vision
and identified an association of impaired visual contrast
sensitivity with falls [46].

In summary, studies of sensory integration have
revealed that cancer survivors underutilize somatosen-
sory feedback for postural control, likely due to CIN-
related somatosensory deficits. As a compensatory
strategy, cancer survivors increase the weight of the
visual and vestibular systems, but the summarized evi-
dence indicates that this strategy compensates incom-
pletely for the deficits in the somatosensory system
during static standing. The extent to which the visual and
vestibular dysfunction contribute to postural instability
remains unclear, as few of the reviewed postural studies
performed rigorous tests of these systems. Likewise, few
studies performed detailed assessments of the motor sys-
tem. Future studies should consider how the CIN-related
motor function changes (i.e., muscle strength) affect
postural stability. Kneis et al. 2020 presented a useful
paradigm for investigating sensory integration strategies
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adapted by cancer survivors. However, the study was
based on a small sample with severe balance deficits, so
the conclusion cannot be extrapolated to cancer patients
with different levels of CIN severity. The sample also con-
sisted of mixed cancer types and treatments; whether
there are cancer type-related, treatment-related differ-
ences, or interaction effects [47] remains to be investi-
gated. Therefore, robust postural control studies with
larger sample sizes and tightly controlled cancer and
treatment types are needed to further clarify the postural
control strategies adopted by cancer survivors.

Characteristics of gait impairments in cancer survivors

with CIN

Falls are common in cancer survivors. It is estimated
that about 30% of cancer survivors fall every year [48],
and individuals with CIN symptoms are 1.7-1.8 times
more likely to fall than the asymptomatic individuals
[7, 49]. The majority of falls occur during walking [50];
therefore, understanding walking behaviors in cancer
survivors with CIN may provide information on how to
prevent falls and fall-related injuries. Walking behavior
is commonly characterized by the spatial and temporal
parameters of gait, including step or stride length, step
width, gait speed, single- or double-support, and swing
time. Eight studies compared these gait parameters of
cancer survivors with CIN to that of healthy controls
(or asymptomatic patient group, or individuals prior to
chemotherapy) and revealed that cancer survivors with
CIN had impaired spatiotemporal gait pattern (Table 2)
[29, 32, 49, 51-55]. During level ground walking with
self-selected speed, six out of eight studies reported
significantly decreased gait speed in the patient group
[29, 32, 49, 51, 52, 54]. Other changes such as increased
stride/step time [29, 53], decreased stride/step length [29,
32, 49, 51, 52, 54], increased double support time [29, 49,
55], and increased step width variability [53] were also
reported. These gait changes reflect a conservative gait
pattern [56], which is also observed in the population
with diabetic neuropathy [19] and has been associated
with fall risk in elderly populations [57, 58].

Similar to postural instability, this impaired gait pat-
tern was shown to be associated with CIN-related neu-
ropathy. Winters-Stone et al. 2017 found a significant
association between lower walking speed and increasing
numbness/tingling and discomfort in feet [49]. Zahiri
et al. 2019 found a significant correlation between stride
time and plantar vibration threshold [29]. Gilchrist et al.
2016 found a correlation of greater than 0.3 between step
length and pediatric mTNS [51]. Although specific gait
pattern changes like decreased step length and increased
cadence can also be explained by decreased gait speed
[59], increased gait variability appears to be related to
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deficits in somatosensory feedback. It has been suggested
that sensory feedback is important for adjusting step-to-
step limb trajectories and smoothing unexpected per-
turbation during locomotion [60, 61]. Deficits in sensory
feedback, therefore, could have a greater influence on
the variability of gait than the mean locomotor pattern.
Wauehr et al. 2014 demonstrated that ML gait variability
was highly sensitive to deficits in peripheral sensory feed-
back, irrespective of gait speed, supporting the important
role of integrative sensory feedback for walking adjust-
ment in this plane [59]. This hypothesis was consistent
with the study of Hsieh et al. 2019, who found a greater
step width variability in symptomatic cancer survivors
than in healthy controls without a significant difference
in gait speed, suggesting that locomotion instability
observed in cancer survivors may be linked to deficits in
sensory feedback [53].

Cancer survivors with CIN demonstrated conservative
gait patterns characterized by slower gait speed, shorter
step length, longer double support time, and greater ML
gait variability. These altered gait patterns have been
linked to somatosensory deficits associated with CIN [29,
49], but it remains unclear if other factors that contrib-
ute to stability during locomotion in healthy subjects also
contribute to disability in cancer survivors. These include
the visual and vestibular systems, spinal and supraspi-
nal networks, and musculoskeletal functions [62]. For
example, musculoskeletal impairments, such as impaired
range of motion and decreased lower extremity strength,
contribute to gait impairments in individuals with dia-
betic neuropathy, along with the well-documented
sensory deficits in this population [19]. Currently, the
prevalence of similar musculoskeletal impairments in
cancer survivors remains unknown. Wright et al. 2017
used kinematic and kinetic analyses of gait in children
with vincristine-induced neurotoxicity and speculated
that the deviated gait pattern was related to decreased
dorsiflexion range of motion, ankle weakness, and a high
proportion of co-contraction in the medial gastrocne-
mius and tibialis anterior muscles [63]. Gilchrist et al.
2016 also found that decreased dorsiflexion range of
motion and impaired balance score explained decreased
step length the most [51]. These results are intriguing,
but it is unclear if they are relevant to adult cancer survi-
vors since both studies were performed on children. Co-
contraction of medial gastrocnemius and tibialis anterior
muscles has been documented as a safety strategy used
by adult cancer survivors with CIN for balance control,
but only in static standing tasks [21]. These results have
been observed in pediatric cancer survivors during gait,
and it will be useful to determine if a similar strategy is
employed by adult cancer survivors. Monfort et al. 2019
is the only study that considered the role of cognition in
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gait stability [64]. They quantified gait stability in cancer
survivors with CIN during single- and dual-task walking.
They found that cancer survivors had similar gait stability
during the single-task walking compared to healthy con-
trols, but the stability cost was greater during the dual-
task walking, and it was associated with poor executive
function. The increased stability cost during dual-task
walking could be due to the diminished sensory feed-
back associated with CIN that makes gait control more
cognitively costly, but there was no evidence for an iso-
lated association between CIN severity and gait stability.
These results suggest that cognitive impairments in addi-
tion to CIN could contribute to gait impairments though
more work is needed to evaluate the prevalence and rela-
tive importance of these contributions. Finally, we were
unable to find any studies that evaluated the impact of
chemotherapy on the visual and vestibular systems even
though these are known to be central to unimpaired gait.

In summary, current evidence on the underlying causes
of gait abnormality in cancer survivors remains limited.
Musculoskeletal deficits at the ankles, including reduced
range of motion and strength and increased muscu-
lar co-contraction, contribute to altered gait patterns in
pediatric cancer survivors, but further kinematic and
kinetic gait analyses are warranted to determine if simi-
lar musculoskeletal changes occur in adult cancer sur-
vivors. Future gait studies should also investigate how
chemotherapy-related changes in the central nervous
system (e.g., vision, vestibular, cognition) contribute to
gait impairments.

Characteristics of upper limb function impairments

in cancer survivors with CIN

CIN-induced sensorimotor dysfunction not only con-
tributes significantly to balance and gait dysfunction in
cancer survivors but also plays a significant role in upper
extremity dysfunction. Particularly, cancer survivors with
CIN report difficulties with skilled hand function such
as typing, writing, and buttoning a shirt [8, 65—68], but
few studies have investigated the specific components
of the impairments and contributions from the CIN-
induced sensory or motor dysfunction (Table 3). Osumi
et al. 2019 investigated one of the essential upper limb
motor behaviors, reach-to-grasp movement, in cancer
survivors with perceived numbness due to neurotoxic
chemotherapy [69]. Their reach-to-grasp movement con-
sisted of a reach component that primarily reflects the
motor function of the proximal upper limb muscles and a
thumb-index grasp component that requires fine control
of hands and fingers. They found that cancer survivors
had a significantly decreased smoothness during grasp-
ing but similar smoothness during reaching compared
to healthy age-matched controls. The grasp smoothness
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was significantly correlated with hand sensory func-
tion, measured by tactile detection threshold and numb-
ness rating, and hand motor function, measured by the
hand grip-release test, suggesting that hand sensory and
motor dysfunction may contribute to impaired thumb-
index grasp smoothness. Reinders-Messelink et al. 2001
investigated handwriting dexterity in children undergo-
ing vincristine chemotherapy for acute lymphoblastic
leukemia [70] and found that pen pressure increased pro-
gressively during and six months after treatment, and the
effect was most significant with the most complex draw-
ing task. Other qualities of handwriting, such as veloc-
ity, dysfluency, pause duration, and accuracy, were not
different between patients and healthy controls. It was
speculated that increased pen pressure is a compensatory
mechanism for vincristine-induced sensory impairments
whereby increased pen pressure can, in turn, increase
pen-paper friction, providing more kinesthetic informa-
tion needed for handwriting tasks.

In summary, these two studies provide preliminary
evidence of suboptimal hand function linked to CIN-
related sensory and motor disturbances. However, since
thumb-index grasp and handwriting only represent parts
of skilled hand function, further studies are needed to
investigate other skilled hand function and manual dex-
terity (e.g., power vs. precision grasp, prehensible vs.
non-prehensible object manipulation) and how they are
affected by CIN. Furthermore, neither study considered
the compensatory effect of vision on task performance,
thus potentially misidentifying the functional signifi-
cance of CIN-induced sensory and motor dysfunction.
Although incorporating vision is more functionally rele-
vant and takes hand-eye-coordination into account, iden-
tifying the relative contribution of sensory and motor
dysfunction independent of vision can be useful for iden-
tifying targets of intervention.

Other factors to consider when investigating movement
dysfunction in cancer survivors

Chemotherapy-induced neurotoxicity produces unique
sensory and motor symptoms that contribute to dysfunc-
tion in postural control, gait, and upper limb function.
While further research is warranted to fully characterize
CIN movement dysfunction and its underlying causes,
researchers should also consider other side effects of can-
cer and treatments, including fatigue, cognitive changes,
and pain, when designing future studies. Cancer-related
fatigue is common, with most studies reporting preva-
lence rates above 60% [71]. Cancer fatigue can have a
peripheral component that is perceived as a sensation of
weakness, which may be confounded with CIN-related
motor symptoms [71]. It also can have a central com-
ponent, defined as difficulty in initiating or maintaining
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voluntary physical and cognitive activities [2, 71], which
could negatively affect attention and interfere with move-
ment function, particularly during tasks that require
greater cognitive loads (i.e., dual-task). Closely related
to central fatigue is cognitive dysfunction in cancer sur-
vivors. It is estimated that 75% of patients might have
measurable cognitive impairments during treatment, and
35% will continue to exhibit cognitive difficulty months
to years following treatment [72]. These cognitive impair-
ments range from changes in attention, memory, execu-
tive function, and psychomotor speed, related to the
comorbid factors associated with cancer such as depres-
sion and anxiety and/or direct effects of chemotherapy/
radiation and cancer itself [72]. Cognition and attention
play important roles in the maintenance of balance and
postural control [73]; therefore, these factors should be
considered when interpreting the results of balance and
postural impairments. Pain is another factor that can
alter movement patterns [74]. Neuropathic pain related
to chemotherapy, although not as common as numbness/
tingling, can present in a substantial patient population
[75]. Cancer patients may also present with pain origi-
nating from tumor excision, removal of a body part (i.e.,
breast), tumor-related spinal cord compression, bone
metastasis, and radiation injuries depending on types of
cancer and course of individual cancer treatment [76].

In summary, individuals with cancer might present
with other side effects add to the CIN-induced sensory
and motor symptoms. Side effects like fatigue, cognitive
dysfunction, and pain could complicate the interpreta-
tion of movement dysfunction. Researchers should con-
sider monitoring these side effects, if not controlling for
them when investigating movement dysfunction linked
to CIN.

Conclusion

Motivated by improving the management of chemother-
apy-related movement dysfunction, this literature review
evaluated 32 studies and consolidated the knowledge of
common movement disabilities in cancer survivors who
received chemotherapy. Overall, cancer survivors with
chemotherapy-induced neurotoxicity have been shown
to present with increased postural sway, conservative
gait patterns, and suboptimal hand function, but the cur-
rent understanding of CIN-related movement function
changes is far from comprehensive.

We identified a number of areas where more infor-
mation is needed. Cancer survivors with CIN report
a wide range of dysfunction in gross mobility (e.g., bal-
ance, walking, climbing stairs, and driving) and fine
motor skills (e.g., tying shoes, buttoning clothes, writ-
ing, typing, opening lids, and cooking) [7, 8, 12, 65-68,
77]. The majority of the reviewed studies focused on
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quantifying postural and gait impairments, which are
useful for understanding balance and walking dysfunc-
tion. However, the understanding of other mobility
limitations, such as driving and stair climbing, is still
lacking. Furthermore, current evidence is not clear on
the underlying causes of gait and postural dysfunction.
CIN-related somatosensory deficits likely play a role, but
more research is needed to control and test other fac-
tors, including motor and central factors, to delineate
their relative contributions to gait and postural dysfunc-
tion. Similarly, the two studies on the upper extremity
have identified some important deficits of hand func-
tion, including impaired smoothness in grasping and
increased pen pressure in writing, but more studies are
needed to understand other aspects of fine motor skills
and manual dexterity.

There are currently no effective treatments for CIN.
Many early reports suggest a possible beneficial effect
of exercise (see reviews [11, 78, 79]). However, most
exercise studies took a multimodal approach. We do
not know what the best therapies are, nor do we have
objective measures to determine if the therapies that we
are using are effective in treating CIN, or they simply
lead to compensation. Knowledge gaps in the objective
characterization and underlying causes of CIN-related
movement dysfunction present formidable barriers. To
begin to address these outstanding issues, researchers
and clinicians should work in concert to integrate and
act upon objective measures deployed across the can-
cer treatment continuum. While this review character-
ized significant heterogeneity in evaluative tools and
methodology for understanding CIN-related movement
dysfunction, Kneis et al. provide a framework on which
to build future clinical studies [30]. By integrating more
sensitive and reliable tools, the authors not only gained
information about baseline group level deficits resulting
from the effects of chemotherapy but also the capability
to precisely monitor treatment effects. Both advantages
outlined will be crucial for discovering factors associated
with sensorimotor deficits and making rigorous determi-
nations on the efficacy of proposed treatments.

In summary, we identify significant knowledge gaps
in CIN-related movement dysfunction and recommend
frameworks for future clinical studies. Filling these gaps
will help improve the clinical understanding of CIN-
related movement dysfunction and guide the develop-
ment of targeted assessments and treatments.
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