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Abstract 

Background:  Gait dysfunction is common in post-stroke patients as a result of impairment in cerebral gait mecha‑
nism. Powered robotic exoskeletons are promising tools to maximize neural recovery by delivering repetitive walking 
practice.

Objectives:  The purpose of this study was to investigate the modulating effect of the Gait Enhancing and Motivat‑
ing System-Hip (GEMS-H) on cortical activation during gait in patients with chronic stroke. Methods. Twenty chronic 
stroke patients performed treadmill walking at a self-selected speed either with assistance of GEMS-H (GEMS-H) or 
without assistance of GEMS-H (NoGEMS-H). Changes in oxygenated hemoglobin (oxyHb) concentration in the bilat‑
eral primary sensorimotor cortex (SMC), premotor cortices (PMC), supplemental motor areas (SMA), and prefrontal 
cortices (PFC) were recorded using functional near infrared spectroscopy.

Results:  Walking with the GEMS-H promoted symmetrical SMC activation, with more activation in the affected 
hemisphere than in NoGEMS-H conditions. GEMS-H also decreased oxyHb concentration in the late phase over the 
ipsilesional SMC and bilateral SMA (P < 0.05).

Conclusions:  The results of the present study reveal that the GEMS-H promoted more SMC activation and a bal‑
anced activation pattern that helped to restore gait function. Less activation in the late phase over SMC and SMA dur‑
ing gait with GEMS-H indicates that GEMS-H reduces the cortical participation of stroke gait by producing rhythmic 
hip flexion and extension movement and allows a more coordinate and efficient gait patterns.
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Background
Stroke survivors can suffer several neurological impair-
ments or deficits, such as hemiparesis, sensory and motor 
skills disorder, cognitive deficits, or disorders in commu-
nication and visuo-spatial perception. Hemiplegia is one 
of the most common impairments after stroke and signif-
icantly reduces walking ability. Poststroke hemiplegic gait 
is typically characterized by a reduced gait velocity and 
asymmetry of bilateral kinetic, kinematic and spatiotem-
poral parameters [1–3]. Gait function is an important 
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factor in determining the ability to independently per-
form activities of daily living. Therefore, regaining gait 
ability is a primary goal in the rehabilitation program for 
stroke patients.

Robot-assisted therapy for gait rehabilitation after 
stroke is a potential and novel approach for facilitating 
the restoration of function and enhancing the neural 
recovery process after stroke. Advanced and intelligent 
robotic devices are able to provide high-intensity, high-
dosage, and consistent training, while potentially reduc-
ing strain on therapists [4–6]. The relative merits of 
wearable versus stationary robots include potability and 
the ability to shift the location of treatment into a more 
real-world environment, including the home, commu-
nity, and society. The Gait Enhancing and Motivating 
System-Hip (GEMS-H), developed by Samsung Electron-
ics Co., Ltd. (Suwon, Republic of Korea), is a hip-type 
robotic exoskeleton. Our previous studies showed that 
GEMS-H improved gait function, muscle efficiency, and 
cardiopulmonary metabolic efficiency [7–10]. However, 
it is not yet known how GEMS-H assisted gait training 
modulates cortical activity of stroke patients.

Gait is mediated through complex neuronal networks 
in the central nervous system involving cortical, subcorti-
cal, and spinal regions [11]. Repetitive gait training may 
modify these networks and induce physiological plastic-
ity to improve ambulation [12]. Assessment of cortical 
activation while the subject is moving is a key factor in 
promoting a better understanding of neural motor con-
trol. Currently, limited information is available on the 
cerebral mechanisms underlying locomotor recovery 
after stroke because of technical limitations in assess-
ing cerebral activation during execution of motor tasks. 
To date, various non-invasive methods have been used 
to acquire brain signals, including functional magnetic 
resonance imaging (fMRI), electroencephalography 
(EEG), positron emission tomography (PET), and func-
tional near-infrared spectroscopy (fNIRS). fNIRS is a 
relatively new optical neuroimaging technique that ena-
bles visualization of cortical activation during human 
gait [13]. Although fNIRS has limited depth sensitivity 
that restricts the measurements of brain activity to cor-
tical layers [14], this technique allows the noninvasive 
measurement of cortical activity with relatively good 
spatial and temporal resolution [15]. Compared to other 
neuroimaging devices, its advantages such as less sensi-
tive to motion artifacts, cheap, portable, safe, and silent, 
[16] make it the choice for comprehensive and promising 
results in examination of stroke patients during rehabili-
tation [13, 17–20].

In this study, we aimed to identify how the wear-
able hip-assist robot modulates cortical activation dur-
ing gait in patients with stroke. We hypothesized that 

GEMS-H-assisted walking would induce better automatic 
control of gait compared with walking without assistance 
of GEMS-H (NoGEMS-H), expressed as a reduction in 
cortical activation compared with the NoGEMS-H con-
ditions. We also speculated that assistance with GEMS-
H would lead to a more symmetrical cortical activation 
compared with NoGEMS-H conditions.

Methods
Participants and initial screening
A total of 20 people over a 3-months period after a unilat-
eral stroke were included in this study; the characteristics 
of these subjects are shown in Table 1. Participants had to 
be able to stand and walk independently or under super-
vision (Functional Ambulation Categories, range, 3 to 5). 
Based on a clinical assessment, we excluded individuals 
with a history of other neurological disorders (except 
stroke) and musculoskeletal disorders that affected walk-
ing capacity, efficiency, and endurance. Written informed 
consent was obtained from all participants before enter-
ing the study. The study procedures were approved by the 
ethics committee of the Samsung Medical Center Insti-
tutional Review Board (Approval Number: 2016-07-093).

Wearable hip‑assist robot, GEMS‑H
The GEMS-H was developed at the Samsung Advanced 
Institute of Technology (Samsung Electronics Co., Ltd., 
Korea) as a wearable Hip-assist Robot with an assist-
as-needed algorithm for stroke patients with gait disor-
der. This robot was designed to deliver active-assistance 
torque to the both hip or hip joint of the paretic side for 
extension and flexion. The GEMS-H has a lightweight 
(2.8 kg), comfortable and slim design that can be adjusted 

Table 1  Characteristics of participants

Values are expressed as mean (SD)

Characteristics Values

Sex (male/female) 13/7

Age, years 61.74 (6.93)

Height, cm 164.37 (7.06)

Weight, kg 66 (9.12)

Stroke onset duration, month 36.67 (26.61)

Handedness (right/left) 20/0

Etiology

 Ischemic/hemorrhagic 6/14

Stroke location

 Cortical/subcortical/mixed 1/10/9

Side of stroke

 Right/left 12/8

 Functional ambulation categorical 4.2 (0.83)

 Berg balance scale 38.5 (5.65)
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to fit the user’s body (Fig.  1). For more information 
regarding the strategy of assistive algorithms used for the 
GEMS-H, please see our previous paper [10].

Experimental design and equipment
This study was designed as a crossover randomized con-
trolled trial. All participants completed a familiarization 
session by walking on a treadmill and their preferred 
walking speed was recorded. None of the participants 
had difficulty walking on the treadmill during this initial 

walk. All participants were further acclimated to the 
GEMS-H through a single training session of 30 min with 
a licensed physical therapist. For fNIRS recording, partic-
ipants were assigned to two consecutive tasks: a treadmill 
walking task at a self-selected speed (a) with the assis-
tance of the GEMS-H (GEMS-H) or (b) without GEMS-
H (NoGEMS-H) assistance. The experiment began with 
a fixed standing condition (60 s), followed by one of the 
two walking conditions (60  s) and then a resting condi-
tion (60 s) for five repetitions (block design) (see Fig. 2a). 
All participants were given specific instructions not to 
talk or laugh during testing and the participants rested by 
sitting for 10 min between the two tasks [21].

An fNIRS imaging system (NIRSscout® system, NIRx 
Medical Technology, Berlin, Germany) with two differ-
ent wavelengths of 760 and 850  nm was used to record 
changes in oxygenated hemoglobin (oxyHb) concen-
tration. The fNIRS optodes consisted of 16 LED light 
sources and 16 detectors, and a total of 49 useful source-
detector channels were used for monitoring the hemo-
dynamics of the bilateral primary sensorimotor cortex 
(SMC), premotor cortices (PMC), supplemental motor 
areas (SMA), and prefrontal cortices (PFC). The cra-
nial vertex (Cz) located beneath the 1st source was the 
marker for ensuring replicable placement of the optodes. 
After the Cz position was determined on the participant’s 
head, an fNIRS head cap was placed on the participant’s 
head. The fNIRS head cap was designed to be compatible 
with the International 10–20 system and the interoptode 
distance was 3.0 cm. The fNIRS data were continuously Fig. 1  Gait Enhancing and Motivating System-Hip (GEMS-H)

Fig. 2  a Experimental design: the block design time course, including baseline, walking, and resting periods. b Location of optodes. The fNIRS 
system consists of 16 light source (white) and 16 detector (black) fibers, resulting in a total of 49 channels distributed over left SMC (Channels 1, 
9, 42), right SMC (Channels 3, 27, 32), left SMA (Channels 11, 12), right SMA (Channels 24, 25), left PMC (Channels 10, 13, 45), right PMC (Channels 
23, 26, 36), left PFC (Channel 16), and right PFC (Channel 20). fNIRS functional near infrared spectroscopy, SMC primary sensorimotor cortex, SMA 
supplemental motor areas, PMC premotor cortex, PFC prefrontal cortex, GEMS-H walking with assistance of GEMS-H, NoGEMS-H walking without 
assistance of GEMS-H
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acquired at a sample rate of 3.91  Hz through NIRStar 
Software version 14.2 (NIRx Medical Technologies LLC, 
Berlin, Germany) in MATLAB (The Mathworks, USA), 
which allowed oxyHb signals to be visualized in real time 
during data collection.

Data preprocessing and analysis
Changes in oxyHb concentration during two different 
tasks (GEMS-H and NoGEMS-H) were analyzed by the 
nirsLAB® software version 2017.06 (NIRx Medical Tech-
nologies LLC, Berlin, Germany) in MATLAB. Cortical 
regions assessed included SMC (Brodmann area 1, 2, 3, 
and 4, medial), PMC (Brodmann area 6, lateral), SMA 
(Brodmann area 6, medial), and PFC (Brodmann area 
9). We used oxyHb concentration as a marker for corti-
cal activation because oxyHb is more sensitive indicator 
of brain activity during human locomotion-related activi-
ties than deoxygenated hemoglobin (deoxyHb), and there 
was a task-related increase of oxyHb concentration in the 
SMC without significant changes in deoxyHb concentra-
tion [19, 22]. OxyHb has been shown to have a higher 
signal to noise ratio associated with scattering of light 
through the scalp, skull, and inactive brain tissue [23]. For 
easy comparison, brains of patients are left–right flipped 
in the data preprocessing stage so that the stroke lesion of 
each subject were localized to the right hemisphere.

The fNIRS data were preprocessed to delete experi-
mentally irrelevant time intervals from data, to remove 
motion artifacts, and to apply bandpass frequency filter 
to exclude experimentally irrelevant frequency bands. 
Using the components of Data Preprocessing available 
in nirsLAB®, discontinuities and spike artifacts of sig-
nals obtained from the 49 channels were removed and 
replaced by the nearest signals. The fNIRS signals were 
bandpass-filtered (low-cutoff frequency 0.01  Hz and 
high-cutoff frequency 0.2 Hz) to eliminate the effects of 
heartbeat, breathing, and low-frequency signal drifts 
for each wavelength [21]. The acquired fNIRS signal can 
contain various noises that can be classified as experi-
mental errors, instrument noise, and physiological noise. 
The experimental errors and instrumental noise are not 
related to the brain activities, so they were eliminated 
prior to converting the raw optical density signals into 
a change in oxyHb concentration, and the preprocessed 
signals were then converted to relative concentration 
changes in oxyHb using the modified Beer-Lambert law 
for each source-detector channel [23, 24]. Finally, the 
oxyHb concentration changes were averaged over 5 rep-
etitions for each walking condition to improve the signal-
to-noise ratio [25].

From the processed fNIRS signals, oxyHb concentra-
tion was averaged per region of interest (ROI) (i.e., bilat-
eral SMC, PMC, SMA, and PFC) [26]. The SMC was 

assessed with the medial parts of the posterior chan-
nels (channels 1, 9, and 42 in the left hemisphere and 3, 
27, and 32 in the right), the SMA was assessed with the 
medial parts of the middle channels (channels 11 and 
12 in the left hemisphere and channels 24 and 25 in 
the right), the PMC was assessed with the lateral parts 
of the middle channels (channels 10, 13, 45 in the left 
hemisphere and channels 23, 26, 36 in the right) and 
the PFC was partially assessed with channel 16 in the 
left hemisphere and channel 20 in the right hemisphere 
(see Fig. 2b) [19, 22, 27]. In this study, to analyze corti-
cal activation, task periods were divided into an early 
and late phase. The period between 1 and 30 s of the task 
was defined as the early phase to reflect the immediate 
hemodynamic response for walking. The period between 
31 and 60 s of the task was defined as the late phase to 
reflect continuous brain activity during walking as Lu 
et al. [21] described in the previous study. The initial and 
final 5  s of each task period were excluded to eliminate 
the transient periods between hemodynamic responses 
[28]. Block designs with a task period of 20–30 s are com-
monly used for fNIRS studies [29–31], but in this study, a 
longer task period (60 s) was used to investigate cortical 
activation. For quantification of activation between the 
serial measurements in two different tasks, we calculated 
ΔoxyHb in each channel, defined as oxyHb during Task 
Period – oxyHb during Rest Period.

Statistical analysis
All statistical analyses were performed with SPSS ver-
sion 22.0 (IBM, Armonk, NY, USA), and the significance 
level was set at 0.05. Descriptive statistics are expressed 
as mean ± standard deviation (SD) of the mean. Brain 
activation during each walking condition and phase was 
identified as a significant increase in oxyHb concentra-
tion by performing independent t-tests with false discov-
ery rate (FDR) correction of multiple comparison for 49 
channels. Within each walking condition, paired t-tests 
were used to compare activation in ipsi- and contrale-
sional hemispheres.

Results
Patterns of cortical activation in different walking 
conditions
The mean values of oxyHb concentration during each 
walking condition and phase are presented in Table 2. 
OxyHb concentration over bilateral SMC in the early 
phase of gait was significantly higher in the GEMS-H 
than the NoGEMS-H condition (P < 0.05). In addition, 
we observed lower oxyHb concentration over the ipsile-
sional SMC and bilateral SMA in the late phase of gait 
(P < 0.05). In the bilateral PFC, oxyHb concentration 
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in the late phase under GEMS-H condition was sig-
nificantly higher than that of the NoGEMS-H condition 
(P < 0.05).

Results of oxyhemoglobin concentration changes 
in time‑series analysis
The average changes of oxyHb concentrations in each 
ROI under GEMS-H and NoGEMS-H conditions are 
shown in Fig.  3. The hemodynamic responses from 
5 to 55  s after task onset was analyzed to eliminate 
the transient periods between task conditions. In the 
NoGEMS-H condition, there was a statistically sig-
nificant difference in oxyHb concentration between 
ipsi- and contralesional hemispheres in SMC and SMA 
(P < 0.05). In the GEMS-H condition, there was no sta-
tistically significant difference in oxyHb concentration 
between ipsi- and contralesional hemispheres at all 
ROIs.

Discussion
The present study investigated the modulating effect of 
the wearable hip-assist robot, GEMS-H on cortical acti-
vation during gait in patients with chronic stroke. The 
main findings were that walking with GEMS-H pro-
moted symmetrical SMC activation, with more activation 
in the affected hemisphere than the NoGEMS-H condi-
tion. Also, the GEMS-H decreased oxyHb concentration 
in the late phase over the ipsilesional SMC and bilateral 
SMA. In addition, in the bilateral PFC, oxyHb concentra-
tion of late phase under GEMS-H condition was signifi-
cantly higher than that of the NoGEMS-H condition.

After stroke, brain neurophysiology and organization 
are changed resulting in brain-activation patterns that 
are different from those of healthy individuals [17]. Major 
differences in cortical activation pattern between nor-
mal and hemiparetic gait are asymmetrical primary SMC 
activation, with less activation in the affected hemisphere 
than in the unaffected hemisphere and recruitment of 
other motor-related areas such as the PMC and pre-
supplementary motor area (pre-SMA) [19, 28]. In this 
study, we showed that walking with GEMS-H resulted in 
a more symmetrical SMC activation pattern, with higher 
SMC activation in the affected hemisphere than in the 
NoGEMS-H condition. In patients with stroke, asym-
metrical brain activation is associated with hemiparetic 
gait. Improvement in the asymmetry of SMC activation 
has a significant correlation with the improvement in gait 
asymmetry. This suggests that symmetrical SMC acti-
vation may play an important role in restoring locomo-
tor function after stroke [19]. These results indicate that 
GEMS-H promoted more SMC activation and a balanced 
activation pattern that helped to restore gait function in 
patients with stroke.

Gait is considered an automated, over-learned, and 
rhythmic motor task [32]. Humans possess a central pat-
tern generator (CPG) to facilitate rhythmic and repetitive 
locomotor patterns via supraspinal regulation of cerebral 
neural networks [33]. Specific damage in supraspinal 
structures results in specific alterations in human loco-
motion, as evident in subjects with brain injuries such 
as stroke [34]. Our results revealed reduced oxyHb con-
centration over the ipsilesional SMC and bilateral SMA 
in the late phase of gait with the GEMS-H compared 
with the NoGEMS-H condition. Increased activity in 
SMC and SMA in the late phase during walking without 
the GEMS-H may indicate a compensatory activation in 
stroke patients due to impaired brain function and loss of 
automatism. Our previous study [10] demonstrated that 
the GEMS-H enhanced symmetricity of gait in stroke 
patients. Less activation in the SMC and SMA in the 
late phase during gait with GEMS-H might be a reflec-
tion of more symmetric and coordinated gait patterns by 

Table 2  The mean values of  oxygenated hemoglobin 
concentration during each walking condition and phase

Values are presented as mean (SD)
*  P < 0.05; **P < 0.01

SMC primary sensorimotor cortex, SMA supplemental motor areas, PMC 
premotor cortex, PFC prefrontal cortex, GEMS-H walking with assistance of 
GEMS-H, NoGEMS-H walking without assistance of GEMS-H

(Unit: mol*10–3) GEMS-H NoGEMS-H P-value

Ipsilesional SMC

 Early phase 0.29 (0.22) 0.14 (0.19) 0.028*

 Late phase − 0.22 (0.14) − 0.11 (0.10) 0.008**

Contralesional SMC

 Early phase 0.21 (0.15) 0.11 (0.16) 0.048*

 Late phase − 0.14 (0.09) − 0.08 (0.09) 0.066

Ipsilesional SMA

 Early phase 0.26 (0.19) 0.17 (0.16) 0.095

 Late phase − 0.22 (0.10) − 0.14 (0.13) 0.027*

Contralesional SMA

 Early phase 0.23 (0.17) 0.18 (0.15) 0.288

 Late phase − 0.20 (0.12) − 0.08 (0.11) 0.003**

Ipsilesional PMC

 Early phase 0.20 (0.13) 0.21 (0.17) 0.692

 Late phase − 0.12 (0.12) − 0.08 (0.13) 0.334

Contralesional PMC

 Early phase 0.16 (0.18) 0.25 (0.25) 0.200

 Late phase − 0.11 (0.07) − 0.08 (0.08) 0.203

Ipsilesional PFC

 Early phase 0.13 (0.08) 0.17 (0.09) 0.156

 Late phase − 0.05 (0.06) − 0.12 (0.06) 0.001**

Contralesional PFC

 Early phase 0.11 (0.14) 0.19 (0.16) 0.083

 Late phase − 0.03 (0.10) − 0.11 (0.08) 0.005**
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assisting rhythmic hip flexion and extension movements 
in gait with the GEMS-H. Increased gait symmetric-
ity accompanied with reduced cortical participation in 
stroke gait made us assuming that GEMS-H facilitates 
the role of CPG, the subcortical neural substrate of gait, 
and contributes for automatic and symmetric gait pat-
terns. This possibility, of course, warrants clarification by 
future studies.

Compared with NoGEMS-H conditions, walking with 
the GEMS-H elicited greater prefrontal activities in 
the late phase. This increased oxyHb concentration is 
thought to demonstrate a rise in aerobic metabolism in 
the PFC, which is a reflection of increased cellular activ-
ity [35, 36]. Increased attention to learn walking with the 
GEMS-H may promote PFC neuronal activity. Previous 
studies demonstrated that attentional control to engage 

Fig. 3  The average group changes in oxyHb concentrations in each ROI under GEMS-H and NoGEMS-H conditions. *P < 0.05. SMC, primary 
sensorimotor cortex; SMA, supplemental motor areas; PMC, premotor cortex; PFC, prefrontal cortex; GEMS-H, walking with assistance of GEMS-H; 
NoGEMS-H, walking without assistance of GEMS-H
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specific motor tasks initially involves the prefrontal–pari-
etal pathway followed by increased prefrontal activity. 
With continuous gait training, this activity attenuates 
as the striatal–cerebellum pathway assumes the neu-
ronal process with increased automaticity [37, 38]. In our 
study, during walking with the GEMS-H, participants 
might have used more attention to learn walking with the 
GEMS-H and thus showed higher prefrontal activity in 
the late phase.

To our knowledge, this is the first study to investigate 
the modulating effect of the wearable hip-assist robot on 
cortical activation during gait in patients with chronic 
stroke. Our findings may provide evidence that gait with 
the GEMS-H increases the efficiency of cortical neu-
ral resources during walking by redistributing cortical 
components of gait function. However, there are some 
limitations to this study. First, we only demonstrated the 
temporary effect of the GEMS-H. Modulating effects on 
cortical-subcortical activities after long-term training 
with GEMS-H need to be conducted in the future using 
different functional imaging modalities such as fMRI or 
MEG. Second, there was a potential lack of statistical 
power due to the small sample size, therefore, our results 
cannot be generalized to the entire stroke population. 
Future research should be performed using a larger sam-
ple size.

Conclusions
The present study shows the modulating effect of GEMS-
H on cortical activation during gait in patients with 
chronic stroke. The results of the present study reveal 
that the GEMS-H promoted more SMC activation and 
a balanced activation pattern that helped to restore gait 
function. Less activation in the late phase over SMC and 
SMA during gait with GEMS-H indicates that GEMS-H 
reduces the cortical participation of stroke gait by pro-
ducing rhythmic hip flexion and extension movement. 
These results suggest that the GEMS-H may be useful 
to allow a more coordinate and efficient gait patterns for 
stroke patients.
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