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Abstract

Background: Traumatic Brain Injury (TBI) is a leading cause of fatality and disability worldwide, partly due to the
occurrence of secondary injury and late interventions. Correct diagnosis and timely monitoring ensure effective
medical intervention aimed at improving clinical outcome. However, due to the limitations in size and cost of current
ambulatory bioinstruments, they cannot be used to monitor patients who may still be at risk of secondary injury
outside the ICU.

Methods: We propose a complete system consisting of a wearable wireless bioinstrument and a cloud-based
application for real-time TBI monitoring. The bioinstrument can simultaneously record up to ten channels including
both ECoG biopotential and neurochemicals (e.g. potassium, glucose and lactate), and supports various
electrochemical methods including potentiometry, amperometry and cyclic voltammetry. All channels support
variable gain programming to automatically tune the input dynamic range and address biosensors’ falling sensitivity.
The instrument is flexible and can be folded to occupy a small space behind the ear. A Bluetooth Low-Energy (BLE)
receiver is used to wirelessly connect the instrument to a cloud application where the recorded data is stored,
processed and visualised in real-time. Bench testing has been used to validate device performance.

Results: The instrument successfully monitored spreading depolarisations (SDs) - reproduced using a signal
generator - with an SNR of 29.07 dB and NF of 0.26 dB. The potentiostat generates a wide voltage range from -1.65V to
+1.65V with a resolution of 0.8mV and the sensitivity of the amperometric AFE was verified by recording 5 pA currents.
Different potassium, glucose and lactate concentrations prepared in lab were accurately measured and their
respective working curves were constructed. Finally,the instrument achieved a maximum sampling rate of 1.25
ksps/channel with a throughput of 105 kbps. All measurements were successfully received at the cloud.

Conclusion: The proposed instrument uniquely positions itself by presenting an aggressive optimisation of size and
cost while maintaining high measurement accuracy. The system can effectively extend neuroelectrochemical
monitoring to all TBI patients including those who are mobile and those who are outside the ICU. Finally, data
recorded in the cloud application could be used to help diagnosis and guide rehabilitation.
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Background
Traumatic brain injury (TBI) is a non-degenerative, non-
congenital condition; it could be defined as a set of percep-
tible and non-perceptible brain insults due to an external
impact on the head. Such insults include brain hernia-
tion, haemorrhage and contusion [1, 2]. In addition to
the primary injury that occurs at the moment of impact,
secondary injuries are likely to develop especially in mild
and severe TBI injuries [3]. These secondary injuries may
take hours or even days to manifest and can lead to
reduction in life expectancy, altered level of conscious-
ness, post-traumatic disorder and neurological disorders,
along with other cognitive and psychological/psychiatric
impairments [3]. Hence, TBI should not be viewed as a
single event but rather as a sustained condition calling for
monitoring, supervision and rehabilitation [4].
TBI is characterised by a complex pathway where

patients could relapse after surgery, while in the inten-
sive care unit (ICU), the high dependency unit (HDU)
or in normal hospital wards, and may require additional
invasive interventions. The motivation for neuroelectro-
chemical monitoring of TBI patients stems from the need
for timely neurological intervention and prevention of
adverse effects. However, currently, TBI neuroelectro-
chemical monitoring is limited to fully sedated patients in
the ICU who have undergone craniotomy neurosurgery as
a result of sustaining a severe TBI and/or showing acute
brain insults [5, 6].
A closely monitored event in TBI is the onset of

spreading depolarisations (SDs), also referred to as “brain
tsunamis”. These are slow changing mass depolarization
waves that originate from the lesion foci and spread out
to neighbouring tissues at risk of secondary injury [7].
SDs are strongly associated with poor outcome in TBI
patients and are measured by means of electrocorticog-
raphy (ECoG). Subdural strip electrodes are traditionally
used to monitor SD events, however, they require the
patient to undergo craniotomy. Recently, intraparenchy-
mal electrodes were used to accurately monitor these
events; these electrodes are inserted via burr hole which is
a minimally-invasive procedure [8].
Chemical monitoring of the injured brain can give an

indication of tissue health and metabolism [9]. In 2014,
a consensus statement from the International Microdial-
ysis Collaborative Group identified glucose and the lac-
tate/pyruvate (L/P) ratio as the most relevant neurochem-
ical biomarkers in TBI monitoring [10]. Glucose concen-
tration reflects local metabolism, hence, poor outcomes
have a direct link to low glucose concentrations (< 0.8mM
at 0.3 l/min in tissue interstitial space) [11–15]. Likewise,
the association of abnormally high glucose concentra-
tions with poor outcome has also been reported [16, 17]
reflecting failure of glucose metabolism due to local tissue
death. Absolute concentrations of lactate and pyruvate, in

conjunction with the L/P ratio provide information about
the cellular redox state in the area of interest. Relatively
high concentrations of lactate can be due to both ischemic
and non-inshemic (e.g. mitochondrial dysfunction) causes
[18, 19]. Continuous on-line microdialysis (co-MD) is
used for sampling brain extracellular fluid to measure
neurochemical biomarker concentrations and changes [6].
A single microdialysis probe perfused with a physiologi-
cal solution is inserted into the monitored region either
during craniotomy or through cranial bolt in such a way
as to cause minimum tissue disruption. Intraparenchy-
mal ECoG electrodes can be inserted through the same
bolt as the microdialysis probe which leads to minimally-
invasive monitoring [8]. Potassium measurement should
also be included in order to enable a spatiotemporal corre-
lation between the chemical and electrical measurements:
potassiummeasurements can chemically denote the onset
of SDs [20].
In summary, the device has to measure the biopoten-

tial ECoG signals with a resolution sufficient to identify
the SDs and make inference on the depolarization of the
injured brain [6]. It also has to support amperometry to
measure glucose and lactate, as well as potentiometry
to measure potassium. This article presents a complete
system for monitoring TBI that consists of a wearable
bioinstrument (Fig. 1) and a cloud application for data
visualisation and analysis.
The lack of an affordable, wearable, relatively non-

invasive instrument is the major barrier for real-time neu-
roelectrochemical monitoring of patients that are mobile
and in risk of secondary injuries; or patients in low-
income countries, military and “curb-medicine” settings.
Several studies have reported instruments for brain mon-
itoring. An integrated chip for wireless neurochemical
measurement was proposed by Roham et al. (2008) [21].
The chip offered both amperometry and fast-scan cyclic
voltammetry, However, it had a limited number of chan-
nels and a reduced resolution at high sampling rate. In
the same vein, Kasasbeh et al. (2013) presented a device
that is also limited to neurochemical measurements.
Additionally, it is not wearable and is instead designed
to be attached to neurosurgical stereotactic frames [22].
In contrast, Piangerelli et al. (2014) proposed an invasive
instrument restricted to cortical/electrical signals [23].
Other studies in the literature focused on the design of
probes aimed at improving the usability and wearablity of
TBI instruments [24].
Pivoting to instruments particularly designed for TBI

or neuroelectrochemical monitoring, Papadimitriou et al.
(2016) developed a high-performance two board solution.
The boards, one for biopotential recording and the other
for chemical biomarker measurement, were designed
to realise an ambulatory bedside equipment, thus it
employed a wired connection to a data collection system
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Fig. 1 The setup of the proposed behind-the-ear wearable device. The solution consists of: the micro-instrument (flexible PCB), microfluidic chip
and biosensors. The device connects to a minimally-invasive cranial bolt, which is fixed on the patient’s head where the injury is. The bolt has two
lumens, one for an ECoG probe and the other for the microdialysis probe. The latter requires a syringe pump to perfuse the probe membrane. The
device is wireless and supports bluetooth low-energy (BLE) protocol

and occupied an area of around 400 cm2 per board [5].
In Zafeiropoulos, Papadimitriou et al. (2018), PANACEA,
an integrated instrument for cortical and neurochemi-
cal signals was developed. Most notably, the instrument
could be connected to a receiver either through a wired
connection or wirelessly via IEEE 802.15.4 (Zigbee) pro-
tocol. The latter employing an external antenna had a
sampling rate up to 1 ksps/channel and traded power
for performance [25]. Again, the instrument, though
portable, was not designed as a wearable solution and
remained somewhat too large (around 80 cm2) to be
wearable .
In comparison to ambulatory bed-side instruments,

a wearable instrument would allow shorter connec-
tion tubes between the patient and the analysis sys-
tem. This would also facilitate real-time monitoring and
enhance temporal resolution because sampled chemical
biomarkers would reach the instrument faster. Pagkalos’s
“LENBIC” (Low-power Electrical and Neurochemical
Biosensor Interfacing Chip) is a high-performance appli-
cation specific integrated circuit for TBI [26]. LENBIC
offers dramatic footprint reduction (7.5 mm2), high accu-
racy and ultra-low power performance. However, the chip
- being an analog front-end (AFE) - requires additional
peripherals, such as embedded controller and integrated
wireless transceivers, which increase the device footprint
and cost.

What we present here is a wearable micro-instrument
specific for full neuroelectrochemical TBImonitoring that
trades off performance for an optimal balance between
size and cost. This is done while keeping the performance
high enough to accurately and sufficiently monitor TBI
related biomarkers and events. This trade-off is depicted
in Fig. 2 with respect to the other instruments described
above. In this article, the performance of the prototype has
been validated using bench testing.

Methods
In this section, we describe a holistic implementation
that not only comprises hardware capabilities for accurate
TBI neuroelectrochemical monitoring, but also includes a
software infrastructure that enables the storage, analysis,
and visualisation of real-time measurements.

Hardware architecture
Figure 3 depicts the schematics and integration of the
blocksmaking up the instrument. The ECoG analog front-
end (AFE) shown in Fig. 3a can interface with six sub-
dural and intraparenchymal electrodes [6, 8]. This allows
flexiblemonitoring of SDs in an injured human brain. This
AFE buffers and amplifies bipolar biopotentials with a
selectable gain value of× 300 or× 500. These gain options
allow optimisation of the system dynamic range under dif-
ferent input signal amplitudes for full exploitation of the
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Fig. 2 Position of this work in literature. This work presents an
aggressive optimisation for size and cost in comparison with other
relevant work in the literature. This has been achieved by sacrificing a
degree of performance and by precise tailoring of the design to the
measured signal properties

analog-to-digital converter (ADC) resolution. The gain
switching for the ECoG AFE is achieved by controlling
an analog switch (Texas Instruments, TS5A21366) that
adjusts the value of the input resistance. The bandwidth
of interest in ECoG/SD signals lies between quasi-DC and
up to 30 Hz [5]. Hence, analog filters are implemented
around the amplifier for anti-aliasing and noise removal.
Additionally, the data has been digitally filtered on the
server side via a 17th-order Chebyshev II low-pass filter
with a stopband edge at 30Hz. The filter coefficients have
been generated using MATLAB and the digital filter was
implemented using Python on the server side.
The design for both the potentiometric and ampero-

metric AFEs is centred around the fact that neurochem-
ical signals (glucose, lactate, potassium) vary slowly, and
thus are characterised by a bandwidth of less than 10
Hz. This feature is exploited as follows: instead of hav-
ing a dedicated amplification gain stage for each chan-
nel, all the chemical channels are multiplexed into one
programmable gain amplifier (PGA) minimising the area
profile. Figure 3b illustrates the bipolar potentiometric
AFE. This stage is dual-channel and accepts voltage sig-
nals from ion selective electrodes such as potassium. Here,
the AFE functions as a filter and a voltage level shifter
with unity gain. Additional gain can be applied at the PGA
stage.
The amperometric AFE, shown in Fig. 3c, has two

main functions: to deliver a precise potential difference
between the biosensor working (WE) and reference (RE)
electrodes, and to convert small sensor-induced, pA-range
currents to voltage signals. The amperometric AFE com-
prises two channels, with each channel having a dedi-
cated potentiostat that can generate a voltage difference

between -1.65 V to 1.65 V with 12-bit resolution (i.e.
0.8 mV). The potentiostat enables setting and adjusting
of the reaction potential, this provides flexibility as the
potential can be adjusted depending on the analyte to be
detected. Also, it can run sensor calibrations using a vari-
ety of electrochemical methods such as cyclic voltamme-
try, square-wave voltammerty, etc. Finally, the current-to-
voltage (I-V) conversion function of the AFE is achieved
by a transimpedance amplifier with a gain of 100 mV/nA
and a bandwidth of 10 Hz. This AFE is dual-channel and
accepts bipolar signals (i.e. sinking and sourcing current)
. Admittedly, switched capacitor I-V stages are less noisy
than feedback-resistor-based transimpedance amplifiers
(TIA) [27]. However, switched capacitor approaches lead
to increased footprints as they require more compo-
nents and additional control signals. Also, they are more
suitable for high-cost silicon implementation rather than
lower-cost printed circuit boards (PCB). In our approach,
instead of using one large resistor, the gain is divided
between the AFE and the PGA stage.
The PGA stage is based on Texas Instru-

ment’s PG117 and can provide gain values of
× 1,×2,×5,×10,×50,×100 and × 200. The PGA117
also includes a builtin multiplexer. As previously men-
tioned, The low dynamics of the chemical signals are
exploited by multiplexing all the chemical channels to one
programmable gain stage. This saves area on the board
and increases the efficiency of data transfer later on.
Figure 3d illustrates the functional integration of the AFEs
and the PGA. This figure also shows the organisation of
the system including the microcontroller (CC2650) and
the cloud connection. CC2650 was chosen because of
its compact size and its built-in Bluetooth Low Energy
(BLE) transceiver. While BLE, Adaptive Network Topol-
ogy (ANT), and Zigbee are the most commonly used
wireless communication protocols for low-power sensor
networks and the internet of things (IoT) applications,
BLE is identified as the least power consuming [28, 29]. A
further motivation for using the CC2650 is the fact that it
comes with a built-in 12-bit ADC; this further increases
the system integration and relaxes the PCB footprint. A
receiver is required to accept the data from our micro-
instrument and forward it to the cloud application. Thus,
functioning as a receiver, a CC2650 development board
was connected to an internet-linked PC through the
universal asynchronous receiver-transmitter (UART)
protocol. However, any device that supports BLE and has
internet connectivity may be used as the receiver.
Figure 4a-i shows the antenna and matching network; a

printed planar inverted-F antenna has been etched onto
the copper layer. The figure presents the power regulation
circuity (ii), the six-channel ECoG AFE (iii), the micro-
controller with the integrated ADC and transceiver (iv),
the PGA stage (v), the potentiostat (vi), the two-channel
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Fig. 3 Circuit schematics and device integration. The design and schematics of : a The ECoG AFE with controllable gain values of × 300 and × 500,
and quasi-DC to 30 Hz bandwidth. b The potentiometric (Pot) AFE with unity gain and bandwidth of 10 Hz. c The amperometric (Amp) AFE
consisting of a 100 M� transimpedance amplifier (100 mV/nA gain) and 12-bit potentiostat. d The complete system overview presenting the
integration of the different AFEs and the PGA stage (shown in red). The signal pathway from the inputs, through the PCB, to the receiver and finally
to the cloud is also shown

amperometry AFE (vii) and the two-channel potentiom-
etry (viii). The architecture has been implemented on a
four-layer flexible PCB. The board can be folded, which
halves its size and allows stowing of the battery in between
as shown in Fig. 4b, c. Finally, the device specifications are
summarised in Table 1.

Software architecture
Embedded firmware
The CC2650 is a dual-core micro-controller. It consists
of a radio core (ARM Cortex-M0) responsible for BLE
communication and data dispatch, and a main application
core (ARM Cortex-M3) as shown in Fig. 5a. Synchronisa-
tion and data transfer between the two cores is facilitated
by means of a messaging framework termed ICall. The
CC2650 natively supports a real-time operating system
(TI-RTOS), which greatly simplifies task scheduling and
resource sharing between the different cores and tasks.

With regards to the firmware, there two main tasks
running on the application core. The first task (Task A)
is responsible for hardware initialisation, which includes
starting and setting the operation parameters of the ADC,
timers, clocks, ICall and the intra-board digital commu-
nication protocols (i.e. SPI, I2C). Even though the BLE
operations are handled by the radio core, they need to
be registered and defined in this task using ICall. Mostly
important for this task is parsing the ready data, sending it
out to the receiver and ensuring delivery. The general flow
chart is shown in Fig. 5b.
The second task (Task B) samples input signals from all

the channels in the ADC. Accurate, timely and uniform
sampling is of paramount importance. To ensure that the
first task load does not interfere with the sampling rate,
this task is triggered by a high priority timer interrupt.
More specifically, the interrupt callback is triggered at the
start of every sampling period to sample all the six ECoG
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Fig. 4 The manufactured flexible PCB. The mico-instrument: a The realisation of the design on a flexible four-layer PCB consisting of: (i) the printed
planar inverted-F antenna andmatching circuit, (ii) the power regulation block, (iii) the ECoG AFE with six channels, (iv) the CC2650microcontroller,
(v) the programmable gain amplifier stage with a built-in multiplexer - PGA117 (vi), the programmable potentiostat, (vii) the dual-channel
amperometry AFE and (viii) the dual-channel potentiometry AFE. b The folding of the device. c The folded device occupying half the original area

channels and one (out of the four) chemical channels
selected by the multiplexer. The other chemical channels
are sampled sequentially over the next three callbacks.
Hence, the chemical channels are sampled at a quarter
of the ECoG channels’ sampling rate; this is acceptable
for this application lower speed requirements for sam-
pling chemical biomarkers compared with ECoG. When
the sampled data is ready, it is packed in a notification and
then a special semaphore is posted permitting Task A to
send the notification. The flowcharts and time schedule
for the tasks are shown in Fig. 5b and c, respectively.
BLE protocol sends data as notifications, with each noti-

fication having a 7-byte protocol overhead. The effective
notification length, excluding the overhead, is referred
to as maximum transmission unit (MTU). Admittedly,
BLE is not designed for high-throughput data streaming
due to the big overhead and restricted notification length
in Android and iOS [30]. However, by using a custom
receiver and editing the BLE stack, data length extension

Table 1 Device specifications summary

Specification ECoG AFE Amperometry
AFE

Potentiometry AFE

Number of
Channels

6 2 2

Resolution 12 bits 12 bits 12 bits

Max Sampling
Rate

1.25 ksps 312 sps 312 sps

Input Range ± 10 mV ± 100 mV ± 1.5 nA

Frequency
Bandwidth

30 Hz 10 Hz 10 Hz

Input Referred
Noise

9 nV/
√
Hz 0.02 pA/

√
Hz 9 nV/

√
Hz

Board
Dimensions

3× 4.5×1
cm3

Board Weight 16 g

Power
Consumption

66 mW (3.3 V
– 20 mA)
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Fig. 5 The embedded firmware. a A hardware perspective of the firmware running on the CC2650. The main application switches between the two
tasks. The radio core runs the BLE stack and communicates with the application core via ICall. b The flowchart of the two tasks: Task A is responsible
for device initialisation and higher level coordination. Task B is responsible for the uniform sampling of the different ECoG and chemical channels. c
The time schedule of the CC2650, showing the time spent on Task A, Task B and instances when the controller is idle

(DLE) allows for expanding the length of the notifica-
tion to 251 bytes (244 bytes MTU) [31]. This calls for
a coarse-grained approach to the problem, where many
samples can be bundled in one long notification reducing
the overhead and maximising the throughput. Since the
ADC data are 12 bits long, to fully exploit the notifica-
tion size twenty samples for each channel are bundled into
one notification, together with relevant information such
as the gain values used in the ECoG, potentiometric and
amperometric channels as shown in Fig. 6.
It is the receiver-side responsibility to unparse the noti-

fication back to their corresponding channels and to con-
vert the raw ADC data to measured units using the gain
information found in the least-significant block of the
notification as shown in Fig. 6. These tasks were imple-
mented with a Python daemon running on the host PC
connected to the receiver. Finally, the processed data is
sent to the cloud server.

Cloud application
The cloud application filters and analyses the received
data as necessary, subsequently stores it into a database,
and finally provides the tools and interface for data visual-
isation. The cloud service ecosystem is based on Python,
a major language for data analysis [32]. This allows

the development of robust and reliable event detection
and personalised diagnostics algorithms. At the core of
the ecosystem is Django framework, which is a high-
level model-view-template (MVT) framework designed
for rapid web development that offers high scalabil-
ity and security [33]. The cloud server environment is
shown in Fig. 7. The main motivation for choosing a

Fig. 6 The notification data payload. The extended length BLE
notification has a total length of 240 bytes. The notification is divided
into eight blocks of 30 bits each. The first six blocks each contain 20
samples for each of the ECoG channels, while the chemical block
contains 5 samples for each of the two potentiometric and two
amperometric channels. The last block holds the gain value for each
channel and a unique package identifier for connection error and loss
detection
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Fig. 7 The cloud application architecture. The architecture is based on Django framework, whereby devices requests are translated by the WGSI and
routed by URL.py to the Views.py which communicates with and controlsModels.py and template.py.Models.py is responsible for interactions with
the database where the ECoG, amperometric and potentiomteric recordings are stored. While template.py generates and returns the application
visuals to the user’s device. The web application can run on different device sizes and platforms

web-based implementation for the software is to ensure
cross-platform compatibility.
The web server gateway interface (WSGI) is the gate-

way between browser/client request and the cloud server
response. URL requests are redirected to the controller
(Views.py) through the URL.py script. Views.py is the
core system controller, which takes the URL requests
from the user and redirects the user to the correct tem-
plate page. Additionally, it controls the receiving of data
from the database (through Model.py) and parsing it
into the appropriate format to be sent to the template
when ready. The template is what appears on the internet
browser of the device, as shown in Fig. 7. The template
was programmed to render a real-time (refresh rate of 1
second) data animation and visualisation of each chan-
nel. Our template also offers users the ability to control
how many samples (or the time window) are shown on
the screen as well as allowing scrolling to past values.
JavaScript (Chart.js library) has been used to develop the
template.

The Model.py script implements Django’s object-
relational mapping (ORM), it translates Python codes to
database queries. For each table in the database a sepa-
rate model is defined. Through these models, data in a
database tables can be added, fetched, edited, and deleted.
In our system, a MySQL database is used with one table
made up of ten columns, each for a separate channel
on the device. When all ADC channels are sampled at 1
ksps (250 sps for each chemical signals), and if a unique
transactions is executed for storing each sample, there
will be a 7,000 database transactions per second. Han-
dling such number of transactions increases the server
hardware requirements and price. However, since the data
does not arrive at uniform intervals, because a coarse-
grain approach is used in the transmitter; it is better to
handle the database transactions in coarse-grained fash-
ion as well: data is buffered, bundled and inserted to
the database using one bulk transaction instead of sep-
arate transactions for each sampling, reducing the total
overhead and execution time.
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Results
In this section, the performance of the system is exam-
ined in two ways: Firstly, the functionality of the different
blocks on the instrument are tested in isolation. Secondly,
the complete system stack, inclusive of the instrument and
cloud application, is tested by measuring neuroelectrical
(ECoG/SD) and neurochemical signals (glucose, lactate,
potassium).

Block-Level performance
Voltagemeasurements
The ECoG AFE has been tested with a 10 Hz, 2 mVpp
input signal while first setting the gain to × 300, and then
to × 500. The input signal was produced with a function
generator (GW Instek AFG-2125). The signals at the AFE
output, shown in Fig. 8 for both gain values, were recorded
using a PowerLab data acquisition (DAQ) device. The
potentiometric AFE has a similar design to the ECoGAFE,
the only difference being the gain value set by the PGA.

Currentmeasurements
To run amperometry measurements, the potentiostat
must be able to generate an accurate range of voltage
values to apply to the working electrode to run the reac-
tion. This was verified by programming the potentiostat
to produce a ramp function starting from 1.65 V down to
-1.65 V. The output was acquired with a PowerLab DAQ
and plotted as shown in Fig. 9a. Next, to further prove
the flexibility of potentiostat its robustness in generat-
ing waveforms, cyclic voltammery was run in a 30 μM
ferro-ferricyanide solution using a carbon electrode (WE),
Ag|AgCl electrode (RE) and Pt wire (CE). The resultant
measurement after conversion from current to voltage
and amplification by the amperometric AFE is shown in
Fig. 9b.

Fig. 8 Testing the ECoG AFE. The ECoG AFE response to a 10 Hz, 2
mVpp input signal when the gain is set to × 300 and × 500

To examine the resolution of the current-to-voltage (I-
V) stage, an ultra-low-noise precision current generator
was used (Keithley6221) to produce a staircase sweep
from -0.1 nA to +0.1 nA with a 5 pA step. Figure 10a
reports the I-V measurement, which shows that the I-V
stagemaintains the 5pA steps accurately after trainsampli-
fication with 100 mV/nA gain. In addition, the PGA stage
gain was set to × 50, and the 5 pA steps were observed
at the output of the PGA after the additional amplifi-
cation, as shown in Fig. 10b. The result confirms that
the AFE can accurately measure low-frequency currents
with amplitudes as small as a few pA with little noise
introduced.

Multiplexing and reconstruction
As previously explained, the integrated multiplexer block
plays an important role towards the instrument minia-
turisation, power consumption reduction and perfor-
mance optimisation by combining all the slow vary-
ing chemical signals into one channel. This was exam-
ined by setting two channels at 3.3 V and the other
two channels to 0 V, then the output at the PGA117
was recorded using a PowerLab DAQ as illustrated by
the grey trace in Fig. 11. On the server side, The
channels were algorithmically decomposed into their
correct time slots accurately. Each separated channel
output is colour-coded and overlaid on the grey trace in
Fig. 11.

Wireless BLE communication
To assess the BLE wireless channel performance, through-
put and loss have been calculated for several sampling
rates ranging from a few hundred to a few thousand hertz.
Measurements took place with the receiver placed one
metre away from instrument. Two sets of measurements
were taken: with UART at 115200 baud rate and with-
out UART. When UART was used to connect the receiver
with a PC running the Python daemon, a maximum of 385
sps/channel was achieved as shown in Fig. 12a. Using 400
sps/channel led to connection failure due to the receiver’s
processor running out of resources to successfully receive
the data from the instrument and send it with UART to
the cloud-connected PC. Without using UART, the setup
achieved a maximum throughput of 1.25 ksps/channel
as depicted in Fig. 12a. At around 1.43 ksps/channel the
connection became lossy as the transmitter was running
out of resources this time. This is clearly illustrated in
Fig. 12b where for 1.43 ksps/channel a significant num-
ber of packages are lost; for 400 sps/channel (UART)
the connection drops; and for 1.25 ksps/channel and
385 sps/channel (UART) the connection is stable. It is
concluded that UART introduces a bottleneck reduc-
ing the maximum throughput from 1.25 ksps/channel to
385 sps/channel.
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Fig. 9 Testing the potentiostat and running cyclic voltammetry. aThe potentiostat-generated voltage sweep starting from 1.65 V down to -1.65 V,
the voltage is measured on the working electrode (WE) with respect to the reference electrode (RE). b Cyclic voltammery output curve for a 30 μM
ferro-ferricyanide solution. The potentiostat is periodically swept between 0.6 V and -0.2 V with a scan rate of 80 mV/s

System-Level performance
Biopotential measurements
ECoG recording from a patient experiencing SDs was
played back using an arbitrary waveform generator (Agi-
lent 33220A) and a 20 dB attenuator. The generated

signal, depicted in Fig. 13a, matched the magnitude of
the original clinical recording. The signal’s trend clearly
shows the suppression of the low-frequency cortical activ-
ities at around 3 mins, which is indicative of the occur-
rence of SDs. The system assessment criterion is that the

Fig. 10 Resolution of the amperometric AFE. A low-noise source-generated current staircase sweep (-50 pA to +50 pA with steps of 5 pA) was fed to
the amperometric AFE. The voltage measured is shown at: a The I-V stage output. b The output of the programmable gain amplifier (PGA) with the
gain set to × 50
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Fig. 11Multiplexing and reconstruction of the neurochemical inputs.
The operation of the PGA’s integrated multiplexer and the
decomposition algorithm: The PGA’s multiplexer combines the four
chemical channels into one output line, shown as the grey trace. The
decomposition algorithm reconstructs the original inputs back into
their correct time slots, this is illustrated with the coloured traces

amplification, filtering, transmission and reconstruction
of the ECoG AFE must have an accuracy high enough to
preserve the suppression trend.
With the ECoG AFE gain set to × 300 and the sampling

rate to 250 sps/channel, the ECoG signal was measured at
the output of the AFE (Fig. 13b), and at the server (cloud)
side after transmission and digitisation (Fig. 13c). Finally,
the reconstructed signal is shown and compared with the
original raw ECoG in Fig. 13d. Clearly, the system still
preserves the profile necessary to identify the SD. Signal-
to-noise ratio (SNR) was calculated, using equation 1, to
quantify the noise/difference between the raw and server
ECoG signals:

SNR = 20 log
[Vsignal

Vnoise

]
(1)

The noise is plotted in Fig. 13e and the SNR is found to
be 29.07 dB. Additionally, the digitisation and transmis-
sion noise factor (NF), equal to 0.26 dB, was calculated by
subtracting the SNR at the server (29.07 dB) from the SNR
after amplification (29.33 dB).

Chemical biomarkersmeasurements
To examine the performance of the system with chemical
potentiometric measurements, five concentrations from
2.7 mM to 30 mM of potassium in artificial cerebrospinal
fluid (aCSF) were pumped through a PDMS microfluidic
chip. A potassium ion selective electrode (ISE) was placed
in the chip and connected to the board. The potentiomet-
ric AFE gain was at × 1, the PGA gain was set to × 10
and the sampling rate to 62.5 sps/channel. The digital
data was exported from the cloud server after transmis-
sion, it was then re-converted to analog voltage values

and filtered with a 10 Hz cut-off, 17th-order Chebyshev II
low-pass filter. Since the output voltage and concentration
show a logarithmic correlation, logarithmic regression
was used to construct the working curve as shown in
Fig. 14. The line has an R2 value of 0.918% and a slope of
59.5 mV/decade. Noticeably, the deviation at low potas-
sium concentration is due to interference from competing
sodium ions in solution.
Furthermore, simultaneous amperometric measure-

ments of glucose and lactate were carried out to charac-
terise and verify the system performance. An autocalibra-
tion board consisting of LabSmith programmable syringe
pumps and valves [34] was used to generate steps of dif-
ferent concentrations from 0 to 1 mM with steps of 0.25
mM for both biomarkers. The potentiostat was used to set
the potential at the WE to +0.7V above the RE. The sam-
pling rate was kept at 62.5 sps/channel, and the PGA gain
was set to × 5. The biosensors were placed in a 3D printed
microfluidic chip and connected to the instrument via
three electrodes (WE, RE, CE) [35, 36].
To measure glucose, a biosensor made of an enzyme-

coated (glucose oxidase - GOx) 50 μm Pt WE, a Ag|AgCl
50 μm RE and a 27 gauge needle as the CE, was used
[35, 36]. The measured results, reported in Fig. 15a, were
extracted from the cloud server and filtered with the same
digital filter used for processing the potassium measure-
ments. Using linear regression the glucose working curve
was generated as in Fig. 15b with an R2 of 0.998 and LOD
of 0.85 μM. Similarly, lactate was measured with a lactate
oxidase (LOx) 50 μm Pt WE [35–37]. The extracted lac-
tate data is presented in Fig. 15c and the lactate working
curve was generated with an R2 of 0.995 and LOD of 1.3
μM as illustrated in Fig. 15d.

Discussion
This technology represents a major step forward in mon-
itoring TBI patients both for scientific research and to
guide patient care. In order to understand the complexity
of damage caused by TBI it is critical to be able to follow
patients through their entire clinical journey. However,
our current bedside instrument is only suitable for mon-
itoring patients during the time in which they are placed
in a drug-induced coma to lessen the metabolic burden
on the injured brain. Migrating to wireless instrumenta-
tion as described here would allow baseline monitoring
to be established early in the patient’s clinical journey,
in contrast to current protocol in which monitoring only
begins once the patient is set up in the ITU (up to 4-5
h after hospital admission). This would provide informa-
tion about the evolution of the injury in this critical time
period. Moreover, current protocol requires that moni-
toring be stopped as soon as sedation is lifted as patients
are often disorientated and confused due to a combina-
tion of prolonged sedation and their injury; as the current
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Fig. 12 Characterisations of wirless link quality and sampling rate. a Different throughput values for sampling rates of 1.43 ksps/channel without
UART, 1.25 ksps/channel without UART, 400 sps/channel with UART and 385 sps/channel with UART. Measurements were taken for a total of seven
channels during a period of 20 minutes. b Connection quality is measured as the number of packages lost for the different sampling rates. When
using UART the connection is stable for 385 sps/channel but fails for 400 sps/channel and higher; Otherwise the connection is stable for 1.25
ksps/channel but starts becoming lossy at 1.43 ksps/channel

monitoring setup requires wires and tubing to reach the
bedside instrument, this makes suchmonitoring impracti-
cal for awake patients. The portable instrumentation pre-
sented here would solve this issue and allow TBI patients
to be monitored even when awake and still at risk of
spreading depolarisations.
There is a growing consensus that continuous

multimodal monitoring is critical for TBI patients
[10, 38–40]. Brain neurochemical signals are subtle and
complex and as such high-quality time-aligned clinical
data are needed to identify changes, particularly in a high-
noise clinical environment. This would allow clinicians to
control and optimise patient treatment and rehabilitation
on an individual basis. The high-performance instru-
mentation presented here is a significant step towards
achieving these goals.
The device complies with the IEC 60601 standard. It

is battery operated and does not provide a direct line

between the patient and the mains electricity. In addi-
tion, the chemical sensors are not implanted directly in
the brain tissue, instead a clinically-approved microdial-
ysis probe samples the brain fluid into the microfluidic
chip where the sensors are placed via a length of fine bore
tubing. With regards to data security and patient privacy,
all data collected is anonymised at source as per GDPR
guidelines.

Limitations
Several limitations to the instrument presented in this
study need to be considered; the instrument is only suit-
able for the measurement of low frequency ECoG signals
in the range of ≤ 30 Hz. Moreover, all filters in the instru-
ments are first order, hence, additional digital filters are
required at the server side for sufficient noise cancellation.
Also, as pointed out in the results section, the receiver

design is a limiting factor with regards to the sampling
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Fig. 13 ECoG signals from measurement to cloud. a Raw ECoG signal recorded from a patient experiencing spreading depolarisation (SDs) and
played back to scale with a function generator and an 20 dB attenuator b The ECoG signal after amplification measured at the output of the ECoG
AFE c The digitised signal at the cloud server measured after analog-to-digital conversion and wireless transmission. d The reconstructed ECoG
signal in the cloud and the scaled raw ECoG signal e The noise introduced from interference, amplification, filtering, analog-to-digital conversion
and wireless transmission

rate and data throughput. Using UART requires signifi-
cant resources from the CC2650, which can lead to the
BLE connection with the mico-instrument being compro-
mised. However, this can be rectified either by replacing
the CC2650 in the receiver with a more powerful con-
troller, or by using a different protocol such as a parallel
bus. However, both of these solutions would increase the
complexity and cost of the receiver. Nevertheless, for as far
as TBI is concerned, the current receiver design supports
sufficient sampling rates, i.e. 385 sps/channel.
Finally, some potassium ISEs had a voltage offset that

varies from one batch to another. The offset which can
reach up to 200 mV can lead to the input exceeding
the designed input range of the AFE. To address this, a

digital-to-analog converter (DAC) might be incorporated
in the potentiometric AFE to cancel out the offset by
dynamically adjusting the RE potential.

Future work
Presently, sensor calibration is carried out using an
independent remote calibration setup. However, as our
micro-instrument is able to generate different waveforms,
run cyclic voltammetry and calculate working curves,
it could be used to carry out and control calibrations.
This feature would result in better utilisation of hard-
ware and a reduction in the system complexity by enabling
an all-in-one solution. Further work is required to
establish this.
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Fig. 14 Potassium measurements. The generated logarithmic
working curve for potassium measurements of concentrations
between 2.7 mM to 30 mM in a physiological buffer. The curve shows
an R2 of 0.918. n= 2000 samples for each concentration point. Error
bars show mean and standard deviation

In future investigations, it might be possible to exploit
the cloud infrastructure described in this article for the
development and testing of data mining and machine
learning algorithms targeted for SD event detection, diag-
nostics and condition risk assessment, prognosis of TBI-
related complications, rehabilitation and personalised
medicine. The same instrument is fit for use in rapid
hormonal testing (such as cortisol), which is important
for athletes and patients with hormonal disorders. Other
possible applications are the monitoring of stroke and
epilepsy.
On a final note, the combination of the flexible PCB

presented in this account and the microfluidic device pre-
sented in [36] leads to the realisation of the complete
system as shown in Fig. 1. Before an early feasibility
clinical trial could be initiated, more work is needed to
integrate all hardware components into a single wear-
able device package and to acquire the necessary ethical
approval.

Fig. 15 Glucose and lactate measurements. a Glucose measurements for a 5-point calibration from 0 to 1 mM with steps of 0.25 mM in a
physiological buffer (T1), the total transimpedance gain is set to 5 × 100 mV/nA. b The generated working curve for glucose has an R2 of 0.998 and
an LOD of 0.85 μM. n= 2000 samples for each concentration point. Error bars show mean and standard deviation c Similar lactate measurements
with concentrations from 0 to 1 mM and a total gain of 5 × 100 mV/nA d The generated working curve for lactate shows an R2 of 0.995 and an LOD
of 1.3 μM. n= 2000 samples for each concentration point. Error bars show mean and standard deviation
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Conclusion
This project was undertaken to design a system for wire-
less real-time monitoring of TBI patients. It trades off
a degree of performance for reduced cost and size. The
paper describes the system’s hardware and evaluates its
performance in measuring biopotentials and neurochem-
ical biomarkers. It also proposes a cloud server infrastruc-
ture for data storage and visualisation.
The mico-instrument ECoG AFE has been confirmed

to support two gain values × 300 and × 500, and to
accurately measure clinical ECoG recordings with a
rich quality of features. By comparing the raw record-
ing with the acquired ECoG signal at the server after
amplification, digitisation and transmission, it was val-
idated that the instrument has high accuracy. This
enables the detection of the suppression of low-frequency
brain activity associated with SDs. Furthermore, the
noise induced by the instrument was analysed and esti-
mated by calculating the SNR (29.07 dB) and the NF
(0.26 dB).
With regard to chemical measurements, the ability of

the device to support several electrochemical techniques,
including potentiometry, amperometry and cyclic voltam-
metry, has been proven. The amperometric AFE section
of the board was rigorously tested with low-noise bipolar
currents establishing its high resolution of less than 5 pA.
It was also verified that by exploiting the slow dynamics of
the chemical biomarkers, it is possible to allocate only one
ADC channel for all the chemical channels by means of an
integrated multiplexer and programmable gain amplifier
stage. Using such an approach led to cost and size bene-
fits. Additionally, the same PGA stage can be programmed
with several gains from × 1 up to × 200 to measure vari-
ous chemical biomarkers with different sensitivity ranges.
Finally, both the potentiometric and amperometric AFEs
were used to measure biologically relevant concentra-
tions of potassium, glucose and lactate with the use of
micofluidic chips and biosensors.
The study went on to analyse the capabilities and lim-

itations of the BLE protocol and identified UART as the
communication bottleneck capping the sampling rate at
385 sps/channel. However, the system can achieve 1.25
ksps/channel if other protocols or an alternative processor
were used in the receiver.
In conclusion, we presented a complete system tailored

to TBI neuroelectrochemical monitoring, that provides
aggressive cost and size advantages without compromis-
ing measurement accuracy. For future studies, we see the
instrumentation expanded to monitoring of other con-
ditions such as stroke and hormonal disorders, and the
cloud server functionalities extended for cortical event
detection, diagnosis and personalised medicine appli-
cations through the exploitation of machine learning
techniques.
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