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Assessment of Parkinsonian gait in older
adults with dementia via human pose
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Abstract

Background: Parkinsonism is common in people with dementia, and is associated with neurodegenerative and
vascular changes in the brain, or with exposure to antipsychotic or other dopamine antagonist medications. The
detection of parkinsonian changes to gait may provide an opportunity to intervene and address reversible causes.
In this study, we investigate the use of a vision-based system as an unobtrusive means to assess severity of
parkinsonism in gait.

Methods: Videos of walking bouts of natural gait were collected in a specialized dementia unit using a Microsoft
Kinect sensor and onboard color camera, and were processed to extract sixteen 3D and eight 2D gait features.
Univariate regression to gait quality, as rated on the Unified Parkinson’s Disease Rating Scale (UPDRS) and Simpson-
Angus Scale (SAS), was used to identify gait features significantly correlated to these clinical scores for inclusion in
multivariate models. Multivariate ordinal logistic regression was subsequently performed and the relative
contribution of each gait feature for regression to UPDRS-gait and SAS-gait scores was assessed.

Results: Four hundred one walking bouts from 14 older adults with dementia were included in the analysis.
Multivariate ordinal logistic regression models incorporating selected 2D or 3D gait features attained similar accuracies:
the UPDRS-gait regression models achieved accuracies of 61.4 and 62.1% for 2D and 3D features, respectively. Similarly,
the SAS-gait models achieved accuracies of 47.4 and 48.5% with 2D or 3D gait features, respectively.

Conclusions: Gait features extracted from both 2D and 3D videos are correlated to UPDRS-gait and SAS-gait scores of
parkinsonism severity in gait. Vision-based systems have the potential to be used as tools for longitudinal monitoring
of parkinsonism in residential settings.
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Background
Older adults with dementia are more likely to develop
gait disorders than those without dementia, including
the development of parkinsonism [1]. While some of this
parkinsonism is associated with neurodegenerative and
vascular changes related to the disease, individuals with
dementia are also at risk of being prescribed antipsychotic
medication and of developing antipsychotic induced
parkinsonism (AIP) [2]. The incidence rate of AIP in older
adults with dementia has been estimated to be between
30% to over 60% when treated with conventional antipsy-
chotics [2], while high doses of atypical antipsychotics are
also associated with similar levels of AIP in older adults
with dementia [3]. Deterioration of mobility function is
often associated with parkinsonism and can make tasks of
daily living more challenging, reducing the independence
of affected individuals and increasing the risk of falls and
fall-related injuries. However, AIP is reversible with anti-
psychotic discontinuation, and thus early detection of AIP
may help to prevent excess disability.
Currently, parkinsonism in gait is assessed using the gait

criterion of the Unified Parkinson’s Disease Rating Scale
(UPDRS), and when it is medication-induced, by the gait
criterion of the Simpson-Angus Scale (SAS) [4, 5]. How-
ever, these assessments require skilled clinicians and are
performed infrequently in care settings for people with
dementia, thus changes in gait such as those that are
adverse effects of antipsychotic medication may be missed.
Therefore, there is an opportunity to develop a technology
capable of objectively monitoring for parkinsonism in gait
in dementia residential care environments.
Previous work on quantifying parkinsonism in gait has

focused on patients with Parkinson’s disease (PD) and
has not included individuals with dementia who exhibit
parkinsonian gait. Studies on quantitative gait analysis in
patients with PD have primarily relied on wearable
sensors for data collection [6, 7]. However, wearables
require physical contact with the patient and suffer from
significant challenges with patient adherence in non-clinical
settings [8]. Additionally, because locomotion requires coor-
dinated movement of the entire body, multiple sensors are
often required to accurately quantify gait features [9]. In con-
trast, computer vision systems are well-suited for assessment
of gait in non-clinical environments as they can be used to
monitor movement of the entire body unobtrusively.
Previous studies have used 3D joint locations ob-

tained from Microsoft Kinect sensors to analyze gait of
individuals with PD [10–13]. These studies have
primarily focused on distinguishing between gait of PD
patients and healthy individuals [10], as well as between
those who experience freezing of gait and those who do
not [11]. A previous study has also successfully used
two Kinect sensors positioned in a hallway to distin-
guish between three stages of PD, ranging from no axial

impairment to advanced PD with severe gait distur-
bances [13].
However, this previous work relies on the Kinect, whose

depth sensor can only track individuals at a distance
between 0.5m to 4.5 m, and experiences discontinuities in
predicted joint position when a joint is occluded from
view of the sensor [14, 15].
Studies using standard video for detection of parkinsonian

gait have focused on creating binary masks of the participant
through background subtraction [16, 17]. While these ap-
proaches are suitable for controlled environments in which
there is only one participant and there is visible separation
between the participant and background, these techniques
would be difficult to deploy in non-clinical setting. Further-
more, the aim of these studies was to identify impairments
and presence of Parkinson’s disease rather than distinguish-
ing between varying severities of parkinsonism.
Recent advances in pose tracking algorithms that use

deep learning methods have facilitated extraction of joint
positions from videos recorded using consumer-grade color
cameras [18]. Because these algorithms do not rely on
depth data, they are able to predict joint locations over a
greater distance, providing opportunity to record more
steps of walking. Furthermore, discontinuities in joint coor-
dinates are less frequent as positions of obscured body parts
are well inferred by the underlying machine learning model.
Joint coordinates extracted through pose tracking on stand-
ard videos have already been used successfully in applica-
tions of human action recognition [19]. In the field of
Parkinson’s disease research, these algorithms have been
used in the quantification of dyskinesias [20, 21]; however
scoring the severity of parkinsonian gait on clinical scales
has not yet been explored using pose-tracking in video.
The aim of this study is to evaluate whether vision-

based systems can be used to identify gait features asso-
ciated with the severity of parkinsonism in people with
dementia, as rated on the UPDRS-gait and SAS-gait
scales. It is hypothesized that both 2D and 3D gait
features capture clinically relevant aspects of gait and
are thus both correlated with parkinsonism severity in
gait, rated on the UPDRS-gait and SAS-gait scales.

Methods
Data collection
The data used for this investigation was collected as part
of a larger prospective observational study conducted at
a specialized dementia unit [22]. All patients in the unit
had a diagnosis of dementia. Patients capable of inde-
pendent ambulation over a distance of 20 m were
recruited for the study. Consent was obtained from sub-
stitute decision makers for all participants. Data collec-
tion activities were only performed if the participant also
provided assent. The Research Ethics Board of the insti-
tute approved the study protocol.
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The data collection system consisted of a Microsoft
Kinect for Windows v2 sensor ceiling-mounted in a
hallway of the dementia unit. The Kinect was used to
simultaneously record standard color video, as well as
3D skeletons using additional data from the onboard
depth sensor. A Radio Frequency Identification (RFID)
system was used to protect the privacy of non-participating
individuals by only collecting data when study participants
entered the field of view of the Kinect [23]. The Kinect sys-
tem was activated when radio-frequency antennae located
on the walls of the hallway detected RFID tags attached to
the inside of the participants’ pants as they began walking
down the hallway. Once triggered, the Kinect recorded 30 s
of video of the participant walking down the hallway,
towards the camera. A schematic of the data collection
system is depicted in Fig. 1. The Kinect records color video
at a resolution of 1920 by 1080 pixels at a frequency of 30
Hz and provides the coordinates of 25 body joints in 3D
space [14] . Clinical assessment of study participants were
also completed as described in [22].

Annotation of walks
A set of 14 participants from the larger study were
purposively selected for inclusion in this study, such that
the sample included a range of parkinsonian gait charac-
teristics. Data was collected over the course of several
weeks for each participant who were undergoing
changes in treatment with antipsychotic medication; so
it was possible for the person’s gait to change from one
recording to another. When multiple walking bouts of a
participant were captured by the data collection system
on a single day, one of the walking bouts for that day
was randomly selected. This was done to incorporate
longitudinal data collected over the course of several
weeks, while also avoiding biasing the dataset with many
walks collected on the same day, as walks collected in
close succession are postulated to be of similar quality,
and therefore have the same clinical scores.
Each selected walking bout was scored on the gait

criterion of the UPDRS and SAS scales by an expert
annotator. Both the UPDRS and SAS use an integer

Fig. 1 Schematic of data collection equipment in hallway of dementia inpatient unit of a hospital. The Microsoft Kinect (a) begins recording
when the RFID tags on the participants’ pants (b) are detected by the radio-frequency antennae in the walls (c)
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scale from 0 to 4 to evaluate gait, where a higher score
indicates the presence of gait characteristics consistent
with more severe parkinsonism.

Calculation of gait parameters
Gait parameters were computed from the recorded gait
sequences in two ways: using the 3D joint coordinates
extracted using the Kinect software development kit
(SDK), and by directly processing the recorded color
videos via the OpenPose library to obtain 2D joint
(pixel) coordinates [24].
Gait parameters computed from the 3D joint coordi-

nates include spatiotemporal, variability, symmetry, and
mechanical stability measures of gait. A complete list of
the 3D features investigated in this study is presented in
Table 3. A detailed methodology of how these were
computed and validated is presented in previous work
[22, 23, 25, 26].
Furthermore, gait parameters were also calculated

directly from the videos recorded using the color camera
of the Kinect. The first step of this process involved
extracting 2D keypoints corresponding to the joint
locations of the individuals in the scene. A TensorFlow
implementation of the OpenPose library, pretrained on
the MPII dataset was used for keypoint extraction [24].
Joint coordinates were extracted in this manner for each
frame of the video, allowing the trajectory of movement
to be tracked during the walking bout. These 2D key-
points were then used to compute gait parameters such
as cadence, average and minimum margin of stability
(MOS) per step, average step width, coefficient of vari-
ation (CV) of step width and time, the symmetry index
(SI) of the step times, as well as the number of steps in
the walking bout [27].
To calculate these gait features, the steps in each walk-

ing bout were first identified. This was done by differen-
tiating the vertical position of the ankle keypoints with
respect to time, and as proposed in [28], denoting foot
strikes when this velocity signal passed 35% of the peak
value for each cycle. After identifying foot strikes, each
step of the walking bout could be isolated allowing the
cadence, average step width, CV of step width and step
time, SI of step times, and the number of steps in the
bout to be calculated. To compute the average and mini-
mum and average MOS per step, the extrapolated centre
of mass was first estimated by incorporating a normal-
ized measure of velocity to the centre of the left and
right hip keypoints. The difference between the extrapo-
lated centre of mass and the ankle of the stance foot was
calculated for each frame. The average and minimum
MOS gait features were then estimated by averaging the
magnitude of all differences, or only the minimum dif-
ference per step, respectively. A detailed description of

the calculation of 2D gait features is presented in [27,
29].
Note that for the 2D feature set, it is not possible to

compute gait features that rely on distance measures in
the depth (anterior-posterior) direction (such as step
length or velocity) using the video stream. However, to
normalize for the distance of the participant with respect
to the camera over the course of a walking bout, all hori-
zontal and vertical distances (in pixels) computed using
the 2D keypoints were divided by the distance between
the left and right hip keypoints in that frame.
Overall, 16 gait parameters were computed from the

3D joint keypoints, and 8 gait parameters were com-
puted from the 2D joint keypoints.

Statistical analysis
During preliminary analysis, univariate ordinal logistic
regression was performed between each gait parameter
and the dependent variable (UPDRS-gait or SAS-gait
score). The threshold for statistical significance was set
at p < 0.05. The goal of this univariate analysis was to
select gait parameters to include in the subsequent
multivariate regression model. Thus, Bonferroni correc-
tion was not applied to avoid prematurely discarding gait
features that were truly correlated with the dependent
variables.
A multivariate analysis was then performed to evaluate

the relative importance of the gait features selected in
the univariate analysis for regression to UPDRS-gait and
SAS-gait scores. The multivariate models contained the
demographic features of age and sex, as well as all gait
features that were identified as being significantly corre-
lated to the dependent variable in the univariate analysis.
To avoid including gait features that are strongly corre-
lated with each other, Pearson correlation coefficients, r,
between all gait features were computed. When the
magnitude of the correlation coefficient was greater than
0.5, only the gait feature with the larger magnitude
correlation to the dependent variable was retained for
inclusion in the multivariate model. Therefore, the final
multivariate model included the demographic features of
age and sex, as well as all of the gait parameters that
were significantly correlated with the dependent variable
(either UPDRS-gait or SAS-gait score), but not strongly
correlated with each other. This statistical analysis was
repeated twice, analyzing the set of gait features com-
puted from the 2D and 3D joint locations separately.

Results
A total of 401 walking bouts from 14 participants (8 male,
mean age 76.2 ± 8.7 years) were analyzed. Table 1 presents
the clinical characteristics of the participants.
All 401 bouts had associated Kinect data, however

color video was only available for 364 bouts. In 19 bouts,
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the participant could not be tracked by the OpenPose
algorithm, and 96 walks were too short (less than 3
tracked steps), leaving 249 bouts for which 2D gait
features were computed, and 398 bouts for which 3D
gait features could be calculated. The walks for which
2D gait features were calculated are a subset of the walks
for which 3D gait features were computed. However, the
mean number of steps per walk captured by the 2D
features was 6.9, whereas the 3D gait features captured
5.8 steps per walk. Table 2 presents the distribution of
walks for UPDRS-gait and SAS-gait scores for the 2D
and 3D gait feature datasets. A breakdown of the distri-
bution of scores and walks for each participant is
included in Table A and Table B in Additional file 1.

Univariate analysis
Table 3 presents the regression coefficients and p-values
for univariate regression to UPDRS-gait and SAS-gait
scores using 2D and 3D gait features, respectively.
The 2D gait features that were significantly correlated

to UPDRS-gait score were the number of steps in the
walking bout, cadence, and the symmetry index and
coefficient of variation of step time. The 2D gait features
correlated to SAS-gait were the same as those for
UPDRS-gait, with the addition of the average margin of
stability (MOS). The 3D gait features that were correlated
to UPDRS-gait were: walking speed, symmetry of step
width and length, root mean square (RMS) of medio-
lateral velocity of the sacrum, average MOS, and step
width. The same 3D gait features were correlated with
SAS-gait scores, with the addition of step time symmetry.

Multivariate analysis
Table 4 presents the regression coefficients and intercepts
of the ordinal logistic regression models to UPDRS-gait
and SAS-gait after including the 2D gait features selected
through the univariate analysis. The smaller the p-value
for a particular gait feature, the higher the probability that
including that gait feature significantly improved the
regression model to the clinical variable. When considered
individually, no gait features significantly (p < 0.05) im-
proved regression to UPDRS-gait score. Conversely, for
the regression model to SAS-gait, the cadence, coefficient
of variation (CV) of step time, and average MOS all
significantly improved the model (p < 0.05) when consid-
ered individually.
A similar multivariate regression model was developed

for using the 3D gait features selected during the univariate
analysis. Table 5 presents the coefficients and intercepts of
the ordinal logistic regression models to UPDRS-gait and
SAS-gait with the inclusion of the selected 3D gait features.
For both regression models using 3D features, the walking
speed, and the step width and length symmetry angles
significantly improved regression to UPDRS-gait and SAS-
gait when considered individually. Additionally, the RMS
of medio-lateral velocity of the sacrum also significantly
improved regression to UPDRS-gait, whereas the step
width and step time symmetry angle significantly improved
the SAS-gait model with 3D features.
Figure 2 presents the confusion matrices for the final

multivariate regression models to UPDRS-gait and SAS-
gait using 2D and 3D gait features.
The accuracy of the multivariate regression models by

participant is presented in Table 6.

Discussion
By analyzing natural walking bouts collected from 14
patients over the course of several weeks, this study has
identified the gait features that are significantly associated

Table 1 Clinical characteristics of study participants

Study
Participants
(n = 14)
Mean ± SD

Age 76.2 ± 8.7

Sex (% male) 57.1

Number of Walks 28.6 ± 11.8

Total Severe Impairment Battery (SIB) Score 27.9 ± 13.1

Total Neuropsychiatric Inventory (NPI) Score 46.3 ± 19.5

Total Katz Index of Independence in Activities
of Daily Living Score

2.3 ± 1.3

Total Tinetti POMA Balance Score 9.9 ± 3.1

Total Tinetti POMA Gait Score 8.4 ± 2.8

Antipsychotic
Medication Use

Study Participants Prescribed
Medication (n = 14)

Daily Dose
(mg)
Mean ± SD

Risperidone 3 (21.4%) 0.5 ± 0.4

Quetiapine 11 (78.6%) 64.2 ± 61.8

Clozapine 2 (14.3%) 32.4 ± 7.2

Loxapine 5 (35.7%) 5.5 ± 1.1

Olanzapine 2 (14.3%) 1.9 ± 0.9

Nozinan 2 (14.3%) 12.8 ± 3.8

Table 2 Distribution of UPDRS-gait and SAS-gait scores for
participants’ walks

Number of walks

2D gait feature dataset 3D gait feature dataset

UPDRS-gait SAS-gait UPDRS-gait SAS-gait

Score 0 41 42 90 77

1 76 76 129 136

2 132 91 179 136

3 0 40 0 49

Total 249 249 398 398
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Table 3 Regression coefficients and p-values for univariate regression to UPDRS-gait and SAS-gait scores with 2D and 3D gait
features

UPDRS-gait SAS-gait

Regression Coefficient p-value Regression Coefficient p-value

2D Features steps of walk 0.14 < 0.001** 0.086 0.0039**

cadence (steps/min) 0.021 0.0024** 0.023 < 0.001**

symmetry index (SI) of step time −0.011 0.0035** − 0.0090 0.0093**

coefficient of variation (CV) of step time −1.0 0.039* −1.2 0.015*

average step width −0.77 0.19 0.0035 0.99

average margin of stability (MOS) 1.0 0.21 2.2 0.0047**

average minimum MOS 1.4 0.22 2.8 0.010*

CV step width −0.27 0.23 −0.21 0.40

3D Features walking speed (m/s) −7.5 < 0.001** −6.0 < 0.001**

step length (m) −10. < 0.001** −8.3 < 0.001**

step width symmetry angle (degrees) −0.075 < 0.001** − 0.073 < 0.001**

root mean square (RMS) of sacrum
medio-lateral (ML) velocity

−5.0 < 0.001** −3.3 0.015*

step length symmetry angle (degrees) 0.054 < 0.001** 0.050 0.0012**

average MOS (mm) −10. 0.0013** −8.1 0.0071**

CV step width −1.5 0.0018** −1.4 0.0018**

step width (m) −4.2 0.047* −4.3 0.034*

minimum MOS (mm) −9.4 0.13 −5.3 0.38

step time symmetry angle (degrees) −0.020 0.21 −0.031 0.045*

CV step length 0.50 0.25 0.19 0.66

standard deviation (SD) sacrum ML −1.2 0.57 −3.4 0.11

cadence (steps/min) −0.0019 0.63 −0.0024 0.53

step time (s) 0.27 0.74 0.28 0.71

CV step time 0.10 0.82 −0.24 0.59

range of motion (ROM) sacrum ML 0.018 0.98 −0.52 0.36

*significant at p < 0.05, **significant at p < 0.01

Table 4 Regression coefficients, standard error, t-values, and p-values for multivariate regression models to UPDRS-gait and SAS-gait
with 2D gait features

UPDRS-gait SAS-gait

Regression
Coefficient

Std. Error t-value p-value Regression
Coefficient

Std. Error t-value p-value

Coefficients age 0.11 0.018 6.0 < 0.001** 0.071 0.016 4.4 < 0.001**

sex (male) 1.7 0.29 5.8 < 0.001** 2.2 0.29 7.6 < 0.001**

steps of walk 0.024 0.044 0.55 0.58 0.0035 0.034 0.10 0.92

cadence (steps/min) 0.0089 0.0075 1.2 0.23 0.024 0.0079 3.1 0.0019**

SI step time −0.0061 0.0047 −1.3 0.20 −0.0034 0.0044 −0.76 0.44

CV step time −1.1 0.62 −1.8 0.080 −1.6 0.62 −2.6 0.011*

average MOS N/A N/A N/A N/A 3.2 0.85 3.7 < 0.001**

Intercepts 0|1 7.4 1.3 5.8 < 0.001** 7.5 1.3 5.7 < 0.001**

1|2 9.5 1.4 7.0 < 0.001** 9.8 1.4 6.9 < 0.001**

2|3 29 1.4 22 < 0.001** 12 1.5 8.2 < 0.001**

3|4 30. 1.4 22 < 0.001** 43 1.5 29 < 0.001**

*significant at p < 0.05, **significant at p < 0.01
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with parkinsonism severity in gait of individuals with de-
mentia, as rated on the UPDRS and SAS scales. Both 2D
and 3D gait features capture clinically relevant data that
can be used to quantify the severity of parkinsonism in
natural gait, so there is an opportunity to use vision-based
systems for longitudinal assessment of parkinsonian gait
in residential care settings.
Spatiotemporal, variability, and symmetry measures of

gait extracted from 2D and 3D video data were found to
be significantly associated with UPDRS-gait and SAS-
gait clinical measures. These features are consistent with
previous studies where marker-based vision systems
were used to quantify differences in gait of healthy indi-
viduals and those with PD. In particular, decreased stride
length and gait velocity, and increased bilateral asym-
metry have been found to be significantly associated
with parkinsonian gait [30–32]. A limitation of this
previous work is that the imaging systems used rely on
multiple cameras and body-worn markers, and therefore
have limited applicability for monitoring of day-to-day
walking outside of laboratory or clinical environments
[30, 31]. Our study is the first to validate that these
changes in gait are also measurable with increasing
severity of parkinsonism in individuals with dementia.
Furthermore, while previous work has demonstrated

the feasibility of using gait features extracted using 3D
Kinect skeletons to classify parkinsonian gait into three
levels of severity [13], to the best of the authors’
knowledge, our work is the first to demonstrate that
pose-tracking algorithms on standard color video can be
used to estimate 2D gait features that similarly capture
characteristics of parkinsonism severity in gait.

The UPDRS-gait regression models incorporating 2D
or 3D gait features achieved similar average final accur-
acies (61.4% vs. 62.1% for 2D and 3D features, respect-
ively). Likewise, the SAS-gait models achieved final
accuracies of 47.4 and 48.5% with 2D or 3D gait features.
As seen in Table 6, the accuracy of the models differs
greatly for each participant. This suggests that while
there are general correlations between gait features and
parkinsonism when considering the group of all partici-
pants, there is also large variation in gait between partic-
ipants. From Table 6, it can also be observed that walks
from participants 4 and 8 represent a higher proportion
of all walks in the dataset, so the models are more influ-
enced by these participants. However, the average accur-
acy of the models when considering only participants 4
and 8; and when considering all 14 participants is similar
(within 2.5%) for all except the 2D UPDRS-gait model,
suggesting that the models are not overfitting to the two
participants with more walks. For the UPDRS-gait model
with 2D gait features, the model achieves a higher accur-
acy on participant 4 (86.4%), while the accuracy on walks
for participant 8 is 65.1%, similar to the overall model
accuracy of 61.4%.
As observed qualitatively in the confusion matrices in

Fig. 2, when there was a discrepancy between the clin-
ician annotation and the model prediction, the difference
between predicted UPDRS-gait or SAS-gait score and
the reference annotation was 1 category for the majority
of walking bouts. This is consistent with the nature of
these rating scales, whereby a continuous range of symp-
toms are discretized and scored on integer scales from 0
and 4. When clinicians make decisions about what score

Table 5 Regression coefficients, standard error, t-values, and p-values for multivariate regression models to UPDRS-gait and SAS-gait
with 3D gait features

UPDRS-gait SAS-gait

Regression
Coefficient

Std.
Error

t-value p-value Regression
Coefficient

Std.
Error

t-value p-value

Coefficients age 0.098 0.015 6.4 < 0.001** 0.068 0.014 5.0 < 0.001**

sex (male) 1.6 0.24 6.6 < 0.001** 2.2 0.24 9.0 < 0.001**

walking speed (m/s) −5.7 0.96 −5.9 < 0.001** −3.2 0.81 −3.9 < 0.001**

step width symmetry angle (degrees) −0.065 0.019 −3.4 < 0.001** −0.070 0.018 −3.9 < 0.001**

RMS sacrum ML velocity −8.9 2.0 −4.5 < 0.001** −2.6 1.9 −1.4 0.17

step length symmetry angle (degrees) 0.074 0.022 3.4 < 0.001** 0.11 0.021 5.4 < 0.001**

average MOS (mm) −7.7 5.0 −1.6 0.12 −7.4 4.4 −1.7 0.093

step width (m) −3.5 3.2 −1.1 0.27 −9.4 2.9 −3.2 0.0014**

step time symmetry angle (degrees) N/A N/A N/A N/A −0.13 0.021 −6.0 < 0.001**

Intercepts 0|1 0.65 1.5 0.42 0.68 −0.89 1.4 −0.62 0.54

1|2 3.0 1.6 1.9 0.052 1.7 1.5 1.1 0.26

2|3 49 1.6 31 < 0.001** 4.3 1.5 3.0 0.0032**

3|4 50. 1.6 32 < 0.001** 3500 1.5 2400 < 0.001**

*significant at p < 0.05, **significant at p < 0.01
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Fig. 2 Confusion matrices for regression to final multivariate regression models to UPDRS-gait (top) and SAS-gait (bottom) clinical scores using
2D (left) and 3D (right) gait features

Table 6 Final multivariate model accuracies by clinical score and feature set, per participant

Participant 2D gait features 3D gait features

UPDRS-gait accuracy SAS-gait accuracy Percent of walks UPDRS-gait accuracy SAS-gait accuracy Percent of walks

1 0.0% 0.0% 0.4% 30.8% 15.4% 3.3%

2 100.0% 50.0% 3.2% 100.0% 61.1% 4.5%

3 36.4% 45.5% 4.4% 40.9% 36.4% 5.5%

4 86.4% 45.5% 17.7% 64.0% 48.0% 12.6%

5 53.3% 66.7% 6.0% 32.1% 75.0% 7.0%

6 100.0% 76.2% 8.4% 100.0% 47.6% 5.3%

7 60.0% 48.0% 10.0% 69.2% 56.4% 9.8%

8 65.1% 41.9% 17.3% 64.8% 44.4% 13.6%

9 59.1% 27.3% 8.8% 83.3% 13.3% 7.5%

10 28.6% 57.1% 5.6% 47.6% 38.1% 5.3%

11 26.7% 46.7% 6.0% 57.7% 50.0% 6.5%

12 46.2% 53.8% 5.2% 87.1% 80.6% 7.8%

13 30.8% 23.1% 5.2% 40.0% 40.0% 6.3%

14 0.0% 50.0% 1.6% 25.0% 55.0% 5.0%

All 61.4% 47.4% 100.0% 62.1% 48.5% 100.0%
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to assign to a particular walking bout, they are usually
deciding between two adjacent scores on the scale. A
similar pattern is seen in the UPDRS-gait and SAS-gait
scores predicted by the regression models, demonstrat-
ing that while the overall fit of the models is consistent
with clinician annotations, there is some ambiguity
between adjacent scores on the scales. Similar ambiguity
between adjacent scores on the rating scales is also
present for expert annotators, with studies on the reli-
ability of the UPDRS scale reporting that the intraclass
correlation coefficient for the gait item is between 0.746
and 0.90 when assessed by multiple clinicians [33, 34].
While clinician ratings are currently the “gold standard,”
there is an opportunity, using large video datasets of
parkinsonian and normal gait, to develop deep learning
models capable of recognizing or categorizing parkin-
sonian gait, and providing objectively calculated severity
scores.
We have also demonstrated that both the Kinect

sensor and onboard color camera provide similar results,
suggesting that consumer-grade video cameras are suffi-
cient to capture clinically significant characteristics of
parkinsonian gait. Given the similar accuracy of the
models with 2D and 3D gait features, the advantage of
using 2D gait features is that they can be computed from
video collected with any standard consumer-grade
camera, whereas the 3D gait features require specialized
imaging systems with depth sensors such as the Micro-
soft Kinect. For low-cost or mobile applications, or in
instances where the individual is more than 4.5 m from
the camera, 2D gait features are better suited to quantify
severity of parkinsonism in gait. Conversely, for applica-
tions where it is possible to use larger and more
sophisticated imaging systems, 3D features may be better
suited as they can also capture spatiotemporal gait
features that rely on depth data such as step length and
walking speed.

Conclusions
In this study, we demonstrated that both 2D and 3D gait
features calculated from video are correlated to clinical
measures of parkinsonism severity in gait, as rated on
the UPDRS and SAS scales. These findings suggest that
both 2D and 3D vision systems have applications in
longitudinal monitoring of parkinsonism severity in
residential settings.
The strength of this study is that we were able to

analyze natural walking bouts of individuals with demen-
tia and compare the 2D and 3D gait features associated
with parkinsonism. Because both 2D and 3D gait
features were calculated for most walking bouts, direct
comparison between the association of 2D and 3D gait
features and clinical scores was possible. A limitation of
this study is that the regression models developed were

not well suited for prediction as they could only identify
linear relationships between the gait features and clinical
scores. Future work will extend the results obtained in
this study and focus on developing predictive models for
scoring severity of parkinsonism in gait using timeseries
data of joint coordinates, without relying on the explicit
computation of gait features. It is hypothesized that
developing machine learning models that do not rely on
handcrafted features will be able to better capture latent
structure in the underlying data and thus learn to pre-
dict UPDRS-gait and SAS-gait scores more accurately.
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gait features.
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