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Abstract

Background: In clinical practice, therapists often rely on clinical outcome measures to quantify a patient’s impairment
and function. Predicting a patient’s discharge outcome using baseline clinical information may help clinicians design
more targeted treatment strategies and better anticipate the patient’s assistive needs and discharge care plan. The
objective of this study was to develop predictive models for four standardized clinical outcome measures (Functional
Independence Measure, Ten-Meter Walk Test, Six-Minute Walk Test, Berg Balance Scale) during inpatient rehabilitation.

Methods: Fifty stroke survivors admitted to a United States inpatient rehabilitation hospital participated in this study.
Predictors chosen for the clinical discharge scores included demographics, stroke characteristics, and scores of clinical
tests at admission. We used the Pearson product-moment and Spearman’s rank correlation coefficients to calculate
correlations among clinical outcome measures and predictors, a cross-validated Lasso regression to develop predictive
equations for discharge scores of each clinical outcome measure, and a Random Forest based permutation analysis to
compare the relative importance of the predictors.

Results: The predictive equations explained 70-77% of the variance in discharge scores and resulted in a normalized
error of 13-15% for predicting the outcomes of new patients. The most important predictors were clinical test scores
at admission. Additional variables that affected the discharge score of at least one clinical outcome were time from
stroke onset to rehabilitation admission, age, sex, body mass index, race, and diagnosis of dysphasia or speech
impairment.

Conclusions: The models presented in this study could help clinicians and researchers to predict the discharge scores
of clinical outcomes for individuals enrolled in an inpatient stroke rehabilitation program that adheres to U.S. Medicare
standards.
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Background

Stroke remains one of the leading causes of disability
worldwide, with the majority of stroke survivors requir-
ing specialized rehabilitation [1]. Inpatient stroke re-
habilitation is a program of medical intervention and
targeted therapies, which aims to maximize a patient’s
functional recovery and facilitate reintegration into the
community [2, 3]. To evaluate progress, clinicians use
standardized assessment tools or clinical outcome mea-
sures such as the Functional Independence Measure [4]
(FIM) for level of disability or the Ten-Meter Walk Test
[5] (TMWT) for walking ability. Understanding the fac-
tors that affect these outcomes may help clinicians to
streamline the treatment plan and efficiently allocate
rehabilitation resources [6, 7]. Further, clinicians assess a
patient’s functional abilities based on performance in
these standardized tests, such as classifying patients as
household ambulators or limited community ambulators
based on walking speed score from the TMWT [8, 9].
Estimating a patient’s future discharge scores early in a
rehabilitation program would help clinicians set realistic
rehabilitation goals and anticipate needs for additional
care or medical equipment at discharge.

Several studies have investigated predictors of clinical
outcomes after acute inpatient stroke rehabilitation [10-
15]. Their main focus was to predict individual’s ability
to perform activities of daily living, as measured by the
FIM and the Barthel Index [16], or to predict walking
speed as measured by the TMWT [14]. These studies
found that the clinical assessment scored at discharge
could be predicted based on patient demographics such
as age [10-13, 15] and sex [11], medical information
such as the time from stroke onset to rehabilitation ad-
mission [11, 13] and the admission score of the pre-
dicted outcome [10-14]. However, there are some
notable gaps in our knowledge and understanding of
these outcomes. Specifically, previous studies have pri-
marily investigated predictors of a single clinical out-
come measure, while therapists often use multiple
standardized tests to gauge functional abilities. The
American Physical Therapy Association highly recom-
mends additional tests [6], including the Berg Balance
Scale [17] (BBS), which assesses balance outcomes and
fall risk, and the Six-Minute Walk Test [18] (SMWT),
which assesses walking endurance and aerobic capacity.
Understanding interactions among different clinical out-
comes may help identify the tests that provide unique
information about specific functional abilities compared
to tests that may be redundant or unrelated to those
abilities. Second, studies have predicted the discharge
score of a clinical outcome using admission scores from
a small subset of other clinical outcomes [14, 19]. For
example, discharge walking speed has been predicted
from admission scores of BBS and the Motor
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Assessment Scale [20]. Considering additional admission
assessments should improve predictive accuracy, while
including additional discharge assessments should pro-
vide a more comprehensive overview of a patient’s func-
tional outcomes. Finally, previous studies developed
predictive models for clinical outcomes using stepwise
methods based on the predictors’ significance level (p-
value). However, the ability of the p-value to determine
the importance of predictors and to output the optimal
set of predictors is limited, especially for small sample
sizes, small ratio of sample size to predictors, and corre-
lated predictors [21-27]. Conversely, certain machine
learning approaches aim to reduce model error by
selecting a targeted set of predictors based on relative
importance [28] and incorporate regularization mecha-
nisms to produce more accurate and generalizable pre-
dictions [29].

The objective of this study was to use machine-
learning algorithms to develop predictive models for dis-
charge scores of four standardized clinical tests (FIM,
TMWT, SMWT, BBS) after inpatient stroke rehabilita-
tion. Potential predictors included patient demographics,
stroke characteristics, and the scores of each of the four
tests at admission. We also investigated the correlations
between the clinical outcomes and the predictors, stated
the predictors’ significance level and compared their
relative importance in effecting the discharge scores.

Methods

Fifty individuals with stroke admitted to the Shirley Ryan
AbilityLab (formerly, the Rehabilitation Institute of Chi-
cago) for acute inpatient rehabilitation participated in
this study. All individuals (or a proxy) provided written
informed consent prior to participation. Inclusion cri-
teria were: diagnosis of stroke and admitted to the Shir-
ley Ryan AbilityLab; at least 18 years of age, and able
and willing to give consent and follow study procedure
directions. Exclusion criteria were: diagnosis of neurode-
generative pathology as a co-morbidity (e.g., Alzheimer’s
disease, Parkinson’s disease, etc.); pregnant or nursing;
or utilizing a powered, implanted cardiac device for
monitoring or supporting heart function (i.e., pacemaker,
defibrillator, or LVAD). Medical clearance was obtained
from each patient’s primary physician for study partici-
pation. The study was approved by the Institutional Re-
view Board of Northwestern University (Chicago, IL;
STU00205532) in accordance with federal regulations,
university policies and ethical standards regarding re-
search on human subjects.

After consent, and within the first week of admission,
a battery of clinical tests — including the TMWT,
SMWT, and BBS — was administered by a licensed phys-
ical therapist. These tests were performed in a non-
standardized order based on the availability of
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equipment and space in the therapy room. During the
inpatient rehabilitation program, patients received, on
average, 180 min of therapy per day, five to 6 days a
week. Based on the needs of the patient, this time was
divided among physical, occupational, and speech-
language therapy. This rehabilitation program follows re-
quirements of Medicare, a major health insurance pro-
vider, which sets standards for inpatient stroke
rehabilitation in the United States [30]. Within a week of
discharge from the hospital, the same battery of clinical
tests was again administered to determine the clinical
outcomes after inpatient rehabilitation. FIM scores at
admission and discharge were compiled from individual
FIM items recorded in the patient’s electronic medical
records in accordance with the Inpatient Rehabilitation
Facility Patient Assessment Instrument guidelines (IRF-
PAIL regulated by the United States Centers for Medi-
care & Medicaid Services). As per hospital standards, the
FIM was also administered by licensed physical thera-
pists and performed within 72 h of admission and within
the 24—48 h window prior to discharge.

Patient demographics and stroke type were obtained
from the Electronic Medical Record (EMR). Diagnoses
of dysphagia, cognitive-communication deficit, and other
speech/language impairments were made by experienced
speech/language pathologists in the hospital and also
collected from the EMR as additional stroke characteris-
tics. Finally, patients (or their proxies) completed a study
intake form regarding lifestyle and education.

Dependent and independent variables

The dependent variables were the discharge assessment
scores of four commonly used clinical tests: FIM,
TMWT, SMWT, BBS.

The independent variables (predictors) included demo-
graphic information, stroke characteristics, and scores of
the clinical tests from the admission assessment. Demo-
graphic information included the patient’s sex, age, body
mass index (BMI), race, years of education, and pre-
stroke activity levels (defining sedentary as less than 3 h
of exercise per week, moderately active as 3—-6 h of exer-
cise per week, and highly active as greater than 6 h of ex-
ercise per week). Stroke characteristics included time
from stroke onset to rehabilitation admission, stroke
type (hemorrhagic or ischemic), and diagnoses at admis-
sion: dysphagia (i.e., difficulty or discomfort in swallow-
ing), cognitive-communication deficit (i.e., frontal lobe
disorders), speech impairments (e.g., aphonia, dysphonia
or dysarthria), and language impairment (i.e., aphasia).
For analysis, these diagnoses were coded as binary vari-
ables (present or absent). The clinical tests at admission
included the patients’ FIM, TMWT, SMWT, and BBS
scores. Patients who could not walk during a given as-
sessment received a score of 0 for the TMWT or
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SMWT, in accordance with clinical practice guidelines
[31] and similar to previous discharge prediction models
(14, 32].

Data analysis

All statistical analyses were performed using Python ver-
sion 3.7.3. Normality was evaluated for each dependent
variable (i.e. FIM, BBS, TMWT and SMWT) using the
Shapiro-Wilk test. For normally-distributed variables,
correlations among continuous variables were measured
using the Pearson product-moment coefficient (r) and
among continuous and categorical variables were mea-
sured using the Point-biserial coefficient (rpp). For non-
parametric variables, correlations were measured using
the Spearman’s rank correlation coefficient (rs). For all
procedures, we considered a coefficient value below 0.3
to express a weak correlation, 0.3 to 0.5 to express a
moderate correlation and above 0.5 to express a strong
correlation, as recommended by Cohen [33]. Significance
level (a) was set to 0.05 and was used to determine
which predictors significantly affected each clinical out-
come score at discharge.

Predictive models for the discharge scores of each clin-
ical outcome were developed using the cross-validated
Lasso regression [29]. Lasso regression is a type of linear
regression that includes a regularization term. This term
penalizes a model based on the number of predictors
and the magnitude of their coefficients. Therefore, it en-
courages the development of simpler models (fewer pre-
dictors) and reduces risk of overfitting [34—37]. The
relative strength of the regularization is determined by
the value of its parameter A, wherein A =0 produces the
same coefficients as linear regression and higher values
of A produce sparser models by forcing more coefficients
to 0. In this study, we developed the prediction equa-
tions and evaluated their performance using a two-stage,
nested, leave-one-out cross-validation (LOOCYV) proced-
ure [38, 39]. The outer LOOCV stage was used for
evaluating the ability of the model to predict the out-
come of a new patient, while the inner stage was used to
optimize the parameter A. In each iteration of the outer
stage, the data was divided into train and test sets. Then,
the train set was sent to the inner stage and divided
again for optimizing A. Using this procedure ensured
that the test set would only be used to evaluate the
models performance and never be used for development
of the model or optimization of the A parameter. To
quantify the goodness-of-fit of each predictive model, we
calculated the percentage of variance explained (R?), and
Mean Absolute Error (MAE). To evaluate model per-
formance while accounting for the number of predictors,
we also computed the adjusted R* (Rﬁd].). To compare

model performance across the different dependent
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variables, we normalized the MAE of each model by the
range of observed values (MAE,). To evaluate the
model’s ability to predict both patients that experience
small recovery and patients that experience large recov-
ery, we used the Spearman’s rank correlation coefficient
(rs) and calculated the correlation the patient response
to therapy (i.e. change in outcome from admission to
discharge) and the model’s error.

We applied the permutation importance analysis based
on a Random Forest model [28, 40] to measure the rela-
tive importance of the independent variables on each
clinical outcome score. Relative importance was estab-
lished from the contribution of the variable to the pre-
dictor in reducing the prediction error. The permutation
importance analysis assigned an importance score (IS) to
each variable, ranging from 0 to 1. The relative import-
ance (RI) of a predictor (%) was calculated by dividing
the predictor’s score by the sum of all the predictors
scores, as follows:

RI;;=1S:;/ > ISi, (1)

i=1

where RI; ; is the relative importance of predictor i to
clinical outcome j; IS; ; is the importance score of pre-
dictor i to clinical outcome j assigned by the Random
Forest model; and # is the number of predictors for clin-
ical outcome j. Only variables with R; ; >0.01 were con-
sidered in the analysis.

Results

Summary statistics of the patient demographics, stroke
characteristics, and clinical test scores are presented in
Table 1. The scores of all four clinical outcomes mea-
sures significantly improved from admission to discharge
(p <0.05). On average, from admission to discharge, FIM
scores increased by 47.5% (26.6 points), walking speed
from TMWT increased by 61.7% (0.29 m/s), walking en-
durance from SMWT increased by 82% (185m), and
BBS scores increased by 43% (9 points).

Correlations between clinical outcomes

These results show a strong correlation (0.61 < rs < 0.92)
among all clinical outcomes both at admission and at
discharge (Table 2). The strongest correlation was found
between the TMWT and SMWT at admission (rs=
0.92). All correlations were significant (p <0.05) and
positive, such that higher scores in one test indicated
higher scores in the other tests.

Predictors of clinical outcomes at discharge

All clinical outcomes at discharge (FIM, TMWT,
SMWT, BBS) were strongly correlated to the scores of
the FIM, TMWT, SMWT, and BBS at admission (0.69 <
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Table 1 Demographic information, stroke characteristics, and
clinical tests of study participants (N = 50)

Numeric variables

Characteristic Mean SD Range
Age (y) 575 14.15 22-86
Height (cm) 1729 11.3 149.9-195.6
Weight (kg) 81.3 19.9 42.7-118
BMI (kg/m?) 27.1 576 16.7-44.7
Education (y) 149 33 6-20
Rehab duration (days) 18.7 104 4-57
Time from stroke to admission (days) 188 296 3-181
Categorical variables
Characteristic # %
Sex

Male 31 62

Female 19 38
Race

White 24 48

African American 21 42

Hispanic 4 8

Asian 1 2
Lifestyle

Sedentary 21 42

Moderately active 11 22

Highly active 18 36
Stroke type

Ischemic 39 78

Hemorrhage 11 22
Cognitive/Communication diagnosis

Yes 37 74

No 13 26
Speech diagnosis

Yes 37 74

No 13 26
Language diagnosis

Yes 10 20

No 40 80
Dysphagia

Yes 35 70

No 15 30
Clinical tests at admission
Test Mean SD Range
FIM 55.9 19.1 17-98
TMWT (m/s) 047 049 0-1.55
SMWT (m) 10334 12277  0-461
BBS 206 16.26 1-55
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Table 1 Demographic information, stroke characteristics, and
clinical tests of study participants (N = 50) (Continued)

Clinical tests at discharge

Test Mean SD Range
FIM 82.5 19.5 42-120
TMWT (m/s) 0.76 0.61 0-2.06
SMWT (m) 18838 16344  0-562
BBS 296 1741 0-56

rs < 0.88; p < 0.05), meaning that a high score in one clin-
ical test at admission indicated high scores in all clinical
tests at discharge. Time from the stroke onset to admis-
sion marginally affected the BBS and TMWT (rs=-
0.24; 0.05<p<0.1), meaning that shorter time from
stroke onset to admission indicated improved clinical
outcomes at discharge. The FIM score was moderately
correlated with the patient’s sex (rp, = 0.3; p < 0.05), with
females having higher FIM scores at discharge, and with
diagnoses of dysphasia at admission (rpp, = 0.32; p < 0.05),
where dysphagia was related to lower FIM scores at dis-
charge. The BBS score was also moderately correlated
with diagnoses of dysphasia (rs=0.38; p <0.05), where
dysphagia was related to lower BBS scores at discharge.
Finally, the patient’s age significantly affected the BBS
score (rs=-0.32; p<0.05), and marginally affected the
SMWT (rs=-0.26; 0.05<p<0.1), where younger pa-
tients had greater SMWT and BBS scores at discharge.

Predictive equations for clinical outcomes at discharge

Predictive models for discharge scores of each clinical
outcome were developed using cross-validated Lasso re-
gression (Table 3). The resulting models explained 70—
77% of the variance in discharge scores, and average
normalized error ranged from 10 to 13% for the study
participants and 13-15% for new patients. The
generalizability of each model was evaluated using a
two-staged nested LOOCV procedure, testing its ability
to predict scores of patients that did not participate in
the model’s development (Table 3). The LOOCV results

Table 2 Correlations between clinical test scores, at admission
and discharge

Admission Discharge
FIM  TMWT  SMWT  BBS FIM  TMWT  SMWT  BBS
FIM 1 1
TMWT 061 1 073 1
SMWT 072 092 1 077 088 1
BBS 080 0.79 0.88 1 086 077 0.86 1
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show that the MAE increased by an average of 19% to
predict the outcomes of a new patient in comparison to
the prediction error of the study’s participants. For pre-
dicting clinical outcomes of new patients, the average
error was 9.5 points for the FIM model (range 0-23),
0.3 m/s for the TMWT model (range 0.01-0.9), 80.8 m
for the SMWT model (range 7-256), and 7.4 points for
the BBS model (range 0-23).

We used Spearman’s coefficient to measure the correl-
ation between the patient response to therapy and the
model’s error. The results show a weak (ry<0.3) and
non-significant correlation (p > 0.05) for all clinical tests,
though there is a trend of greater error for individuals
with large change in clinical scores in the TMWT and
SMWT (Fig. 1). Patients with a change of 0 in the
TMWT and SMWT were unable to complete these tests
at both Admission and Discharge due to insufficient am-
bulation ability. Average MAE for these patients was
0.16 + 0.10 m/s in the TMWT (n = 7; Fig. 1b) and 80.7 +
23.6 m in the SMWT (n = 3; Fig. 1c). On the other hand,
some patients were unable to complete these tests at
Admission but gained sufficient ambulation ability to at-
tain a score at Discharge. Average MAE for these pa-
tients was 0.27 £ 0.25 m/s in the TMWT (n =9; Fig. 1b)
and 56.7 + 32.9 m in the SMWT (x = 10; Fig. 1c¢).

The relative importance of the models’ predictors for
each clinical outcome at discharge is illustrated graphic-
ally in Fig. 2. The most important predictor for the dis-
charge score of the FIM, TMWT, and BBS was their
own score at admission. The most important predictor
for the SMWT at discharge was the TMWT score at ad-
mission. The scores of the clinical tests at admission
contributed 80-90% of the relative importance, while
demographics and stroke characteristics together con-
tributed the remaining 10-20%.

Discussion

This study presents a machine learning approach for
the prediction of clinical outcomes at discharge after
inpatient stroke rehabilitation. The equations devel-
oped in this study considered scores of clinical tests
at admission, patient demographics, and stroke char-
acteristics as possible predictors, which explained 70—
77% of the variance in clinical scores at discharge.
The normalized errors for the study’s patients ranged
between 0.10-0.13 and for new patients between
0.13-0.15. The permutation analysis found that the
most important variables for prediction of the dis-
charge outcomes predictors were the admission scores
of the clinical tests. The importance of the scores of
clinical test in admission for predicting discharge
score was also shown in a previous studies focusing
on prediction of FIM [10] and walking speed [14].
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Table 3 Predictive models for the discharge clinical outcomes, including coefficients of each predictor and model goodness-of-fit
(R, R? ., MAE, and MAE,)

adj
Predictive equation for clinical outcomes at discharge Study patients New
(N =50) patients
(LOOCV)
R  MAE MAE
(R2;) (MAEw  (MAE)
FIM 60.14 + 223 % TMWT +0.35 % FIM + 0.5 % BBS — 0.24 * age — 0.02  TSA+ 0.8 % EDU~1.71 % LI- 005« BMI— 076 76 102
10.6 s HM —3.76 % SI (0.70)  (0.10) (0.13)
TMWT —0.16 4 0.7 % TMWT + 0.01 % FIM — 0.003 % TSA + 0.02  EDU + 044 s HIS — 0.15 s L/ 070 026 03
(m/s) 066) (0.13) 0.15)
SMWT 190.83 +101.72 % TMWT 4 1.03 % BBS + 0.54 % SMWT — 2.21 % age 070 732 80.8
(m) 067) (0.13) 0.14)
BBS 1327+ 10.1 % TMWT + 033 % FIM + 0.21 % BBS — 0.24 % age — 0.08 % TSA+ 042 % EDU— 557 « WHT—1.96 %« 077 64 74
L (0.73) (0.11) (0.14)

MAE Mean Absolute Error, TMWT, FIM, BBS, SMWT clinical test scores at admission, TSA time from stroke to admission, EDU education in years, BMI Body Mass
Index. The following variables are binary and receive the value of 1 or 0: HM hemorrhagic stroke, HIS Hispanic, WHT White, S/ speech impairment, L/ language
impairment. The “New patients” MAE is the averaged error across all left-out subjects during the LOOCV procedure

Our predictive equations may assist clinicians esti- the current study (i.e. following the requirement of
mate a trajectory of recovery for their patients during Medicare in terms of therapy types and dosage).

inpatient rehabilitation, using measures that are often We investigated the correlation between the clinical
available following admission. These results are espe- outcomes and found that the TMWT and SMWT were
cially relevant for rehabilitation programs similar to  strongly correlated (rs = 0.92), as previously observed by
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Fig. 2 Relative importance of independent variables for discharge clinical outcomes. (a) FIM Discharge model; (b) TMWT Discharge model; () SMWT
Discharge model; (d) BBS Discharge model. Within each model, predictors relating to clinical outcomes tests (FIM, TMWT, SMWT, BBS) are scores from
those tests at admission. TSA = time from stroke onset to admission; EDU = education in years; BMI = Body Mass Index; HIS = Hispanic; SI = speech

several studies for patients with stroke, spinal cord in-
jury, multiple sclerosis [41-45]. These correlations could
explain why only one of the walking tests is included in
the FIM, BBS, and TMWT models, since the Lasso re-
gression tends to choose a single variable in a set of cor-
related predictors [29].

In the current study, apart from the admission scores,
additional variables with at least 1% of relative import-
ance for at least one clinical outcome included the time
from stroke onset to admission, age, BMI, race, educa-
tion, dysphasia, and language impairment. Each of these
predictors was found to affect clinical outcomes in at
least one previous study [10, 13, 14, 46, 47]. The contri-
bution of the current study is in providing a more com-
prehensive investigation of the clinical tests and set of
predictors, in which we found that the relative import-
ance of these variables was much smaller (10-20%) than
the importance of the scores of clinical tests at admis-
sion (80-90%).

The predictive equation for the FIM discharge score
explained 76% of the variance. This model explained
more variance than the models presented in all previous
studies for predicting FIM at discharge [9, 13, 48], ex-
cept Ferriero et al. [48] whose model explained 82% of
the variance. However, the model of Ferriero et al. [48]
included medical comorbidities and complications,
which were not considered in the current study. The

TMWT discharge predictive equation in the current
study explained 70% of the variance, outperforming pre-
vious models [15, 19] except for Bland et al. [14] whose
model explained 81% of the variance. The model in
Bland et al. [14] might have explained more variance be-
cause it considered the FIM walk item, which focuses
more on elements affecting gait velocity compared to
the total FIM score used in the current study. To the
best of our knowledge, the current study is the first to
develop predictive models for the BBS or SMWT values
at discharge.

We applied a machine learning approach to develop
predictive models of clinical outcomes at hospital dis-
charge (using cross-validated Lasso regression). Previous
studies that predicted discharge scores of clinical out-
comes used the p-value as a criterion for determining
relative importance or selecting features [11, 13, 14, 19].
However, this criterion is prone to overfitting and may
not select the most important features, especially in
cases where the predictors are strongly correlated [21-
27]. In the current study, the feature selection process
was performed using the cross-validated Lasso regres-
sion, which includes a regularization mechanism (L1) to
reduce the risk of overfitting. Since Lasso regression
may rule out important variables due to co-linearity with
other variables, we investigated the relative importance
of the independent variables using permutation
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importance analysis considering all independent vari-
ables. The importance of each variable was evaluated by
its ability to reduce error of the Random Forest model
which provides a more comprehensive, non-linear, ana-
lysis of the relative contributions of each variable to the
clinical outcome.

The ability to predict clinical outcomes during stroke
rehabilitation remains a meaningful yet challenging task.
Clinical test scores at discharge are informative when
assessing the patient’s level of independence, ambula-
tion, and risk of falling. Forecasting a patient’s discharge
scores early in a rehabilitation program can help clini-
cians, patients, families, and insurance companies better
prepare for the patient’s care needs after leaving the hos-
pital (e.g., to plan discharge location such as skilled
nursing facility or home, to estimate the level of assist-
ance the patient will require, to order equipment such as
a wheelchair or orthosis, or to evaluate the expected
medical costs or insurance coverage). One of the on-
going disputes in the field is the “proportional recovery”
rule in stroke recovery [49-52]. Assuming that most
stroke patients follow the rule and recover approxi-
mately 70% of their functional loss, many studies have
developed prediction models of stroke recovery based on
admission data [51]. However, recent work has raised
important questions regarding the validity of the propor-
tional recovery rule, citing conditions for which models
based on this rule might by over-optimistic [49, 50, 52].
In the current study, we tried to avoid this potential pit-
fall by directly predicting the scores of clinical outcomes
at discharge instead of the relative changes in those
scores. We acknowledge that our R* results might be
over-optimistic and thus base our claims on the MAE
results. Our models did not identify non-responders in
the TMWT and SMWT (individuals who did not attain
sufficient ambulation ability to complete these tests by
hospital discharge), which is an important area of im-
provement for clinical prediction models.

Predicting clinical outcomes in the time of admission has
been shown to improve therapy efficiency, increasing thera-
pists’ confidence and help to prepare for a probable discharge
location [51, 53, 54]. However, the type of rehabilitation pro-
gram or engagement of the patient could also affect the dis-
charge outcomes. The rehabilitation program in this study is
based on the requirements of Medicare, which drives the in-
patient rehabilitation structure in the United States, and is
expected to be similar to other national inpatient programs.
Therefore, the results of this study should be relevant for
other U.S. hospitals as well. Future work should consider in-
cluding objective measures of the rehabilitation program and
even measures of patient attitude or engagement during the
rehabilitation process in order to further refine the model
predictions and improve generalization to alternative re-
habilitation programs.
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Standard clinical tests alone may not have the prog-
nostic resolution to determine later functional ability.
Wearable sensors are an emerging technology that can
allow precise, fine-scale measurement of biomechanical
and physiological markers during rehabilitation [7, 55].
Such technologies may improve prediction of clinical
outcomes by capturing objective, high-resolution data
signatures of post-stroke impairment and informing effi-
cient, patient-specific rehabilitation strategies [53]. How-
ever, because a sensor-based approach is still in
a preliminary research phase and not yet readily avail-
able in clinical settings, the models presented in the
current study could provide a practical, accessible tool
for clinicians to estimate a patient’s recovery trajectory
during inpatient rehabilitation.

Limitations

This study included a relatively small sample size of 50
patients from a single inpatient rehabilitation hospital,
which may result in bias, overfitting, and limitations for
generalization to other populations. To minimize the ef-
fect of small sample size and minimize potential for
overfitting, we used Lasso regression [34—37]. Further-
more, the patients who participated in this study had a
wide range of demographic characteristics and impair-
ments at admission (Table 1), suggesting that there is
moderate variation in the sample for generalization to
new patients. Nevertheless, future research could expand
the current study by predicting clinical outcomes using a
larger sample size from different rehabilitation settings
to increase generalizability. The current study included
the four clinical outcomes which are highly recom-
mended for evaluation of inpatient stroke rehabilitation
by the American Physical Therapy Association [6]. How-
ever additional recommended measures could include
outcomes such as the Fugl-Meyer Assessment [56] and
the Dynamic Gait Index [57], and future research could
focus on their prediction.

Conclusions

We investigated the factors affecting clinical outcomes
during inpatient stroke rehabilitation and developed pre-
dictive models for their scores at discharge.

All the measured outcomes (FIM, TMWT, SMWT,
BBS) were strongly correlated with each other; with the
highest correlation found between the TMWT and
SMWT (rg=0.92). The SMWT was not inserted to the
model as a predictor for the FIM, BBS or TMWT.
Therefore, while the SMWT contributes unique infor-
mation regarding the patient walking endurance, it
might have redundancy with the TMWT for predicting
the walking speed (TMWT), balance (BBS) and overall
disability (FIM).
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The most influential factors for the outcomes scores at
discharge were the scores of the clinical test at admis-
sion. Therefore, even if a clinicians use only one clinical
outcome in their evaluation (e.g. FIM), we recommend
to perform additional clinical tests at admission and use
their scores as predictors.

The machine learning approach used in this study re-
sulted in the development of predictive models with
relatively high percentage of explained variance in com-
parison to previous studies. Since this approach aims to
avoid overfitting, we think these models could be used
for other patients as well.
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