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Precise estimation of human corticospinal
excitability associated with the levels of
motor imagery-related EEG
desynchronization extracted by a locked-in
amplifier algorithm
Kensho Takahashi1†, Kenji Kato1,2,6†, Nobuaki Mizuguchi1,3 and Junichi Ushiba1,4,5*

Abstract

Background: Physical motor exercise aided by an electroencephalogram (EEG)-based brain-computer interface
(BCI) is known to improve motor recovery in patients with stroke. In such a BCI paradigm, event-related
desynchronization (ERD) in the alpha and beta bands extracted from EEG recorded over the primary sensorimotor area
(SM1) is often used, since ERD has been suggested to be associated with an increase of corticospinal excitability.
Recently, we demonstrated a novel online lock-in amplifier (LIA) algorithm to estimate the amplitude modulation of
motor-related SM1 ERD. With this algorithm, the delay time, accuracy, and stability to estimate motor-related SM1 ERD
were significantly improved compared with the conventional fast Fourier transformation (FFT) algorithm. These
technical improvements to extract an ERD trace imply a potential advantage for a better trace of the excitatory status
of the SM1 in a BCI context. Therefore, the aim of this study was to assess the precision of LIA-based ERD tracking for
estimation of corticospinal excitability using a transcranial magnetic stimulation (TMS) paradigm.

Methods: The motor evoked potentials (MEPs) induced by single-pulse TMS over the primary motor cortex depending
on the magnitudes of SM1 ERD (i.e., 35% and 70%) extracted by the online LIA or FFT algorithm were monitored
during a motor imagery task of wrist extension in 17 healthy participants. Then, the peak-to-peak amplitudes of MEPs
and their variabilities were assessed to investigate the precision of the algorithms.

Results: We found greater MEP amplitude evoked by single-pulse TMS triggered by motor imagery-related alpha SM1
ERD than at rest. This enhancement was associated with the magnitude of ERD in both FFT and LIA algorithms.
Moreover, we found that the variabilities of peak-to-peak MEP amplitudes at 35% and 70% ERDs calculated by the
novel online LIA algorithm were smaller than those extracted using the conventional FFT algorithm.

Conclusions: The present study demonstrated that the calculation of motor imagery-related SM1 ERDs using the
novel online LIA algorithm led to a more precise estimation of corticospinal excitability than when the ordinary
FFT-based algorithm was used.
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Background
Physical motor exercise aided by an electroencephalo-
gram (EEG)-based brain-computer interface (BCI) facili-
tates functional recovery in patients with motor deficits
due to stroke [1–12]. In such a BCI paradigm, event-re-
lated desynchronization (ERD) in the alpha (8–13 Hz)
and beta (15–30 Hz) bands is extracted from EEG sig-
nals recorded over the primary sensorimotor area
(SM1), and visual and sensory feedback contingent to
the extent of ERD is provided via a motor-driven orth-
osis or neuromuscular electrical stimulation. The repeti-
tion of BCI-aided motor exercise in finger opening or
arm reaching paradigms is suggested to help patients
learn to activate sensorimotor cortical neurons more ef-
ficiently than exercises without a BCI [9, 13].
Previous studies using transcranial magnetic stimulation

(TMS) delivered to the primary motor cortex have shown
that an increase of corticospinal excitability is associated
with ERD [14] and is accompanied with a decrease of
GABAergic intracortical inhibition [15], indicating ERD as
a biomarker of corticospinal excitability. However, the
real-time estimation of ERD trace results has a time delay
measured in hundreds of milliseconds. A variety of spec-
tral analyses, such as fast Fourier transformation (FFT) [8,
10, 12, 16–20], continuous Wavelet transformation [21,
22], an autoregressive model [9, 23, 33], have been used to
calculate the frequency spectrum in a given time-sliding
window with certain overlaps, but the results were
smoothed due to window overlapping, and were delayed
due to window length, causing the inevitable limited reso-
lution of ERD.
Recently, we successfully developed a novel online

lock-in amplifier (LIA) algorithm to estimate the ampli-
tude modulation of motor imagery-related alpha ERD
over SM1 [24]. LIA can reliably extract signal amplitude
in a defined frequency band using a point-by point
multiplication and filtering algorithms. Using this algo-
rithm, the delay time, accuracy, and stability to estimate
motor-related SM1 ERD were significantly improved
compared with those calculated by the conventional on-
line FFT, continuous Wavelet transformation, and auto-
regressive algorithms. These technical improvements to
extract an ERD trace imply a potential advantage for a
better trace of the excitatory status of SM1 in the con-
text of a BCI.
Therefore, in this paper, we assessed the precision of

LIA-based ERD tracking for estimation of corticospinal ex-
citability using a TMS paradigm. We monitored the motor
evoked potentials (MEPs) induced by single-pulse TMS
over the primary motor cortex depending on the magni-
tude of SM1 ERD (i.e., 35% and 70%) extracted by the
novel online LIA and conventional FFT algorithms during
a motor imagery task of wrist extension in healthy partici-
pants. Then, we compared the peak-to-peak amplitudes of

MEPs and their variabilities triggered by the different mag-
nitudes of ERD extracted by the novel LIA and conven-
tional FFT algorithms to investigate their precision of
corticospinal excitability.

Methods
Participants
Seventeen healthy participants (average age, 23.8 ±
2.8 years) participated in this study. All participants were
right-handed, without any medical or psychological dis-
orders according to self-reports. Informed consent was
given by all participants after they received an explan-
ation of the experimental procedure. The experimental
protocol used in this study was in accordance with the
Helsinki Declaration and was approved by the ethics
committee of Keio University.

Data acquisition
EEG recordings
EEG signals were recorded with 128-channel Geodesic
Sensor Nets over the whole scalp. Electrode impedance
was kept lower than 40 kΩ throughout the experiments
[25]. The EEG signals were amplified and band-pass and
notch filtered between 5 and 70 Hz by the Geodesic
EEG System (Electrical Geodesics Incorporated [EGI],
Oregon, USA) and then recorded at a sampling rate of
1000 Hz. The EEG signals were extracted using a large
Laplacian filter centered on C3, which was defined as
the nearest channel to the contralateral SM1 [24], since
we recorded EEG sensorimotor responses during motor
imagery tasks of right wrist extension (see Experimental
procedures in the Methods section).

ERD estimation algorithms
First, we used an FFT algorithm as the conventional
method to probe the motor-imagery-related ERDs [8, 10,
12, 15, 19, 20]. According to these previous studies, EEG
data were processed using the following 4 steps: (1) seg-
mentation of 1-s time windows with 99% overlap; (2)
power spectrum density calculation by FFT algorithm
with a Hanning window; (3) determination of a fre-
quency of interest (FOI), which showed the most signifi-
cant ERD over the alpha bands by visual inspection in
Screening session (see Experimental procedures in the
Methods section); and (4) ERD transformation [15]. The
algorithm of the motor-related ERD was defined as
follows:

ERD f ; tð Þ ¼ A f ; tð Þ−R fð Þ
R fð Þ � 100

where A is the power spectrum density (PSD) of the
EEG signal and R is the PSD of the baseline period from
3 to 5 s in each resting phase at time t and frequency f,
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which was most reactive frequency displaying ERD over
the alpha band during the kinesthetic motor imagery
task in the screening session.
Second, we used LIA-based algorithm as a novel esti-

mation method [24]. According to the previously estab-
lished algorithm with LIA [24], EEG data were processed
using the following 4 steps: (1) determination of a FOI;
(2) applying a narrow band-pass filter (FOI ± 1 Hz) using
a second-order Butterworth band-pass filter with a 1-s
time window; (3) LIA process (i.e. point-by-point multi-
plication and integration of the input signal with a refer-
ence trigonometric basis signal) with segmentation of 1/
FOI s with a 99% overlap time window; and (4) ERD
transformation [15].
In briefly, the previous study suggested that the aver-

aged time delays by the online LIA algorithm (200 ±
9.49 ms) were around 300 ms shorter than those by the
online FFT algorithm (503 ± 18 ms) [24]. In addition, the
accuracy and stability to detect amplitude modulation of
motor-imagery-related ERDs by the online LIA algo-
rithm were significantly higher than those calculated by
the online FFT algorithm (p < 1.0*10–10, p < 1.0*10–9,
respectively) [24].

Surface electromyography (EMG) recordings
Surface EMG activity was recorded with Ag/AgCl elec-
trodes (fixed electrode distance: 20 mm) over the muscle
belly of the right flexor carpi radialis and extensor carpi
radialis (ECR) muscles. Impedance for all channels was
maintained below 20 kΩ through the experiments. EMG
signals were band-pass filtered (5–1000 Hz with 2nd
order Butterworth) with a notch (50 Hz to avoid power
line contamination), and digitized at 2 kHz using a
bio-signal amplifier (Neuropack MEB-9200; Nihon Koh-
den, Tokyo, Japan). The pre-stimulus EMG activity and
MEP were analyzed using − 50 to 150 ms periods of each
pulse in an offline process.

TMS protocol
Single-pulse TMS was applied with a double-cone coil
(outer diameter of each coil: 11 cm, angle of each coil:
95°) connected to a Magstim 200 magnetic stimulator
(Magstim, Whitland, UK). The optimal coil position was
determined where the motor evoked potential (MEP)
amplitude in the ECR was observed with the lowest
stimulus intensity and marked with the Brainsight TMS
navigation system (Rogue Research, Cardiff, UK). The
optimal coil orientation and location remained constant
throughout the session. The resting motor threshold
(rMT) intensity was defined as the lowest stimulator
output intensity capable of inducing an MEP with at
least 50 μV peak-to-peak amplitude in relaxed muscles
in at least half of the 10 trials [26, 27]. TMS in all experi-
ments was applied with an intensity of 120% of the

individual rMT. The values of rMT in each participant
are shown in Table 1. We inspected the EMG data dur-
ing offline analysis, discarding any trials containing
pre-stimulus EMG activities more than ±20 μV. Less
than 5% of all trials were rejected due to contamination.

Experimental procedures
Screening session
Firstly, a screening session was performed to investigate
the most reactive frequency associated with the motor
imagery-related SM1 ERD in each participant. The par-
ticipants sat in a comfortable armchair and performed
kinesthetic motor imagery of right wrist extension with
a fixed repetitive time scheme (Fig. 1Aa). A 20-in. com-
puter monitor was placed 60–90 cm in front of their
eyes. Then, the screening session started with the pres-
entation of the word “Rest” at the center of the monitor.
After 5 s, the word displayed in the monitor changed to
“Image,” and the participant was asked to perform
kinesthetic motor imagery of wrist extension for 5 s.
Then, the monitor went black and the participant could
move freely for 3 s. This overall process was repeated for
a total of 25 trials.

TMS sessions
Each participant performed a total of 5 experimental
conditions with TMS in a predetermined randomized
order, which was counterbalanced across the partici-
pants. In each condition, the rest period was randomized
from 4 to 6 s to prevent the participants from predicting
task onset in each trial. Then, TMS was applied to the
SM1 at different timings over the 5-s task period de-
pending on the following 5 conditions.
In Condition 1 “Relaxed”, the participants were instructed

to be relaxed during the task phase instead of performing
the motor imagery task, as a control session. TMS was ap-
plied randomly during the task phase. The stimulus was
applied 25 times.
In Condition 2 “FFT, ERD35%” and Condition 3 “FFT,

ERD70%”, the participants were instructed to perform
the kinesthetic motor imagery task of right wrist exten-
sion during the task phase. TMS was applied immedi-
ately after instantaneous ERDs calculated by the online
FFT algorithm reached 35% in Condition 2 or 70% in
Condition 3 during the motor imagery task. The partici-
pants were asked to continue the kinesthetic motor im-
agery task even after TMS was applied. We ended the
session when the number of successful trials (i.e. ERD
values were reached to 35% in Condition 2 or 70% in
Condition 3) reached 25. In case of trials that the ERD
could not be reached to the targeted values, it was not
counted as the number of successful trials (i.e. TMS was
not applied). The parameters for the time window and
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overlap used for the FFT algorithm were determined as
1000 ms and 90%, according to the previous study [15].
In Condition 4 “LIA, ERD35%” and Condition 5 “LIA,

ERD70%,” the participants were instructed to perform
the same kinesthetic motor imagery task of right wrist
extension during the task phase. TMS was applied im-
mediately after instantaneous ERDs calculated by the on-
line LIA algorithm reached 35% in Condition 4 or 70%
in Condition 5 during the kinesthetic motor imagery
task. The participants were asked to continue the
kinesthetic motor imagery task even after TMS was ap-
plied. We ended the session when the number of suc-
cessful trials (i.e. ERD values were reached to 35% in
Condition 4 or 70% in Condition 5) reached 25. In case
of trials that the ERD could not be reached to the tar-
geted values, it was not counted as the number of suc-
cessful trials (i.e. TMS was not applied).
To reduce the participants’ bias, the order of the con-

ditions 2–5 were blinded for the participants.

Data analysis and statistics
After removing the trials in which the pre-stimulus
EMG activity was more than ±20 μV, the peak-to-peak
MEP amplitudes were calculated in each trial and TMS
session. Then, the peak-to-peak MEP amplitudes at ERD
35% and ERD 70% (Conditions 2–5) were normalized by
those at the resting condition (Condition 1). Finally, the

average and standard deviation (SD) of normalized
peak-to-peak MEP amplitudes across trials in every con-
dition and participant were calculated.
The average of normalized peak-to-peak MEP ampli-

tudes across participants was compared between Condi-
tion 1 and Conditions 2–5 using a t-test, followed with
Bonferroni correction. In addition, two-way repeated
measures analysis of variance (ANOVA) was performed
to compare normalized peak-to-peak amplitude between
the 4 TMS conditions (Conditions 2–5). The SD of

Table 1 Most reactive frequency displaying ERD during the
right wrist motor imagery task in the screening session, resting
motor threshold, and stimulus intensity in each participant

Participant Age
(years)

Frequency
(Hz)

Resting motor
threshold (%MSO)

Stimulus intensity
(%MSO)

1 23 12 43 52

2 21 9 45 54

3 21 13 36 43

4 26 13 43 52

5 24 11 38 46

6 24 13 43 52

7 21 13 33 40

8 23 9 36 43

9 28 12 37 44

10 31 10 42 50

11 24 13 32 38

12 23 12 44 53

13 26 13 41 49

14 21 12 44 53

15 22 12 43 52

16 26 13 39 47

17 22 9 39 47

MSO maximum stimulator output

Fig. 1 Task protocol and experimental setup. A: Timing of the
paradigm used in the screening session (a) and TMS sessions in
Conditions 2–5 (b). B: Experimental system of TMS sessions in
Conditions 2–5. In brief, TMS was applied immediately after
instantaneous ERDs calculated by the online FFT or LIA algorithm
reached 35% or 70% during motor imagery tasks. ERD, event-related
desynchronization; FFT, fast Fourier transformation; LIA; lock-in
amplifier; MEP, motor evoked potential; TMS, transcranial
magnetic stimulation
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normalized peak-to-peak amplitude was also compared
between the four TMS conditions (Conditions 2–5)
using two-way repeated measures ANOVA. If ANOVA
yielded a significant F value, a post-hoc test was then
performed using a t-test with Bonferroni correction.

Results
Motor imagery-related SM1 ERD
In the screening session, all participants showed signifi-
cant task-related alpha ERDs around C3 during the
kinesthetic motor imagery task of right wrist extension.
The characteristics of the most reactive frequency of
motor imagery-related SM1 ERDs are summarized in
Table 1. The representative data (Subject 9) of topo-
graphic maps of the averaged motor imagery-related
SM1 ERDs over 25 trials obtained from 128-channel
EEG signals over the most reactive frequency were fur-
ther shown in Conditions 1–5 during rest (Fig. 2Aa) and
when the ERDs reached 35% and 70% calculated by the
online FFT and LIA algorithms during the kinesthetic
motor imagery task (Fig. 2Ab-e). Motor imagery-related
alpha ERD magnitudes occurred around C3 in Condi-
tions 2–5, suggesting that the observed alpha ERD was
likely to localize to the contralateral SM1. In addition,
one-way ANOVA was performed to compare power
values during the resting periods between Conditions 2–
5. As a result, there was no significant difference in the
resting-state power values over the most reactive fre-
quency (F = 1.80, p = 0.158), indicating that the reference
power values for calculating ERDs did not differ between
Conditions 2–5. The numbers of unsuccessful trial were
less than 4 trials for all conditions.

Changes in MEP amplitudes at the different levels of ERD
magnitudes obtained by the LIA and FFT algorithms
To test corticospinal excitability at certain magnitudes of
SM1 ERD during the right wrist kinesthetic motor im-
agery task, we applied single-pulse TMS over the pri-
mary motor cortex during the rest condition (Condition
1 “Relaxed”) and during wrist kinesthetic motor imagery
at ERD 35% and 70% calculated by the conventional on-
line FFT algorithm (Condition 2 “FFT, ERD35%” and
Condition 3 “FFT, ERD70%”), and by the novel online
LIA algorithm (Condition 4 “LIA, ERD35%” and Condi-
tion 5 “LIA, ERD70%”). Then, we assessed the peak-to-
peak MEP amplitudes in each condition.
Representative waveforms of MEPs in the right ECR

muscle during the relaxed (Condition 1) and kinesthetic
motor imagery (Conditions 2–5) tasks in a single partici-
pant (Subject 9) are shown in Fig. 2B. MEP amplitudes
evoked by single-pulse TMS were facilitated during
kinesthetic motor imagery (rest = 195.1 ± 106.1 μV, motor
imagery at ERD 35% by FFT and LIA =353.3 ± 189.9 and
640.6 ± 163.0 μV, and motor imagery at ERD 70% by FFT

and LIA = 638.8 ± 250.7 and 730.1 ± 144.1 μV, respectively).
The averaged peak-to-peak MEP amplitudes induced by
single-pulse TMS from the ECR across participants were
compared between each condition. As a result, the aver-
aged MEP amplitudes were significantly greater in Condi-
tion 2 “FFT, ERD35%” (p < 0.001), Condition 3 “FFT,
ERD70%” (p < 0.05), Condition 4 “LIA, ERD35%” (p < 0.05),
and Condition 5 “LIA, ERD70%” (p < 0.001), compared to
Condition 1 “Relaxed” (Additional file 1: Figure S1), indi-
cating that corticospinal excitability was increased more
when motor imagery-related alpha SM1 ERD occurred
than during the resting state, irrespective of ERD magni-
tude (i.e., 35% or 70%) and estimation algorithm (i.e., on-
line LIA or FFT algorithm). On the other hand, there were
no significant differences in the averaged MEP amplitudes
between Condition 2 “FFT, ERD35%” and Condition 4
“LIA, ERD35%” (p = 0.655), and between Condition 3 “FFT,
ERD70%” and Condition 5 “LIA, ERD70%” (p = 0.661),
suggesting that the averaged MEP amplitudes did not in-
fluence to estimation algorithms in each ERD magnitude.
Next, normalized peak-to-peak MEP amplitudes were

compared between the four ERD-triggered TMS condi-
tions (Conditions 2–5) with two-way ANOVA (Fig. 3),
indicating the main effect of ERD values (F (1, 14) =
16.51, p < 0.01). A post-hoc test using a t-test with Bon-
ferroni correction further suggested that the normalized
MEP amplitudes in Condition 3 “FFT, ERD70%” showed
a significant increase compared to those in Condition 2
“FFT, ERD35%” (post hoc p < 0.001). Similarly, the nor-
malized MEP amplitudes in Condition 5 “LIA, ERD70%”
showed a significant increase compared to those in Con-
dition 4 “LIA, ERD35%” (post hoc p < 0.001), suggesting
that in both online estimation algorithms, SM1 excitabil-
ity was significantly associated with the different levels
of motor imagery-related alpha ERDs. On the other
hand, there were no significant differences in the nor-
malized MEP amplitudes between Condition 2 “FFT,
ERD35%” and Condition 4 “LIA, ERD35%” (p = 0.922),
and between Condition 3 “FFT, ERD70%” and Condition
5 “LIA, ERD70%” (p = 0.583), suggesting that the nor-
malized MEP amplitudes did not influence to estimation
algorithms in each ERD magnitude.

Changes in the variabilities of MEP amplitudes at
different levels of ERD magnitudes obtained by the LIA
and FFT algorithms
To investigate the estimation precision of instantaneous
corticospinal excitability reflected by the MEP ampli-
tudes induced by single-pulse TMS triggered by the level
of motor imagery-related ERDs, we assessed the SD of
normalized peak-to-peak MEP amplitudes at ERD 35%
and ERD 70%, extracted by the conventional online FFT
algorithm (Condition 2 “FFT, ERD35%” and Condition 3
“FFT, ERD70%”) and novel LIA algorithm (Condition 4
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Fig. 2 Representative topographic map and MEP traces induced by single-pulse TMS recorded from the right ECR at ERD 35% and ERD 70%,
calculated by the online FFT or LIA algorithm. A: Representative topographies of the averaged ERDs over trials during the resting condition (a),
wrist kinesthetic motor imagery at ERD 35% (b) and ERD 70% (c) calculated by the online FFT algorithm, and ERD 35% (d) and ERD 70% (e)
calculated by the online LIA algorithm, obtained from 128-channel EEG data. Topographic maps are illustrated in the most reactive frequency
displaying motor imagery-related ERD. Data were obtained from Subject 9. Electrode positions are shown by dots. Negative values (blue colors)
indicate strong ERD. B: Example MEP traces induced by single-pulse TMS recorded from the ECR during the resting condition (a) and during
kinesthetic motor imagery of right wrist extension at ERD 35% (b) and ERD 70% (c) calculated by the online FFT algorithm, and ERD 35% (d) and
ERD 70% (e) calculated by the online LIA algorithm. Thin gray lines represent representative MEP traces across 25 trials. Thick black lines represent
the averaged MEP traces. The triangles and vertical lines represent stimulus onset (Stim). As ERD increased, MEP amplitudes induced by single-
pulse TMS were facilitated in both cases of ERD estimations based on the online FFT and LIA algorithms. ECR, extensor carpi radialis; ERD, event-
related desynchronization; FFT, fast Fourier transformation; LIA; lock-in amplifier; MEP, motor evoked potential; TMS; transcranial magnetic
stimulation. Data were obtained from Subject 9

Fig. 3 Normalized peak-to-peak MEP amplitudes during motor imagery of right wrist extension at ERD 35% and ERD 70%, calculated by the
online FFT or LIA algorithm. The averaged normalized peak-to-peak MEP amplitudes in Condition 3 “FFT, ERD70%” showed a significant increase
compared to those in Condition 2 “FFT, ERD35%.” Similarly, the averaged MEP amplitudes in Condition 5 “LIA, ERD70%” showed a significant
increase compared to those in Condition 4 “LIA, ERD35%,” suggesting that in both online estimation algorithms (FFT and LIA), SM1 excitability was
significantly associated with the different levels of motor imagery-related alpha ERDs. Each line shows the result obtained from each participant.
*p < 0.05. ERD, event-related desynchronization; FFT, fast Fourier transformation; LIA, lock-in amplifier; MEP, motor evoked potential
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“LIA, ERD35%” and Condition 5 “LIA, ERD70%”), and
compared them using two-way ANOVA (Fig. 4). As a re-
sult, we found main effects of ERD magnitudes (i.e., ERD
35% and ERD 70%) [F (1, 14) = 6.81, p < 0.05] and algo-
rithms (i.e., FFT and LIA algorithms) [F (1, 14) = 5.17, p <
0.05]. Moreover, an interaction was found between both
factors [F (1, 14) = 8.69, p < 0.05]. Post hoc tests with Bon-
ferroni’s correction showed that the SD of normalized
peak-to-peak MEP amplitudes in Condition 4 “LIA,
ERD35%” was smaller than that in Condition 2 “FFT,
ERD35%” (p < 0.05, Fig. 4). Similarly, the SD of normalized
peak-to-peak MEP amplitudes in Condition 5 “LIA,
ERD70%” was smaller than that in Condition 3 “FFT,
ERD70%” (p < 0.05, Fig. 4). These results suggest that the
variabilities of MEP amplitudes at both levels of ERD mag-
nitude (i.e., ERD 35% and ERD 70%) extracted by the
novel online LIA algorithm were reduced compared to
those extracted by the conventional FFT algorithm.

Discussion
In the present study, we found greater MEP amplitude
evoked by single-pulse TMS triggered by motor imagery-
related alpha SM1 ERDs than that randomly applied at
rest. This enhancement was associated with the magni-
tude of ERD (i.e., 35% and 70%) for both the FFT and LIA
algorithms, which is consistent with a previous study [15].
Moreover, we found that the variabilities of peak-to-peak
MEP amplitudes at the levels of ERD (i.e., 35% and 70%)
calculated by the novel online LIA algorithm were re-
duced compared to those extracted by the conventional
FFT algorithm. Based on the previous findings that
LIA-based algorithm can detect motor-related SM1 ERD

more accurately and stably than conventional FFT algo-
rithm [24], the present results suggest that the accurate
calculation of motor imagery-related SM1 ERDs extracted
by the novel online LIA algorithm led to a precise estima-
tion of human corticospinal excitability.
Extensive previous studies have consistently demon-

strated that alpha/beta ERDs following kinesthetic motor
imagery are a reliable biomarker for increased excitabil-
ities in the sensorimotor cortex and corticospinal tract
[28–31]. Previous TMS studies have shown an inverse
correlation between MEP amplitude and alpha band
power [32, 33], and an inverse correlation between intra-
cortical inhibition and the alpha ERD level during
kinesthetic motor imagery [15]. Indeed, an additional
analysis revealed that both algorithms detected targeted
values of ERD over SM1 (Additional file 1: Figure S2). In
addition, the magnitude of motor imagery-related SM1
ERD during kinesthetic motor imagery was associated
with an increase in F-wave persistence, indicating the
potentiation of spinal motoneurons during kinesthetic
motor imagery accompanied with SM1 ERD [19]. The
present findings also reproduced the correlation be-
tween the magnitude of motor imagery-related SM1
ERD and MEP amplitude. Moreover, we notably dem-
onstrated the reduced variability of the results when
the novel LIA algorithm was used compared to the FFT
algorithm. This result suggests that motor imagery-re-
lated SM1 ERDs extracted by the LIA algorithm would
be a more reliable biomarker to represent increased
excitabilities in sensorimotor cortex and corticospinal
tract than when an ordinary FFT-based algorithm is
used.

Fig. 4 Standard deviations (SDs) of normalized peak-to-peak MEP amplitudes during motor imagery of right wrist extension at ERD 35% and ERD
70%, calculated by the online FFT or LIA algorithm. The SD of normalized peak-to-peak MEP amplitudes in Condition 4 “LIA, ERD35%” was smaller
than that in Condition 2 “FFT, ERD35%.” Similarly, the SD of normalized peak-to-peak MEP amplitudes in Condition 5 “LIA, ERD70%” was smaller than
that in Condition 3 “FFT, ERD70%.” Each line shows the result obtained from each participant. *p < 0.05. ERD, event-related desynchronization; FFT,
fast Fourier transformation; LIA; lock-in amplifier; MEP, motor evoked potential
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A finger movement exercise aided by an ipsilesional
SM1 ERD-based BCI stimulates SM1 while attempting
paralyzed finger movements, resulting in an improve-
ment of impaired movements [13]. Therefore, the pre-
cise estimation of the ERD trace by the newly proposed
LIA algorithm and resulting improved correlation be-
tween SM1 ERD and peak-to-peak MEP could be poten-
tially more beneficial for neurorehabilitation than the
existing algorithm. For instance, delayed visual feedback
attenuates error-based sensorimotor learning during
prism adaptation [34, 35] and a gradual visuomotor rota-
tion task [36]. Since BCI-mediated movement exercise is
characterized by error-based learning through ERD
state-dependent visual feedback [13, 20], the LIA-based
instantaneous and accurate visual feedback of sensori-
motor and corticospinal excitability assures a stable input-
output association, resulting in efficient error-based learn-
ing. Further studies are awaited to investigate whether
BCI learning using the LIA algorithm is more effective for
neurorehabilitation than using the conventional method.
In general, lock-in measurements can extract instant-

aneous amplitude modulation in a defined single
frequency by the point-by-point multiplication and inte-
gration of an input with a reference trigonometric basis
signal [24]. In the present study, the input signal was de-
fined as EEG amplitude modulation over a single fre-
quency, which showed the most reactive ERD during
motor imagery. In contrast, previous studies have dem-
onstrated that motor imagery-related ERDs are associ-
ated with a broad frequency range including the alpha
and beta frequency bands [31, 37, 38]. Although we
demonstrated that the magnitudes of ERD calculated
over a single frequency are associated with MEP ampli-
tudes, the multi-frequencies calculation by parallel pro-
cessing of LIAs may allow additional improvements in
terms of the precise estimation of corticospinal excitabil-
ity. In addition, in future study, we need to think to in-
corporate the other filtering algorithms such as Gaussian,
a generalized matched filter to optimize signal noise ra-
tio in real time, or machine learning algorithms to
achieve the additional improvements of the LIA-based
algorithms [39, 40].

Conclusion
The present study demonstrated that the variability of
normalized peak-to-peak MEP amplitudes at different
magnitudes of ERD extracted by a novel LIA algorithm
were reduced more than those extracted by the conven-
tional FFT algorithm. This result suggests that the LIA
algorithm can be incorporated effectively into existing
BCI paradigms to estimate human corticospinal excit-
ability more precisely. This finding would be useful for
the neurorehabilitation of patients with a movement
disorder.

Additional file

Additional file 1: Figure S1. Peak-to-peak MEP amplitudes during the
resting state and motor imagery of right wrist extension at ERD 35% and
ERD 70%, calculated by the online FFT or LIA algorithm. The averaged
MEP amplitudes were significantly greater in Condition 2 “FFT, ERD35%” (p
< 0.05), Condition 3 “FFT, ERD70%” (p < 0.001), Condition 4 “LIA, ERD35%” (p
< 0.01), and Condition 5 “LIA, ERD70%” (p < 0.001), compared to Condition
1 “Relaxed.” Each line shows the result obtained from each participant. *p
< 0.05, **p < 0.01, ***p < 0.005. ERD, event-related desynchronization; FFT,
fast Fourier transformation; LIA; lock-in amplifier; MEP, motor evoked
potential. Figure S2. Topography map of true positive rate (%) across
subjects. True positive rate is defined as a percentage that exceed the
targeted ERD value among 25 trials of the motor imagery task. Both the
LIA-based and FFT-based methods can specifically detect the motor-
imagery-related ERDs from the vicinity of the C3. (ZIP 3206 kb)
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