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Abstract

Background: Balance disorders are a risk factor for falls in the elderly. Although noisy galvanic vestibular
stimulation (nGVS) has been reported to improve balance in young people, randomised control trials
targeting community-dwelling elderly people have not been conducted to date. We aimed to assess the
influence of nGVS on COP sway in the open-eye standing posture among community-dwelling elderly
people in a randomised controlled trial.

Methods: A randomised controlled trial of 32 community-dwelling elderly people randomly assigned to
control (sham stimulation) and an nGVS groups. All participants underwent centre of pressure (COP) sway
measurements while standing with open eyes at baseline and during stimulation. The control group
underwent sham stimulation and the nGVS group underwent noise stimulation (0.4 mA; 0.1–640 Hz).

Results: In the nGVS group, sway path length, mediolateral mean velocity and anteroposterior mean velocity decreased
during stimulation compared with baseline (P < 0.01). The effect of nGVS was large in participants with a high COP sway
path length at baseline, but there was no significant difference in COP sway in the control group.

Conclusions: We conclude that nGVS decreases the COP sway path length and mean velocity of community-dwelling
elderly people when standing with open eyes. This suggests that nGVS could be effective for treating balance
dysfunction in the elderly.

Keywords: Community-dwelling elderly people, Falls, Noisy galvanic vestibular stimulation, Centre of pressure, Postural
sway

Background
Falls are a leading cause of injury and death among the
elderly and are a significant public health issue. It has
been reported that one in three elderly people aged
65 years or older and half of those aged 80 years and
older will fall once a year [1], with balance disorders be-
ing a major risk factor [2]. The visual, proprioceptive
and vestibular sensory systems provide feedback from
the environment and contribute to balance control by
facilitating interaction with the external world [3, 4].

Among these, the vestibular system primarily functions
to detect motion and head position. Specifically, three
semicircular canals can perceive angular acceleration
and velocity of the head, and the otolith organs (utricle
and saccule) can sense linear acceleration of the head
and head tilt [5]. However, vestibular system function
declines with increasing age [6], and this can increase
the risk of falls [7, 8].
To date, no effective treatment methods other than

physical therapy have been established for the dysfunc-
tion of the vestibular system [9]. However, recently,
noisy galvanic vestibular stimulation (nGVS) has shown
some promise in this regard. This treatment acts by
stimulating the vestibular organ with a weak noise
current and has been shown to enhance vestibular
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perception and vestibulo-spinal reflex function [10, 11].
In a previous studies, nGVS was shown to enhance cog-
nitive abilities in healthy subjects [12], to improve motor
responsiveness in patients with central neurodegenera-
tive disorders [13], and to improve gait parameters and
standing balance in patients with vestibular disorders
[14, 15]. Moreover, nGVS in the frequency band 0.1–
640 Hz has been reported to improve postural sway in
young subjects maintaining an open-eye standing pos-
ture and to produce a large stimulation effect in those
with a long centre of pressure (COP) sway path [16]. In
contrast, nGVS may decrease COP sway in the elderly
[17]; however, because COP sway was measured in a
closed-eye standing position on foam rubber in previous
research, the influence on COP sway while on a firm
surface remains unclear. The lack of a control group in
the previous study also meant that we could not deny
the effects of arousal, motor learning, and other factors
than nGVS.
The purpose of this research was to clarify the effect

of nGVS in the open-eye standing posture by performing
a randomised controlled trial of community-dwelling
elderly people. We also aimed to recognize individuals
who responded to nGVS.

Methods
Subjects
We conducted a randomised controlled trial among
community-dwelling elderly people. The inclusion cri-
teria were that participants needed to be living inde-
pendently, that they could maintain a standing position
with their eyes open and legs together for 30 s without
developing dizziness, and that they had no orthopedic or
neurological disease. We excluded all potential partici-
pants who had previously undergone orthopedic surgery
or who had neurological disease. Participants were ran-
domly assigned to a control group or an nGVS group
after being fully informed of the nature of the research
and providing written informed consent. The study was
performed in accordance with the Declaration of
Helsinki and was approved by the ethics committee of
Niigata University of Health and Welfare
(17750e161007).

Noisy galvanic vestibular stimulation
All nGVS was delivered using a DC-STIMULATOR
PLUS (Eldith, NeuroConn GmbH, Ilmenau, Germany).
Circular electrodes with 2.0 cm diameters were used as
stimulating electrodes and applied to the mastoid
process bilaterally. In the nGVS group, the stimulation
intensity was 0.4 mA, and the stimulation frequency
band was 0.1–640 Hz. Sham stimulation (0 mA) was
performed in the control group.

Measurement of COP
COP sway was measured for 30 s at 100 Hz in a stand-
ing position with eyes open and legs together, using a
CFP400PA102RS (Leptrino, Japan). Participants were
instructed to look at a mark 2 m ahead of them while
standing. We calculated the average COP root mean
square (RMS) area, the sway path length, the mediolat-
eral (ML) mean velocity and the anteroposterior (AP)
mean velocity [16].

Clinical measures of postural stability
In addition to COP sway measurements, we evaluated
clinical measures of postural stability, including the
timed up and go (TUG) test and the one leg stance
(OLS) test. For the TUG test, we observed and timed
standing from a chair, walking 3 m, turning around,
walking back to the chair and sitting down. The TUG
time was the time, in seconds, that participants needed
to complete the test. Longer times indicated worse bal-
ance and mobility [18]. The OLS test involved two trials
of attempting to stand on one leg for 120 s, recording
the maximum time. The OLS test can predict frailty in
the community-dwelling elderly [19].

Experimental procedures
Participants underwent COP sway measurements twice
without stimulation (baseline) and twice during stimula-
tion. A rest time of 1 min was allowed between mea-
surements at baseline and during stimulation, but a rest
time of 3 min was allowed between the baseline and
stimulation measurements. Noise stimulation (0.4 mA;
0.1–640 Hz) was applied to the nGVS group and sham
stimulation (0 mA) was applied to the control group
during the stimulation phases. Fade-in and fade-out
times were both set to 10 s, and COP sway measurement
was performed during stimulation (30 s), after the
fade-in time (Fig. 1).

Statistical analysis
IBM SPSS, Version 22 (IBM Corp., Armonk, NY, USA)
was used for the statistical analyses, with the significance
level set at 5%. Independent-sample Student t-tests were
performed to evaluate the differences in characteristics,
clinical measures of postural stability and COP sway
measurement between the control and nGVS groups at
baseline. Intraclass correlation coefficients (ICC [1, 2])
between each successive baseline and stimulation mea-
surements were calculated to test the reliability of the
results. The RMS area, sway path length, ML mean vel-
ocity and AP mean velocity at baseline and during
stimulation were compared by two-way mixed-design
analysis of variance (ANOVA), as follows: (time [base-
line, stimulation]) × (group [control, nGVS]). When a
significant difference was observed in the interaction, a
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post-hoc paired Student t-test test was applied. More-
over, Pearson’s product moment correlation coefficient
was calculated for the sway path length between baseline
and the stimulation effect. Furthermore, Pearson’s prod-
uct moment correlation coefficient was calculated be-
tween the clinical measures of postural stability (TUG
and OLS) and the stimulation effect. The stimulation ef-
fect was calculated for each group using the baseline
value before each stimulation and the value during
stimulation condition, as follows: (Δ stimulation effect
= [baseline] – [stimulation]) [16].

Results
We enrolled 32 community-dwelling elderly people (7
males and 25 females; mean age 75.8 ± 0.8 years) who
were randomly assigned to a control group (3 males, 13
females, mean age 75.9 ± 1.1 years) and an nGVS group
(4 males, 12 females, mean age 75.7 ± 1.3 years). No

significant differences were found between the groups in
their baseline characteristics, clinical measures of pos-
tural stability and COP sway measures (Table 1). The
ICC for the RMS area was low (0.42–0.94) when com-
pared with sway path length (0.89–0.93), ML mean vel-
ocity (0.87–0.91) and AP mean velocity (0.86–0.95)
(Table 2).
Table 3 shows the RMS area, sway path length, ML mean

velocity and AP mean velocity for the control group and
nGVS groups, together with the results of two-way
mixed-design ANOVA. Sway path length and AP mean vel-
ocity revealed a significant main effect for time and for the
interaction between time and group. ML mean velocity also
had a significant interaction (time × group), but the RMS
area had no significant interaction or main effect. Post-hoc
analysis in the nGVS group revealed that sway path length
(− 7.7 ± 1.9%), ML mean velocity (− 8.5 ± 2.4%) and AP
mean velocity (− 8.3 ± 2.6%) were significantly decreased by

Fig. 1 Overview of experimental design. a: Experimental procedures. Subject underwent COP measurements at the baseline and during sham
stimulation or nGVS. Rest time was set to 1 min between measurements, but 3 min between the baseline and stimulation groups. b: The
stimulation conditions for each group. Fade-in and fade-out times were both set to 10 s for nGVS. We performed COP measurement after the
fade-in time. nGVS, noisy galvanic vestibular stimulation; COP, center of pressure
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stimulation compared with baseline (mean ± standard
error) (Table 3 and Fig. 2). However, in the control group,
no significant differences were found when comparing the
results of stimulation with the baseline findings (sway path
length: 0.2 ± 3.1%, ML mean velocity: 0.6 ± 4.0%, AP mean
velocity: 0.4 ± 3.4%). Although there were significant corre-
lations between the sway path length at baseline and the
sway path length, ML mean velocity and AP mean velocity
during stimulation effects in nGVS group, there were no
such correlations in the control group (Fig. 3). In both the
groups, there was no significant correlation between the
clinical measures of postural stability (TUG and OLS) and
stimulation effect (p > 0.05).

Discussion
We found significant decreases from baseline in sway
path length, ML mean velocity and AP mean velocity
among participants who underwent nGVS. By contrast,
there was no significant difference between the baseline
and stimulation data for the control group. Furthermore,
the stimulation effect of nGVS was prominent in partici-
pants with high sway path length values at baseline. Not-
ably, the significant decreases in sway path length, ML
mean velocity and AP mean velocity in the intervention

group were also associated with high ICC(1,2) values
(range 0.8–0.95), indicating that this result has high reli-
ability [20].
Studies have shown that patients with vestibular disor-

ders have increased COP sway path lengths and mean
velocities [21] and that nGVS can enhance the function
of vestibular afferents [22]. These findings suggest that
the improved function of vestibular afferents may have
reduced COP sway observed in this study. The rationale
for these ameliorating effects of nGVS is considered to
be stochastic resonance [22], a phenomenon where a
signal that is too weak to exceed a given threshold is
amplified by adding noise. Stochastic resonance appears
to enhance information processing in the sensory system
[23, 24]. Recently, nGVS has been reported to suffi-
ciently lower the vestibulospinal reflex threshold to en-
able people to sense and process usually unrecognised
subthreshold vestibular signals, thereby helping to de-
crease postural sway [11]. Furthermore, the afferent ves-
tibular excitation induced by GVS, using direct current
passes through the vestibular nucleus of the brainstem
and vestibular thalamus, can activate brain areas associ-
ated multisensory input (areas 2, 3a/b and 7 and the par-
ieto-insula vestibular cortex) [25]. Alternating-current

Table 1 Comparison of participant details at baseline between the control and nGVS groups

All (n = 32) Control (n = 16) nGVS (n = 16) P value

Sex Male 7 3 4 –

Female 25 13 12

Characteristics Age (years) 75.8 ± 0.8 75.9 ± 1.1 75.7 ± 1.3 0.92

Weight (kg) 55.0 ± 1.5 53.4 ± 2.3 56.7 ± 1.8 0.28

Height (cm) 154.5 ± 1.3 153.2 ± 2.3 155.8 ± 1.8 0.34

Clinical measures of postural stability TUG (s) 6.7 ± 0.2 6.5 ± 0.2 6.9 ± 0.3 0.40

OLS (s) 60.2 ± 7.6 64.9 ± 10.8 55.4 ± 11.0 0.54

COP sway measures at baseline RMS area (mm2) 224.5 ± 22.9 187.9 ± 17.2 261.1 ± 41.2 0.11

Sway path length (mm) 785.6 ± 43.3 789.4 ± 65.2 781.7 ± 59.2 0.93

ML mean velocity (mm/s) 16.2 ± 0.9 16.0 ± 1.3 16.5 ± 1.3 0.79

AP mean velocity (mm/s) 16.4 ± 1.0 16.7 ± 1.5 16.1 ± 1.5 0.75

Characteristics (age, weight and height), clinical measures of postural stability (TUG and OLS) and COP sway measures were not significantly different between the
control and nGVS groups at baseline. AP anteroposterior, COP centre of pressure, ML, mediolatera,; nGVS noisy galvanic vestibular stimulation, OLS, one leg stance
test, RMS, root mean square, TUG, timed up and go test

Table 2 ICCs between the repeated measurements at baseline and during stimulation

Control group nGVS group

Baseline Stimulation Baseline Stimulation

ICC 95% CI ICC 95% CI ICC 95% CI ICC 95% CI

RMS area 0.42 −0.67–0.80 0.68 0.08–0.90 0.75 0.31–0.91 0.94 0.83–0.98

Sway path length 0.89 0.70–0.96 0.93 0.79–0.98 0.89 0.69–0.96 0.93 0.81–0.98

ML mean velocity 0.87 0.64–0.95 0.91 0.73–0.97 0.89 0.69–0.96 0.90 0.73–0.97

AP mean velocity 0.86 0.71–0.96 0.93 0.80–0.98 0.91 0.74–0.97 0.95 0.85–0.98

ICC = intraclass correlation coefficient (model 1, 2).Abbrevations: 95% CI 95% confidence interval, ANOVA analysis of variance, AP anteroposterior, ICC Intraclass
correlation coefficient, ML medio-lateral, nGVS noisy galvanic vestibular stimulation, RMS root mean square
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GVS can also activate areas involved in processing ves-
tibular information for head and body orientation in space
(i.e. the supramarginal gyrus, posterolateral thalamus,
cerebellar vermis, posterior insula and hippocampus) [26].
Even in nGVS, brain rhythms in a wide brain area have
been reported to be modulated, and the involvement of
stochastic resonance has been proposed [27]. The activa-
tion of cortical areas involved in multisensory input, in-
cluding vestibular information, may be involved in the
reduction of postural sway during nGVS.
We consider that vestibular afferent function was en-

hanced by nGVS in this study, and that postural sway
decreased because of activation of the cortical region in-
volved in vestibulospinal and vestibular sensory input.
Furthermore, we found that nGVS was more effective
for participants who had a high sway path lengths at
baseline. Given that no such correlation was observed
in the control group, we consider this a characteristic

effect of nGVS. This is an important finding because
sway path length is an independent predictor of falls
in the elderly, with values known to be higher in
fallers than in non-fallers [28, 29]. Similarly, it has
been reported that ML and AP mean velocities are
increased in fallers [30–32]. These support the argu-
ment that nGVS could be an effective treatment for
appropriately screened elderly patients with balance
disorders.
Interestingly, we found no change in the RMS area;

but, the reliability of the sway area has been reported to
be less than that of the mean velocity [33]. In addition,
we found that the RMS area showed a low ICC, and this
poor reliability may have affected our results. However,
previous studies have shown that the sway area de-
creases during nGVS [10, 14]. In this study, nGVS was
performed at a constant intensity (0.4 mA), whereas in
previous studies it has been performed at intensities that

Table 3 COP sway (mean ± standard error) at baseline and during intervention in the control and nGVS groups and the results of
two-way mixed-design ANOVA

Value of COP sway
measurement

Control group nGVS group

Baseline Stimulation P value Baseline Stimulation P value

RMS area (mm2) 187.9 ± 17.2 182.2 ± 22.1 0.708 261.1 ± 41.2 244.9 ± 42.8 0.570

Sway path length (mm) 789.4 ± 65.2 790.3 ± 65.0 0.970 781.7 ± 59.2 714.3 ± 49.8 0.003

ML mean velocity (mm/s) 16.0 ± 1.3 16.1 ± 1.4 0.801 16.5 ± 1.3 14.9 ± 1.0 0.005

AP mean velocity (mm/s) 16.7 ± 1.5 16.6 ± 1.4 0.858 16.1 ± 1.5 14.5 ± 1.1 0.007

Two-way mixed-design ANOVA Time Group Time × Group

F value P value F value P value F value P value

RMS area 0.479 (1,30) 0.494 2.419 (1,30) 0.130 0.111 (1,30) 0.741

Sway path length 5.232 (1,30) 0.029 0.249 (1,30) 0.622 5.503 (1,30) 0.026

ML mean velocity 3.882 (1,30) 0.058 0.038 (1,30) 0.847 5.549 (1,30) 0.025

AP mean velocity 5.457 (1,30) 0.026 0.476 (1,30) 0.496 4.328 (1,30) 0.046

COP sway is reported as mean ± standard error, AP anteroposterior; ANOVA analysis of variance, COP, centre of pressure, ML, mediolateral, nGVS, noisy galvanic
vestibular stimulation, RMS root mean square

a b c

Fig. 2 The effect of nGVS in the control and intervention groups. Bar charts of a sway path length, b ML mean velocity and c AP mean velocity
(error bars indicate standard error; **p < 0.01)
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were optimised for each subject. The lack of decrease in
the RMS area could be explained by the difference in
stimulus intensity settings. In addition, we used a stimu-
lation frequency band of 0.1–640 Hz on the basis of a
previous study [16, 34–37] although whether this band
is optimal for nGVS remain unknown. The optimum
stimulation condition (stimulation intensity and fre-
quency band) for nGVS should be elucidated in future
studies.
Further, although there was a significant correlation

between the baseline COP sway path length and stimula-
tion effect, there was no correlation between clinical
measures of postural stability (TUG and OLS) and
stimulation effect. In this study, we recruited only those
subjects who lived independently, which may have re-
sulted in the differences in clinical measures of postural
stability being small among individuals. This, in turn,
may have accounted for the failure to identify a correl-
ation with irritation effect. In future research, we believe
that including a larger cohort of elderly people with dif-
ferent balance disorders will help to resolve this issue.

Conclusion
In conclusion, we have shown that nGVS decreases COP
sway in a community-dwelling elderly population, pro-
ducing a large stimulation effect in those with high COP
sway path lengths in open-eyed standing who are at high
risk of falls. However, we did not assess the effects of

nGVS in fragile elderly patients who suffer from repeat
falls and crucially did not determine whether nGVS de-
creases the incidence of falls. Although our data suggest
that nGVS could be effective at preventing falls in the
elderly, future research is needed to look at these
remaining issues.
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