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Robot-assisted gait training (Lokomat)
improves walking function and activity in
people with spinal cord injury: a systematic
review

Ki Yeun Nam1†, Hyun Jung Kim2†, Bum Sun Kwon1, Jin-Woo Park1, Ho Jun Lee1 and Aeri Yoo3*
Abstract: Robot-assisted gait training (RAGT) after spinal cord injury (SCI) induces several different neurophysiological
mechanisms to restore walking ability, including the activation of central pattern generators, task-specific
stepping practice and massed exercise. However, there is no clear evidence for the optimal timing and efficacy
of RAGT in people with SCI. The aim of our study was to assess the effects of RAGT on improvement in walking-
related functional outcomes in patients with incomplete SCI compared with other rehabilitation modalities
according to time elapsed since injury. This review included 10 trials involving 502 participants to meta-analysis.
The acute RAGT groups showed significantly greater improvements in gait distance, leg strength, and functional
level of mobility and independence than the over-ground training (OGT) groups. The pooled mean difference
was 45.05 m (95% CI 13.81 to 76.29, P = 0.005, I2 = 0%; two trials, 122 participants), 2.54 (LEMS, 95% CI 0.11 to 4.96,
P = 0.04, I2 = 0%; three trials, 211 participants) and 0.5 (WISCI-II and FIM-L, 95% CI 0.02 to 0.98, P = 0.04, I2 = 67%;
three trials, 211 participants), respectively. In the chronic RAGT group, significantly greater improvements in speed
(pooled mean difference = 0.07 m/s, 95% CI 0.01 to 0.12, P = 0.01, I2 = 0%; three trials, 124 participants) and
balance measured by TUG (pooled mean difference = 9.25, 95% CI 2.76 to 15.73, P = 0.005, I2 = 74%; three trials,
120 participants) were observed than in the group with no intervention. Thus, RAGT improves mobility-related
outcomes to a greater degree than conventional OGT for patients with incomplete SCI, particularly during the
acute stage. RAGT treatment is a promising technique to restore functional walking and improve locomotor
ability, which might enable SCI patients to maintain a healthy lifestyle and increase their level of physical activity.

Trial registration: PROSPERO (CRD 42016037366). Registered 6 April 2016.
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Background
A spinal cord injury (SCI) is a lesion of neural elements of
the spinal cord, it is a devastating condition with a major
impact on a person’s life. Locomotor ability is frequently
affected in people with SCI, and decreased mobility after
SCI is associated with a heightened risk of a decrease in
both life satisfaction and quality of life [1]. Locomotor
training focuses on retraining the motor function via plas-
tic change [2], and the neurophysiological mechanism
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underlying the restoration of human locomotion after SCI
involve enhancing the afferent input to the spinal cord
and activating central pattern generators (CPG) embedded
within the lumbosacral spinal cord. Plastic changes can be
induced in both the spinal cord level and sensory motor
cortex via intensive locomotor training, but only in in-
complete SCI subjects [3]. Motor recovery in SCI patients
can be improved with both conventional overground
walking training (OGT) and body weight-supported
(BWS) treadmill training. BWS treadmill training enables
early initiation of gait training, integration of weight-
bearing activities, stepping and balance using a task-
specific approach and symmetrical gait pattern [4]. To
replicate a normal gait pattern during manually facilitated
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BWS treadmill training, two or three therapists are needed
to control and assist with trunk and limb kinematics.
Manual training is strenuous and exhausting for ther-

apists, so sophisticated automated electromechanical
devices have been developed [5]. In the late 1990s,
robot-assisted gait training (RAGT) was introduced. It
offers several advantages, including the ability to in-
crease the intensity and total duration of training while
maintaining a physiological gait pattern. Also, the task-
specific stepping practice is known to enhance the
afferent feedback associated with normal locomotion
and can induce plasticity in the involved motor centers
[6, 7]. Moreover, locomotor robotic devices can reduce
personnel costs involved in manual assistance training,
which can require up to three physical therapists.
Several studies have evaluated RAGT in incomplete

SCI patients. Although some of the results were encour-
aging, there is still uncertainty regarding the appropriate
timing of RAGT following SCI, and no clear evidence of
the efficacy of RAGT in terms of SCI patients’ gait func-
tional outcomes, such as walking ability (i.e., gait speed
and distance), body functions (i.e., lower extremity
motor score and spasticity), and functional level of
mobility and independence has been shown. The aim of
the present study was to assess the effects of RAGT on
improving walking-related functional outcomes accord-
ing to time since injury in patients with incomplete SCI,
as measured relative to other rehabilitation modalities.

Method
Materials and methods
We used comprehensive databases to find studies com-
paring RAGT with any other exercise or physiotherapy.
This study was performed according to the Cochrane
Review Methods and reported according to the Preferred
Reporting Items for Systematic Reviews and Meta-
Analyses statement [8].

Data source & literature source
Randomized trials were identified by searching MED-
LINE, EMBASE, SCOPUS, Web of Science, Cochrane
Central Register of Controlled Trials, the World Health
Organization International Clinical Trials Registry Plat-
form, and the clinical trials registry and database of the
U.S. National Institutes of Health (ClinicalTrials.gov) on
January 17 2016. We put no restrictions on language or
year of publication in our search. The following key-
words were searched: spinal cord injuries, gait disorders,
neurologic, and robotics. See Appendix 1 for a compre-
hensive list (MEDLINE, EMBASE, CENTRAL Web of
Science and Scopus). Search strategies were developed
for each database using both free-text terms and the
controlled vocabulary (MeSH and Emtree). We also
searched the reference lists of included studies and other
reviews to identify additional trials. Duplicate records
were identified by title, authors and journal citations and
removed.

Study selection
Study inclusion was decided independently by two re-
viewers (ARY and KYN) based on the selection criteria.
Studies were selected in two stages, as follows: First, we
screened the titles and abstracts of identified studies.
Second, we screened the full text. We included random-
ized controlled trials (RCTs) of parallel-group or cross-
over design involving patients with SCI. Studies were
included in our meta-analysis if they compared RAGT
to a control comprising any other exercise or no treat-
ment; or involved participants with an incomplete, trau-
matic or nontraumatic, nonprogressive SCI, as defined
by AIS grades B, C, or D; [9] participants were a mini-
mum of 16 years of age because most neurologic devel-
opment is complete once adolescence is reached; [10]
training parameters were specified in detail; and loco-
motor or locomotor-related outcomes were evaluated.

Data extraction
The two reviewers independently extracted data from
each study using a predefined data extraction form.
Disagreements were resolved through discussion or, if
required, adjudication by a third reviewer.
The following variables were extracted from studies:

(1) mean and SD of walking speed, walking capacity,
walking independence and safety and incidence of ad-
verse events during the trial in the intervention and con-
trol groups; (2) demographic, clinical, and treatment
characteristics (e.g., number of patients in the interven-
tion and control groups); (3) intervention and control
protocol type; and (4) method of assessment. If the
above variables were not mentioned in the studies, the
data were requested from the authors via email.

Assessment of methodological quality
The quality of included trials was assessed by extracting
PEDro Scale scores from the Physiotherapy Evidence
Database (www.pedro.org.au). The PEDro Scale has 11
items and is designed to rate the methodological quality
(internal validity and statistical information) of random-
ized trials. Each item, with the exception of item #1,
contributes one point to the total PEDro score (range, 0
to 10 points). The PEDro score is a valid measure of the
internal validity and completeness of reporting. It has
undergone Rasch analysis and showed moderate levels
of inter-rater reliability (ICC 0.68, 95% CI 0.57 to 0.76)
[11, 12]. Trials scoring < 6 were deemed to be of low
quality [13]. Tests for funnel plot asymmetry are gener-
ally performed only when at least 10 studies are included
in a meta-analysis [14]. Although 10 studies were

http://www.pedro.org.au
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included in this analysis, when sorted by outcomes, each
outcome contained fewer than 9 studies. Thus publica-
tion bias in these trials could not be assessed.

Statistical analysis
The main outcome was ambulatory function measured as
the speed (m/s) and capacity (2 and 6 min gait distance)
of walking. Other frequently investigated outcomes were
the lower extremities motor scale (LEMS), functional in-
dependence measure – locomotion (FIM-L), walking
index for spinal cord injury (WISCI), modified Ashworth
scale (MAS), and timed up and go (TUG) test. We used
weighted mean differences to estimate the treatment ef-
fects for ambulatory function. The weighted mean differ-
ence and 95% confidence intervals (CI) were calculated
using the inverse variance method with random-effects
weighting. We pooled the data as change values for all
outcomes, if available. If not, they were estimated from
the final and baseline values.
The statistical heterogeneity between the studies was

evaluated by Cochran’s Q test and quantified with the
I2 statistic (I2 ≥ 50% indicated substantial (moderate,
high) heterogeneity) [15]. To identify the sources of
heterogeneity, subgroup analyses were conducted ac-
cording to (1) type of control [no intervention, body
weight-supported gait training (BWS), OGT, and strength
exercise], (2) time since injury [acute (<6 months), chronic
(>12 months), and unknown]. We used RevMan version
5.2 for these analyses.

Results
Identification of studies
Searches of the databases resulted in identification of
653 articles (Fig. 1). Of these, 333 publications were ex-
cluded as they did not fulfill the selection criteria. For
the remaining 130 articles, we obtained full manuscripts,
and following scrutiny of these, we identified 36 poten-
tially relevant studies and 26 publications were excluded
as they were:

– 12 studies were not a RCTs
– 3 studies investigated physiological or biomechanical

measures only
– 1 study investigated pharmacological treatment
– 7 studies investigated robotic techniques only

(These papers were comparative studies of the
operation of RAGT devices.)

– 3 studies investigated patients with brain injury,
stroke, cerebral palsy, or Parkinson’s disease

Therefore, 10 studies were included in the review. Five
trials were conducted in the U.S. [16–20], 2 in Spain [21,
22], 1 in Switzerland [23], 1 in China [24], and 1 in Korea.
[25] All trials compared parallel intervention groups, and
one study [23] used a crossover design. All studies were
published in English. Two articles [16, 26] were based on
the same trial, so the participants were counted only once.
Another one of the reports [17] replaces and completes
preliminary study results [27].

Study characteristics and patient populations
Participants
The demographic characteristics of all 502 participants
in the 10 studies are shown in Table 2. The number of
participants in each study ranged from 9 [8, 23] to 88
[22] and the age of the participants ranged from 16 [22]
to 70 years [22, 23]; more males than females partici-
pated. All included studies provided information on the
level of spinal cord injury (C2 to L3) and baseline sever-
ity (AIS grades B to D); i.e., incomplete SCI. Most stud-
ies involved upper motor neuron lesions only, but two
[22, 24] also included participants with lower motor
neuron lesions. Most studies were AIS grade C/D [16,
17, 20–23] or D [24, 25], motor incomplete SCI only,
but two studies [18, 19] included AIS grade B/C/D,
motor or sensory incomplete SCI. Of the participants,
263 in four studies [18, 21, 22, 25] were assessed at <
6 months post-injury and 209 in five studies [16, 17, 19,
20, 23] were assessed at > 12 months post-injury. The
remaining 30 participants in one study (mean
6.3 months post-injury) did not belong to any group
[24]. To account for possible spontaneous neurologic
recovery, any trials involving participants at an early or
acute stage after SCI (<1 year post-injury) [21, 28–31]
and those whose participants were at a chronic stage
(>1 year post-injury) [17, 27, 31] were analyzed separ-
ately [2, 32, 33]. Acute participants in all studies were
seen at ≤6 months since injury.

Quality
The mean PEDro score of the studies was 5.7 (range, 3
to 8) (Table 1). Two trials [21, 22] scored 8 on the PE-
Dro scale, which was the highest possible score given
the nature of the intervention since it would not be feas-
ible to blind clinicians or participants. The majority of
the studies were randomized (100%), analyzed between-
group differences (100%), reported point estimates and
variability (90%), had similar groups at baseline (50%),
reported < 15% loss to follow-up (90%) and had blinded
assessors (50%). The majority of the studies did not con-
ceal the allocation list (70%), carry out an intention-to-
treat analysis (60%), or blind participants or therapists
(100%).

Interventions
All studies investigated the robotic-assisted device
‘Lokomat’ (Hocoma; Zurich, Switzerland) as the ex-
perimental intervention. Among 10 comparisons, 3



Fig. 1 Flow of studies through the review
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investigated RAGT versus conventional OGT [21, 22, 25]
and 2 investigated RAGT versus BWS gait training [17,
18]. Two investigated RAGT versus non-gait-specific
training (strength [23] or bike [24]). Finally, three trials
compared RAGT with no intervention [16, 19, 20].
The frequency of treatment ranged from three [16, 18–

20, 25] to four [23] or five [17, 21, 22] times per week.
The duration of treatment was 4 weeks [16, 19, 20, 23,
25], 8 weeks [18, 21, 22] or 12 weeks [17]. One study in-
volved only one treatment session [24]. The treatment in-
tensity (in terms of session duration) ranged from 30 to
60 min and the treatment time did not differ between the
control and experimental groups [17, 18, 21–25], with the
exception of the no-intervention groups [16, 19, 20]. A
summary of the interventions is presented in Table 2.
Outcomes
All included studies investigated improvement in ambu-
latory function measured as speed (m/s, 10 m walk test)
[16, 19–24] and capacity of walking (meters walked in
6 min [16, 21, 22] or 2 min [17]) as primary outcomes.
Walking aids were allowed in all studies. Other fre-
quently investigated outcomes were: leg strength mea-
sured as LEMS (lower extremity motor score of the
neurological examination according to the American
Spinal Injury Association International Standards [34],
range 0 to 50) [17, 18, 21–23, 25], level of functional
mobility and independence measured by WISCI-II (as-
sesses the amount of physical assistance needed, as well
as devices required) [18, 23, 25],, FIM-L (independence
of gait) [18, 21, 22], functional mobility and balance



Table 1 PEDro criteria and scores of included studies (n=10)

Study Random
allocation

Concealed
allocation

Groups
similar at
baseline

Participant
blinding

Therapist
blinding

Assessor
blinding

<15%
dropouts

Intention-
to-treat
analysis

Between-group
difference
reported

Point estimate
and variability
reported

Total

(0 to 10)

Alcobendas-
Maestro 2012

Y Y Y N N Y Y Y Y Y 8

Duffell 2015 Y N Y N N N N N Y Y 4

Esclarin-Ruz
2014

Y Y Y N N Y Y Y Y Y 8

Field-Fote 2011 Y N Y N N Y Y N Y Y 6

Hornby 2005 Y N N N N N Y N Y N 3

Labruyere 2014 Y N N N N Y Y Y Y Y 6

Niu 2014 Y N N N N N Y Y Y Y 5

Shin 2014 Y N Y N N N Y N Y Y 5

Tang 2014 Y N N N N N Y Y Y Y 5

Varoqui 2014 Y Y N N N Y Y Y Y Y 7
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measured by TUG [16, 19, 20], and spasticity measured
as MAS [18, 21].
Effects on gait velocity
Gait velocity tended to be higher in the acute RAGT
groups than in the OGT groups, albeit not significantly so
(pooled mean difference = 0.08 m/s, 95% CI -0.00 to 0.15;
P = 0.05; I2 = 0%, two trials, 130 participants) (Fig. 2). In
the chronic RAGT groups, significantly greater improve-
ments were observed than in the no intervention groups
(pooled mean difference = 0.07 m/s, 95% CI 0.01 to 0.12,
P = 0.01, I2 = 0%; three trials, 124 participants).
Effects on gait distance
Significantly greater improvements were observed in the
acute RAGT groups than in the OGT groups (pooled
mean difference = 45.05 m, 95% CI 13.81 to 76.29; P =
0.005; I2 = 0%, two trials, 122 participants) (Fig. 3). How-
ever, there were no significant improvements in the
chronic RAGT groups compared to the BWS or no-
intervention groups (pooled mean difference = -4.92 m,
95% CI -11.96 to 2.11; P = 0.17; I2 = 0%, two trials, 114
participants).
Effects on leg strength
In the acute RAGT, leg strength measured by LEMS was
greater than that in the OGT groups (pooled mean dif-
ference = 2.54, 95% CI 0.11 to 4.96, P = 0.04, I2 = 0%;
three studies, 211 participants) (Fig. 4). However, there
was no significant improvement in the chronic RAGT
groups compared to the BWS and strength groups
(pooled mean difference = -2.18, 95% CI -4.90 to 0.54; P
= 0.12; I2 = 0%, two studies, 73 participants).
Effects on functional level of mobility and independence
Significantly greater improvements on the WISCI-II and
FIM-L were observed in the acute RAGT groups com-
pared to the OGT groups (pooled mean difference = 0.5,
95% CI 0.02 to 0.98; P = 0.04; I2 = 67%, three trials, 211
participants) (Fig. 5). There was no significant improve-
ment in the chronic RAGT groups compared to the
strength group (mean difference = 0.16, 95% CI -1.15 to
1.48, P = 0.81; one trial, 9 participants).

Effects on balance
Significantly greater improvements in TUG were ob-
served in the chronic RAGT groups compared to the no
intervention groups (pooled mean difference = 9.25, 95%
CI 2.76 to 15.73, P = 0.005, I2 = 74%; three trials, 120
participants) (Fig. 6). No trial with acute participants
measured recovery of balance.

Effects on spasticity
The overall changes in spasticity were similar in the con-
trol and acute RAGT groups (pooled mean difference
was 0.48, 95% CI -0.50 to 1.46, P = 0.34, I2 = 84%; 2 tri-
als, 105 participants) (Fig. 7). No trial with chronic par-
ticipants measured changes in spasticity.

Discussion
This systematic review aimed to provide an overview of
the current evidence on the RAGT approach to gait re-
habilitation after incomplete SCI. There was no super-
iority of the control group in all outcomes. The RAGT
group was superior or equivalent when compared to the
control group. The data for participants < 6 months
post-injury showed improvements in walking distance,
lower limb strength and functional level of mobility and
independence for RAGT over conventional OGT. The
data for participants > 1 year post-injury showed



Table 2 Summary of included studies (n=10)

Study Design Participants Intervention Outcome measures

Alcobendas-Maestro 2012 RCT n = 80
Time since injury (months) = 3 - 6
ASIA scale = C, D
Level of injury = C2
to T12 (UMN)

Exp = RAGT 30 min x 5/wk x 6 wk
Con = OGT 60 min x 5/wk x 6 wk
Both = Usual PT

• Speed = 10-m walk test
• Distance = 6-min walk test
• Functional level = WISCI II,
FIM-L

• Leg strength = LEMS
• Spasticity = MAS
• Pain = VAS
• Timing: 0, 8 wk

Duffell 2015 RCT n = 56
Time since injury (months) > 12
ASIA scale = C, D
Level of injury = above T10 (UMN)

Exp = RAGT 30~45 min x 3/wk x 4 wk
Con = no intervention

• Speed = 10-m walk test
• Distance = 6-min walk test
• Balance = TUG
• Timing: 0, 1, 2, 4 wk

Esclarin-Ruz 2014 RCT n = 88
Time since injury
(months) < 6
ASIA scale = C, D
Level of injury = C2 to L3
(UMN+LMN)

Exp = RAGT 30 min x 5/wk x 8 wk
Con = OGT 30 min x 5/wk x 8 wk
Both = Usual PT 60 min x 5/wk x 8 wk

• Speed = 10-m walk test
• Distance = 6-min walk test
• Functional level = WISCI II,
FIM-L

• Leg strength = LEMS
• Timing: 0, 8 wk

Field-Fote 2011 RCT n = 74
Time since injury (months) > 12
ASIA scale = C, D
Level of injury = At or above
T10 (UMN)

Exp = RAGT 60 min x 5/wk x 12 wk
Con1 = BWS treadmill-based training
with manual assistance 60 min x 5/wk
x 12 wk
Con2 = BWS treadmill-based training
with stimulation 60 min x 5/wk x 12
wk
Con3 = OGT with stimulation with
BWS 60 min x 5/wk x 12 wk

• Speed = 10-m walk test
• Distance = 2-min walk test
• Leg strength = LEMS
• Timing: 0, 12 wk

Hornby 2005 RCT n = 35
Time since injury (months) < 6
(14–180 days)
ASIA scale = B, C, D
Level of injury = Above
T10 (UMN)

Exp = RAGT 30 min x 3/wk x 8 wk
Con1 = BWS treadmill-based training
with manual assistance 30 min x 3/wk
x 8 wk
Con2 = OGT with BWS 30 min x 3/wk
x 8 wk

• Speed = 10-m walk test
• Distance = 6-min walk test
• Functional level = WISCI II,
FIM-L

• Leg strength = LEMS
• Spasticity = MAS
• Balance = TUG
• Timing: 0, 8 wk

Labruyere 2014 RCT
Cross-over

n = 9
Time since injury (months) > 12
ASIA scale = C, D
Level of injury = C4 -T11 (UMN)

Exp = RAGT 45 min x 4/wk x 4 wk
Con = Strength 45 min x 4/wk x 4 wk

• Speed = 10-m walk test
• Functional level = WISCI II
• Leg strength = LEMS
• Pain = VAS
• Balance = BBS
• Timing: 0, 1, 2, 3, 4 wk

Niu 2014 RCT n = 40
Time since injury (yrs) = Exp 8.9
±9.9, Con 7.5±5.5
ASIA scale = B, C, D
Level of injury = above T10 (UMN)

Exp = RAGT 60 min x 3/wk x 4 wk
Con = no intervention

• Speed = 10-m walk test
• Distance = 6-min walk test
• Balance = TUG
• Timing: 0, 1, 2, 4 wk

Shin 2014 RCT n = 60
Time since injury (months) < 6
ASIA scale = D
Level of injury = UMN

Exp = RAGT 40 min x 3/wk x 4 wk
Con = OGT 30 min x 3/wk x 4 wk
Both = Usual PT 30 min x 2/wk x 4 wk

• Functional level = WISCI II,
SCIM3, AMI

• Leg strength = LEMS
• Timing: 0, 4 wk

Tang 2014 RCT n = 30
Time since injury (months) = 6.3
ASIA scale = D
Level of injury = T8 to L3
(UMN+LMN)

Exp = RAGT 40 min
Con = Bike 40 min

• Speed = 10-m walk test
• Agility = probe reaction
time

• Timing: before and after the
intervention

Varoqui 2014 RCT n = 30
Time since injury (yrs) = Exp 11.80
±2.54, Con 8.09±1.89
ASIA scale = C, D
Level of injury = above T10 (UMN)

Exp = RAGT 60 min x 3/wk x 4 wk
Con = no intervention

• Speed = 10-m walk test
• Distance = 6-min walk test
• Balance = TUG
• Timing: 0, 4 wk

Exp experimental group, Con control group, RAGT robotic-assisted gait training, OGT over-ground training), Strength, BWS body weight-supported gait training,
WISCI walking index for spinal cord injury, LEMS lower extremities motor scale, FIM-L Functional Independence Measure – Lokomotion, MAS modified Ashworth
scale, VAS visual analog scale, TUG timed up and go, AMI ambulatory motor index
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Fig. 2 Weighted mean difference (95% CI) of the effect of RAGT compared with control on gait speed by pooling data from 8 trials (n = 355)
with subgroup analysis by (a) time since injury (acute < 6 months, chronic > 12 months) and (b) type of intervention (BWS, OGT, strength and no
intervention) in people with SCI
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Fig. 3 Weighted mean difference (95% CI) of the effect of RAGT compared with control on gait distance by pooling data from 4 trials (n = 298)
with subgroup analysis by time since injury (acute < 6 months, chronic > 12 months) and type of intervention (BWS, OGT, and no intervention) in
people with SCI
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improvements in gait speed and balance with RAGT
compared with no intervention. However, there was no
greater improvement in walking speed in the acute
RAGT groups compared to OGT, and no greater im-
provement in gait distance, leg strength or functional
level of mobility and independence in the chronic RAGT
groups compared to the groups that underwnt other
forms of physiotherapy.
Studies in spinalized animals have shown that motor

potential can be elicited by reciprocal passive movement
of the lower limbs [35]. The suggested mechanism is the
activation of gait centers in the spinal cord, the CPG. In-
deed, similar locomotor activity can be activated in
patients with severe spinal cord injuries via passive acti-
vation of the legs on a treadmill [36]. Synchronous
reciprocal movements of both legs, simulating normal
walking, are required to activate the locomotor centers
in the spinal cord. Often, two physiotherapists are re-
quired to perform these reciprocal movements, which
should be highly symmetrical and physiological to stimu-
late the locomotor centers effectively. It is important to
achieve symmetrical and physiological walking with body
weight support to accurately stimulate the locomotor
centers and therefore activate paralyzed muscles [37].
To improve over-ground walking ability, locomotor

therapies that combine a BWS system with a treadmill
have been developed over the past two decades [38].
BWS training has been shown to be effective in improv-
ing ambulatory function after SCI, although it is not
more effective than equivalent over-ground mobility
training [29, 39]. A recent meta-analysis of gait training
in SCI revealed that the pooled mean between-group
(comparing treadmill training with OGT) difference for
gait velocity was−0.01 m/s (95% CI−0.09 to 0.08) [39].
These results are equivalent to those of a 2012 Cochrane
review [40]. Another strategy to improve walking after
SCI is to administer BWS treadmill training combined
with functional electrical stimulation (FES). Its benefits
have been noted in terms of CNS regeneration, initiation
of stepping, improving foot clearance, knee extension,
and strength in both acute and chronic participants [41–
43]. However, a recent meta-analysis revealed that
people with SCI who used FES did not significantly in-
crease their walking speed and capacity when compared
with patients who were treated with other approaches
[40].
RAGT has many advantages over conventional BWS

treadmill training methods, including early initiation of
gait training in severely dependent patients, less effort
for physiotherapists, longer duration and higher intensity
of gait, more physiological and reproducible gait pat-
terns, and the possibility to measure a patient’s perform-
ance [44]. These factors contribute to spinal and central
neuroplasticity. RAGT allows wheelchair-bound patients
to practice up to 1000 steps during a 30 min session,
compared with a maximum of only 50–100 steps during
a conventional therapy session [45]. Furthermore, ac-
cording to recent studies, RAGT has potential aerobic
benefits and a positive influence on cardiopulmonary fit-
ness in severely disabled spinal cord and stroke patients



Fig. 4 Weighted mean difference (95% CI) of the effect of RAGT compared with control on leg strength (LEMS) by pooling data from 6 trials
(n = 314) with subgroup analysis by (a) time since injury (acute < 6 months, chronic > 12 months) and (b) type of intervention (BWS, OGT, and
strength) in people with SCI
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[46]. Also, RAGT may have some positive effect on
other parameters associated with quality of life in SCI
patients, including cardiopulmonary function, regulation
of bowel movements, and bone density [47, 48].
Three types of robotic-assisted device have been devel-

oped: exoskeleton type, end-effector type and portable
powered robotic exoskeletons [49–51]. Examples of end-
effector devices are the “G-EO-System” [50], the “Loko-
help” [52], the “Haptic Walker” [53], and the “Gait
Trainer GT 1” [54]. The definition of an end-effector
principle is that a patient’s feet are placed on footplates
whose trajectories simulate the stance and swing phases
during treadmill gait training [50]. The two prototypes
of the exoskeleton type are the “LOPES” (University of



Fig. 5 Weighted mean difference (95% CI) of the effect of RAGT compared with control on functional level and independence (WISCI-II and
FIM-L) by pooling data from 5 trials (n = 250) with subgroup analysis by time since injury (acute < 6 months, chronic > 12 months) and type of
intervention (BWS, OGT and strength) in people with SCI
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Twente, Netherlands) [53] and “Lokomat” (Hocoma;
Zurich, Switzerland) [37], a treadmill-based walking
machine comprised of a harness which carries patients
in an upright position and robotic arms attached to the
patient’s legs and allows physiological and symmetrical
reciprocal movement on a treadmill. Compared to
treadmill-based gait orthoses, portable powered robotic
exoskeletons are compact and wearable, they provide
individuals with complete paralysis the ability to walk
independently over-ground in a natural reciprocal pat-
tern. Only 10 RCTs of the exoskeleton type (all involv-
ing the Lokomat) have been performed to date, and no
RCT of the end-effector type or portable powered exo-
skeletons has been carried out.
Fig. 6 Weighted mean difference (95% CI) of the effect of RAGT on balanc
data from 3 trials (n = 125) in people with chronic SCI
Some reviews have assessed the quality of current evi-
dence on the effectiveness of RAGT in spinal cord injury
patients, focusing on walking ability and performance,
but no evidence that RAGT improves walking function
more than other locomotor training strategies has been
reported [55]. In particular, Harvey [39] showed that there
is nothing intrinsically therapeutic about cyclic walking
with robotic devices, although RAGT may provide a con-
venient and safe way for therapists to provide intensive re-
petitive practice. Also, Dobkin [56] suggested in a
scientifically-conducted efficacy trial that RAGT should not
be routinely provided to disabled, vulnerable persons.
However, this meta-analysis showed that participants
< 6 months post-injury demonstrated improvements
e (TUG) compared to that in the no intervention group by pooling



Fig. 7 Weighted mean difference (95% CI) of the effect of RAGT on spasticity (MAS) compared to that with control by pooling data from 2 trials
(n = 105) in people with SCI
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in walking distance, functional level of mobility and
independence and lower limb strength with RAGT
over conventional OGT intervention. The evidence
for the mechanisms underlying functional improve-
ments in humans is poor, particularly in terms of
neural changes in the spinal cord. However, RAGT has
been shown to lead to changes in many spinal reflex path-
ways behave more like those of healthy controls following
robot-mediated training in patients with SCI [57]. Of par-
ticular importance is the finding that, among other
changes to the spinal reflex circuitries, robotic-assisted
step training in SCI patients resulted in the re-emergence
of a physiological phase modulation of the soleus H-reflex
during walking [58].
The role of RAGT in gait rehabilitation is similar to that

in other central nervous system disorders such as stroke,
traumatic brain injury, and multiple sclerosis. A recent
meta-analysis of 23 trials with a total of 999 stroke pa-
tients showed a small additional value of RAGT combined
with conventional training compared to conventional
training alone, especially for acute patients. In traumatic
brain injury patients, a recent systematic review showed
that RAGT may have a beneficial effect on the rehabilita-
tion process and is feasible and effective in improving gait
function in multiple sclerosis patients [44].
A novel cable-driven robotic gait training system can

provide controlled forces to the limb during the swing
phase of gait to produce an optimal training paradigm
with either assistance or resistance [59]. One pilot RCT
study showed that cable-driven robotic resistance training
can be used as an adjunct to BWS treadmill training to im-
prove overground walking function in humans with chronic
incomplete SCI compared to assistance training [60]. An-
other pilot RCT study provided evidence that Lokomat-
applied resistance training may improve performance in
skilled overground walking tasks in patients with chronic
motor incomplete SCI compared to conventional Lokomat-
assisted gait training [61]. Greater cognitive engagement
during training may have elicited greater involvement of
cortical regions associated with gait, which are particularly
involved in the adjustments of motor output during swing
[62], and cable-driven robotic resistance training is promis-
ing gait training for chronic incomplete SCI patients.
No study has yet been published that directly com-
pares different types of devices, end-effector, or exoskel-
eton devices. Furthermore, no data are available
regarding the optimal RAGT protocol. Larger controlled
studies are required to determine the optimal timing
and protocol design that will maximize efficacy and
long-term outcomes in neurological patients. Another
important issue is the availability and cost of these de-
vices. At present, their usage is limited to highly special-
ized centers with the required space and resources.
Therefore, more compact and affordable devices for
home use are needed [44]. In addition, some technical
limitations have been identified. The fixed trajectory
control strategy used in both types of robotic systems
may encourage passive rather than active training and
may eliminate the variability in kinematics of the lower
limbs, which is thought to be critical for successful
motor adaptation. The limited degree of freedom in the
exoskeleton type, which allows movement only in the sa-
gittal plane, may limit the natural walking pattern and
affect gait dynamics.
The methodologic quality of all included trials was ei-

ther low or good, and the study designs differed consid-
erably. Moreover, eligibility criteria, randomization
processes, timing of treatment, intervention parameters,
and their execution, frequency, and intensity were com-
monly heterogeneous or not clearly stated in the articles
[2]. Failure to comply with the high methodologic re-
quirements of RCTs significantly increases the risk of
bias within these trials, as represented in the final PEDro
scores. The power of the findings and their implication
for clinical practice are thereby diminished [63].

Conclusions
This review provides evidence that the acute RAGT
group showed significantly greater improvements in gait
distance, strength, and functional level of mobility and
independence than the OGT group. In the chronic
RAGT group, significantly greater improvements in
speed and balance were observed than in the group with
no intervention.
RAGT treatment in incomplete SCI patients showed

promise in restoring functional walking. An improvement
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in locomotor ability in persons with SCI using RAGT
might enable them to maintain a healthy lifestyle and in-
crease their level of physical activity.
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