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Abstract

objective marker for meditation.

meditation experience in future studies.

Background: This study investigates measures of mindfulness meditation (MM) as a mental practice, in which a
resting but alert state of mind is maintained. A population of older people with high stress level participated in this
study, while electroencephalographic (EEG) and respiration signals were recorded during a MM intervention. The
physiological signals during meditation and control conditions were analyzed with signal processing.

Methods: EEG and respiration data were collected and analyzed on 34 novice meditators after a 6-week meditation
intervention. Collected data were analyzed with spectral analysis, phase analysis and classification to evaluate an

Results: Different frequency bands showed differences in meditation and control conditions. Furthermore, we
established a classifier using EEG and respiration signals with a higher accuracy (85%) at discriminating between
meditation and control conditions than a classifier using the EEG signal only (78%).

Conclusion: Support vector machine (SVM) classifier with EEG and respiration feature vector is a viable objective
marker for meditation ability. This classifier should be able to quantify different levels of meditation depth and

Background

Mind-body medicine, such as meditation and yoga, is the
most commonly used type of complementary and alterna-
tive medicine treatment [1]. MM is popular and teaches
skills applicable to everyday life situations. Meditation is
a practice or brain state that has been developed from
many different approaches. A key facet of one meditation
practice, MM, is attending to the present moment in a
non-judgmental way. Specific examples of MM interven-
tions, such as Mindfulness-Based Stress Reduction and
Mindfulness-Based Cognitive Therapy, have already been
formally studied and applied in a variety of clinical con-
ditions [5-8]. However, the evidence for efficacy is not
definitive [2,3] and stems from several problems includ-
ing inadequate controls, inappropriate and highly vari-
able outcome measures, lack of measures for intervention
adherence, and lack of a measure that evaluates the
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practitioner’s ability to engage in the mind-body medicine.
This latter problem is especially important. There is cur-
rently no objective measure that can assess meditation
quality of the practitioner. Thus, making conclusions
about mediation intervention efficacy without knowing
whether the participant is actually meditating is problem-
atic. Having an objective measure of meditation ability
would greatly improve our understanding of mind-body
medicine intervention trial data. Objectively assessing
meditation ability might also shed light on why meditation
trials succeed or fail.

Other researchers have made attempts to objectively
evaluate mind-body intervention ability. Physical mind-
body interventions have been able to use objective ability
measures such as video recording because of their observ-
able nature. In meditation studies, one is not able to
observe the practitioners ability in the same way. Previ-
ous studies have attempted to analyze meditation ability
using self-rated measures [4] although, these measures are
biased by the practitioner’s self-observation. The medi-
tation intervention literature lacks any sort of objective
adherence or meditation ability measures. It is essential
for the mind-body medicine field to develop an objective

© 2014 Ahani et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication

waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise

stated.


mailto: oken@ohsu.edu
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Ahani et al. Journal of NeuroEngineering and Rehabilitation 2014, 11:87
http://www.jneuroengrehab.com/content/11/1/87

measure to assess meditation ability to move the field
forward. Developing an objective measure to assess med-
itation ability may potentially be done with physiological
signals that we know are sensitive to meditation such as
EEG and respiration.

EEG signals may be a viable objective measure of
meditation ability because they are sensitive to medita-
tion changes. EEG changes are well-documented during
meditation state changes and from long-term medita-
tion cross-sectional trait differences [2,9-12]. EEG signals
are sensitive to meditation using spectral analysis, coher-
ence, and synchrony techniques. Some studies have found
meditation state and trait-related effects on EEG voltage
and power in certain frequency bands. However, which
EEG component and its direction of change (greater or
lesser) have not been consistently observed [9]. Spectral
analysis can demonstrate the activity of brain over differ-
ent regions and different states. The spectral coefficients
can be employed to develop a classifier for distinguishing
between meditation and control conditions, with optimal
parameters, calculated on overall brain activity. Coher-
ence, or spectral covariance, includes both amplitude and
phase in a measure of phase consistency between pairs
of signals in each frequency band [13,14]. EEG coher-
ence has also been examined as an index of functional
connectivity among different cortical areas in medita-
tion studies. Increased alpha-theta range coherence has
been reported both intra- and inter-hemispherically dur-
ing meditation [9,15] and also as a meditation ability
trait [16,17]. Although coherence does provide informa-
tion on brain integration, it is limited in that it does not
separate the effects of amplitude and phase in the inter-
relations between two signals and is thus only an indirect
measure of phase locking. It is also based on Fourier
analysis, which is highly dependent on the stationarity of
the measured signal; this is not the case in EEG [13,18].
Other studies have examined EEG synchrony rather than
just EEG spectral analysis or coherence. Synchrony is a
newer approach to measuring the relationship between
EEG signals recorded at different electrode sites; this
measure quantifies the degree of phase-locking between
different narrow band signals [13]. Gamma synchrony has
been identified as a unifying mechanism in human cog-
nitive activity [13]. One study reported increased gamma
synchrony during meditation in expert meditators [19]
but others have reported that most of the gamma activ-
ity recorded from the scalp is related to muscle artifact
(Clinical Neurophysiology 118 (2007) 1877-1888). Alpha
synchrony is associated with local and global brain net-
works [14]. Alpha synchrony was observed in experienced
transcendental meditators compared to controls and
increased alpha synchrony was seen during meditation
[20]. In this study, both spectral and synchrony analysis
are incorporated to develop an objective meditation marker.
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EEG signals may also be potential objectives measure of
meditation ability because they inform the neural corre-
lates associated with meditation. Attending to the present
moment has neural correlates but it is uncertain how spe-
cific these neural correlates are to the meditation state.
Attending to the current moment in a non-judgmental
way, i.e., not generating any emotional associations to
what is being attended to, also presumably has neural
correlates. The neural correlates of these two MM com-
ponents may be subtle and the definition of meditation
will improve as we learn more about the neural correlates
using objective physiological markers.

In addition to EEG, respiration is another objective
physiological signal that is sensitive to meditation and
could be used as an objective measure. Respiration has
been shown to slow down without a direct instruction
to do so [21]. However, this is not consistent and likely
depends on type of meditation practice. Experienced
meditators often have slower respiration rates compared
to controls at rest and slower minute ventilation during
meditation [22]. Other meditation techniques specifically
direct the practitioner to slow their breathing down [23].
Slowed breathing has known physiological effects caused
by parasympathetic activation, such as decreased oxygen
consumption, decreased heart rate and blood pressure,
and increased heart rate variability (HRV) [23]. Slowing
breathing may be a simple physiological marker within
subjects to assess the degree of meditation.

The overall goal of this project was to establish an objec-
tive measure of meditation ability. This project used EEG
and respiration signals as a starting point to evaluate them
as objective measures of meditation ability based on their
sensitivity to meditation. The EEG and respiration signals
were recorded from novice meditator’s during meditation
and a control condition after they had completed a six-
week mindfulness meditation intervention (MMI). The
recorded physiological signals were then analyzed using
three quantitative methods: 1) spectral analysis of EEG
signal during meditation and a control condition to deter-
mine the effect of meditation on frequency behavior of
EEG data at different locations over the scalp and time-
frequency analysis of respiration using Stockwell trans-
form; 2) phase synchrony analysis using phase lock value
(PLV) calculation; and 3) a support vector machine (SVM)
classifier constructed to perform classification using EEG
frequency coefficient, respiration signal and a joint clas-
sifier with both the EEG and respiration signal to assess
the classifier ability to distinguish between meditation and
control conditions.

Methods

Participants

The participants consisted of 28 women and 6 men,
mean age 61 years (std deviation 7.6 and range 50 to
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79 years). Participants were recruited with newsletters,
email list serves, and flyers at Oregon Health and Sci-
ence University (OHSU) and around the Portland, Oregon
Metro Area. The participants were generally healthy older
adults who reported stress. Inclusion criteria were: age
50-75 years old; baseline Perceived Stress Scale (PSS) [24]
score > 9; and willing to follow the study protocol. We
focused on stressed older adults for this study because
they are a large and growing population with less physio-
logic compensatory ability to stress than younger adults.
Exclusion criteria were: evidence of cognitive impairment
as assessed by a score of less than 25 on the Mod-
ified Telephone Interview for Cognitive Status (TICS)
[25]; significant participant-reported medical/neurologic
disease (e.g., major organ failure; insulin-dependent dia-
betes, active cancer, or alcoholism); significant untreated
depression, as assessed by Center for Epidemiologic Stud-
ies Depression Scale (CESD) score greater than 16 and
interview; were taking medications or have health con-
dition that globally affects CNS function or physiologic
measures, e.g., benzodiazepines and uremia; did not
understand the instructions (e.g., cannot hear recorded
instructions or are not fluent in English). These exclusion
criteria were chosen to screen out participants with an
underlying illness that may limit the benefit of the MMI,
confound outcomes, or increase the likelihood of dropout.
They also could not have prior experience with meditation
classes or other mind-body classes (e.g., yoga or tai chi)
within the last 24 months or more than 5 minutes daily
practice in the last 30 days. The study was approved by the
OHSU Institutional Review Board, and written informed
consent was obtained from all participants.

Procedure

The study design for the randomized controlled trial is as
follows. All participants had a telephone screening, Visit
1 baseline assessments (week 1), six-week MMI (weeks
2-7 for immediate start group or weeks 9-14 for delayed
start group), Visit 2 (week 8), and Visit 3 (week 15).
Demographic data were collected during the telephone
screening and Visit 1. EEG and respiration data were col-
lected at Visit 1, 2, and 3. Following volunteer inquiries,
consents were mailed for review. Interested volunteers
were then screened via telephone to insure a high likeli-
hood of eligibility. This telephone screening was approved
with a Waiver of Authorization from the Institutional
Review Board. Eligible participants were then scheduled
for Visit 1 where eligibility was finalized, written signed
consent obtained, and physiologic data collected. Partici-
pants were then randomized with a computer generated
randomization program to receive the MMI immediately
(immediate start group) or after week 8 following visit 2
(delayed start group). The study was single blinded: partic-
ipants knew when they received the MMI but the assessor
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did not know whether the participants received MMI just
prior to visit 2 or visit 3. Physiologic data were collected
again at Visit 2. Physiologic data were then collected again
at Visit 3. The data included in this report are the EEG and
respiration data collected at the visit, immediately after
the intervention pooled for both groups (i.e. Visit 2 for
immediate start group and Visit 3 for delayed start group).

Intervention

The specific MMI curriculum was adapted from Mindfulness-
Based Stress Reduction (MBSR) and Mindfulness-Based
Cognitive Therapy (MBCT) programs [26,27] and has
been more fully described [28]. In brief, training included
a one-on-one 60-minute session weekly for six weeks
taught by a trained and experienced teacher. The in-lab
sessions included three components: 1) didactic instruc-
tion and brief discussion concerning stress, relaxation,
meditation, and mind-body interaction; 2) practice in
meditation and other mindfulness exercises that the sub-
jects perform both in session and daily at home; and 3)
discussion about problem-solving techniques regarding
their successes and difficulties in practicing and applying
the exercises in daily life.

Meditation instruction included a body-awareness medi-
tation. The instruction began with awareness of breathing
and later expanded to include awareness of body sensa-
tions, and cognitive and emotional experiences. Informal
exercises, such as mindful movement and mindful par-
ticipation in daily activities (e.g., washing dishes), were
offered to help subjects generalize mindfulness beyond
the formal meditation exercises. Participants were pro-
vided with written materials and recorded audio guided
meditation for each week’s at-home practice. Subjects
were instructed to practice at home up to 30 minutes a
day as a goal, but at least do some daily practice. The
meditation homework recording had several possible
shorter interval breaking points denoted by tones to allow
for unpredictable time demands facing stressed adults.

EEG recording and protocol

Physiological data were collected during two conditions
1) listening to a 15 minute National Public Radio podcast
(participants chose from a list of four) with eyes closed;
and 2) 15 minutes of a sitting mindfulness meditation they
learned in the MMI. This meditation was guided by an
audio recording as they had practiced at home. The guided
meditation was used to partially match the external physi-
cal aspects of the podcast. Both recordings were done with
the eyes closed. The physiologic data recorded were 32-
channel EEG, EOG, respiration, ECG, and movement data
was collected with movement monitors (BioSemi, Ams-
terdam, The Netherlands). In this study, only EEG and
respiration signals were subjected to statistical analysis.
The other data requires more pre-processing and different
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analyses but will be incorporated in the future. We used
Fpl, AF3, F7, F3, FC1, FC5, T7, C3, CP1, CP5, P7, P3, Pz,
PO3, 01, Oz, 02, PO4, P4, P8, CP6, CP2, C4, T8, FC6,
FC2, F4, F8, AF4, Fp2, Fz and Cz channels. Raw EEG was
acquired with BioSemi active electrodes using common
mode sense and driven right leg electrodes just to the left
and right of Cz. Linked ear channel acquired with simi-
lar referencing was also available for the analysis. Using
BioSemi active electrodes, the quality of the electrode
contact is assessed using offsets and the reported offsets
were always in the acceptable range as stated by BioSemi.
Respiration was measured with a light elastic piezoelec-
tric belt (Ambu-Sleepmate, Maryland) around the par-
ticipant’s chest near the diaphragm. Non-EEG channels
were included in the meditation measure because they
may improve the separation of meditation from control
states.

EEG spectral analysis

A finite impulse response (FIR) linear phase 2-35 Hz
bandpass filter (Equiripple, length 2811) is applied on EEG
data to avoid baseline wandering and direct current (DC)
bias and high frequency noise. Two artifact removal meth-
ods were performed on the data. First a simple upper and
lower voltage thresholding was used to avoid high volt-
ages durations and flat channel effects (200 uV as upper
bound and 2 uV as lower bound). Second, we performed
an independent component analysis (ICA) to remove eye
blink and eye movement artifacts using the logistic info-
max ICA algorithm [29]. Subsequently, the cleaned EEG
was further down-sampled to 64 Hz. It has been shown
that EMG activity contributes to gamma bands recorded
from scalp electrodes, therefore we have excluded gamma
activity in our processing [30]. The first few samples were
discarded from the data to avoid filter transient impact
on signal. Power spectral density (PSD) was estimated at
different electrode sites (averaged electrodes at frontal,
central, parietal, occipital, right temporal and left tempo-
ral regions; Figure 1) and for different frequency bands
(theta [4-8) Hz, alpha [8-12) Hz and beta [12-30) Hz). This
spectral analysis was performed on data recorded during
the meditation and podcast sessions.

PSD estimation is a non-parametric method utilized
to calculate power spectrum of EEG signal as a func-
tion of frequency, while maintaining the balance between
smoothing in time and frequency resolution. PSD is esti-
mated using the Bartlett method [31], which averages
periodograms for smoother PSD resulting in improved
time/frequency resolution. This is done by dividing the
data sequence into non-overlapping sequences by a
Blackman-Harris window [32] and adding the resulting
PSD calculated from Fourier coefficients. Let x[#] be the
signal, in our case, EEG data, divided into consecutive
sequences xg[n] for k = 1, ..., K, each with length N and
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Figure 1 Six regions over scalp. Electrodes divided into six regions
over scalp as frontal, central, parietal, occipital, right temporal and left
temporal.

w[n] be the window function (Blackman-Harris window
in this case). The resulting PSD can be estimated as:

) 1 K 1 N-1 )
P =23 <N I };}xk[n] win] e " I2> (1)

k=1

Once PSD is estimated for all electrodes and frequen-
cies, it is grouped based on location and frequency bands.
The PSD values for all frequencies at each band and differ-
ent locations were subjected to a two-way within subject
ANOVA (analysis of variance), involving factors of Condi-
tion (Meditation, Control) and Location (Frontal, Central,
Parietal, Occipital, Right Temporal and Left Temporal)
(Figure 1). Before applying ANOVA the distributions were
checked for normality and if any were non-normal, the
Box-Cox transformation was used [33].

Respiration time-frequency analysis

A FIR linear phase [0.01,20] Hz bandpass filter was applied
to respiration data to avoid baseline wandering and DC
bias and high frequency noise. A lower cut-off frequency
for the low pass filter was used because of the much
lower frequency content of respiration signal compared
to EEG. We used time-frequency analysis (TFA) to ana-
lyze the respiration signal. TFA is a signal processing
tool to study the signal and its transform jointly rather
than separately. In practice, many physiological signals
change their frequency content with time, while most
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traditional frequency transforms assume that the sig-
nal is stationary. The Stockwell transform (S-transform)
[34] was used, because it reveals a wavelet-transform-
like time-frequency representation of the signal and is
found to be a good approach for TFA, since it employs
a frequency dependent window length. Assuming x[n] =
{x[0],x[1],...,x[N — 1] } be the signal, in this case the
respiration signal, the S-transform is computed as:
S(f,n] = A(f,n] &2
= ()

_ Z |f | _ (n=m)%f? e—i2mfim
= x[m] Ee 2

S(f,n] is the S-transform for all samples in time [#]
and in the frequency (f). Respiration data was filtered
and subjected to S-transform. The time-frequency S-
transform was first subjected to Box-Cox transformation
[33] to form an approximately normal distribution and
then was analyzed with ANOVA with a factor of condition
(Meditation, Control).

m=—00

EEG phase analysis

First, baseline wandering and DC bias were removed using
a FIR linear phase high pass filter with a cut-off frequency
of 0.1Hz (Equiripple, length 2811). A low pass filter with
a cut-off frequency of 32 Hz (Equiripple, length 260) was
also applied to remove EMG noise. Then the EEG data
was further down-sampled to 64 Hz. The first few sam-
ples were discarded from the data to avoid filter transient
impact on signal.

We calculated phase-lock value (PLV) as a measure
of synchrony for different frequency bands and between
each pair of electrodes for each condition. Synchrony was
calculated as such. A S-transform was used to estimate
the signal phase between 4-32 Hz (The range of theta,
alpha and beta bands) at 1 Hz intervals for each electrode
as ¢, (f, nl, c¢; being the channel label with i = 1,...,32.
For the electrode pair (c;, ¢;), the phase difference can be
calculated as:

96,‘,6/ (fr Vl] = ¢Ci (f’ }’l] _¢C]' (f’ I’l] (3)

To measure synchrony, we employ v[#], a sliding rect-
angular window on 6, (f,#] with length L. The PLV, a
measure of how much phase synchrony exists between the
two signals at the given frequency and in the given time
window, was calculated as follows:

o0
| Z eleci,Cj(frn]V[n_m]| (4)

m=—0Q0

PLVC,‘,C]' (ft }’l] =

e~ -

The threshold of synchrony was created by examining
a distribution of PLV’s obtained from 500 pairs of surro-
gate signals to determine the value of PLV threshold based
on what would be typically expected to occur between
asynchronous signals. The surrogate signals were created
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by randomizing the phase of a given EEG signal, thereby
destroying any synchronization of waves while maintain-
ing identical power spectra. The histogram of all these val-
ues was derived and The significant level of p > 0.9 (90%
confidence) is chosen to mark the high synchrony value
among surrogate/random signals. This level is achieved
at synchrony value equal to 0.79 on the histogram. Syn-
chrony was defined as an electrode pair having a greater
PLV value than this threshold of 0.79 at each frequency
band.

The length of the window to calculate PLV was 2 sec-
onds. Electrode pairs were arranged by taking the 6 elec-
trodes from a region of interest and comparing them to all
cross-region electrodes for a total of 76 pairs of electrodes
(i.e. electrodes from the same region were not paired,
because synchrony between them would be large simply
due to their locations) for all times and between 4 Hz and
32 Hz. For each condition, the number of electrode pairs
that had PLV above the threshold derived from surrogate
signals (threshold = 0.79) were counted.

Support vector machine classification
The first step in classification and pattern recognition
studies is feature extraction. Kernel Canonical Correlation
Analysis (KCCA) [35] was employed to avoid redundancy
in feature vectors. KCCA measures dependency between
features and it helps with decreasing the redundancy
between features in feature selection.

EEG and respiration signals were processed with the
S-transform and corresponding features were extracted.
Letting Sc(f,n] be the S-transform for frequency values

f e {fi,....fr} and time n for channel ¢ € {1,...,C} the
feature vectors are:

o e o 5)
where

2y = [Se(fiml . Selfrom] ] (6)

Then given {z;,...,zyn} for one session of EEG data,
the set of downsampled features were obtained using
KCCA. Specifically, each feature vector for each chan-
nel was shifted sample by sample and dependency index
was calculated between the original vector and the shifted
version. If e, € R% is the signal over reproducing ker-
nel Hilbert space (RKHS) #¢, and for x = z, and y =
zy—1, the Ixcca (l) index was computed using the following
expression with appropriate substitutions.

Ixcca(x,y) = sup

HETF g eF)
cov [g:(x), & ()]
Jrarl @) + kgl 2 varl o) + ligyl %

(k >0)

(7)



Ahani et al. Journal of NeuroEngineering and Rehabilitation 2014, 11:87
http://www.jneuroengrehab.com/content/11/1/87

Then the smallest nonnegative /, which is a local min-
imizer of Ixcca(l) was designated as the downsampling
factor L (i.e. L > 0 is the smallest positive integer such
that Ixcca (L —1) > Ixkcca(L) andIxcca (L) <= Ixcca(L+
1)). Using L, the downsampled (and minimally corre-
lated) subset of features {z1, ..., z141(k—1)s - - - » Zfloor(N /L) }
is obtained and has been used for the analysis below. This
downsampling process ensures that we retain a large num-
ber of samples, yet minimize the statistical dependency
between them to the level of the first local minimizer of
the dependency measure in (8).

For the EEG classifier, the S-transform was sampled
along frequency in the range of [4,32] Hz with 0.25 Hz
intervals. For the respiration classifier, the S-transform
was sampled along frequency in the range of [0.0625,16]
Hz. For the joint EEG and respiration classifier, S-
transform-based feature of EEG and respiration were sim-
ply concatenated. Figure 2 shows the flowchart of the
classification process. To construct a joint classifier, the
feature vectors from EEG and respiration signal were
combined and subjected to KCCA. All feature vectors
were normalized before applying the classifier. The nor-
malized values at each group (train, test and validation
groups) were calculated by subtracting the minimum from
the values and dividing the result by the range.

SVM is a supervised binary classification model that has
been extremely popular in the machine learning field [36].
SVM maps the input data into a different feature space
and predicts for each input data, the specific label cor-
responding to the output class. A discriminant function
that indicates distance to the class boundary is a potential
measure of meditation depth in the future.

SVM process maps the data into different categories
in a higher dimensional space so that these categories
are separated by an optimized margin and constructs a
hyper-plane based on maximizing this margin. New data,
then will be mapped into the same space and will be
labeled according to their position on either side of the
hyper-plane. This study used LIBSVM [37], a Matlab SVM
toolbox that uses Radial basis function (RBF) kernels to
nonlinearly map data into a high dimensional space.

All feature vectors were labeled as meditation or control
classes and a 10-fold cross validation process was per-
formed on the labeled data to obtain the optimized hyper
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parameters for the RBF kernel (width o, overlap penalty
¢). Accuracy was averaged across subjects.

Results

EEG spectral analysis

Within each frequency band, there was a condition effect
by location (alpha: F(5,165) = 3511, p < 0.001, beta:
F(5,165) = 5928.18, p < 0.001, theta: F(5,165) = 2477.12,
p < 0.001). Within each frequency band, there was also
a condition effect across all locations (alpha: F(1,33) =
10.58, p < 0.0011, beta: F(1,33) = 142.03, p < 0.004,
theta: F(1,33) = 118.79, p < 0.001). There is an overall
increase in power during meditation in beta and theta
bands, while this increase is less for alpha and is not sig-
nificant in frontal region in theta. The alpha band has a
slight increase in power in the right temporal and occipital
locations during meditation. Figure 3 shows the effect of
condition in the different frequency bands and locations
and shows the value of PSD over the scalp for differ-
ent conditions and different bands. Table 1 contains the
numerical data corresponding to Figure 3.

Respiration time-frequency analysis

As shown in Figure 4 there is a clear distinction
between meditation and control conditions, plotted from
S-transform coefficients. The lower frequencies show
greater activity during meditation, while higher frequen-
cies show greater activity during the control condition.
ANOVA was applied on Stockwell coefficients involv-
ing the factor of state (Meditation, Control). ANOVAs of
Stockwell coefficients resulted in a significant effect of
meditation on respiration spectral coefficients (F(1,33) =
10.10, p < 0.005) (Figure 4).

EEG phase analysis

We applied this method to data for all subjects and aver-
aged the values as shown in Figure 5. The results indicate
that the number of electrode pairs exhibiting higher syn-
chrony is increased while subjects are meditating, relative
to the control condition.

Support vector machine classification
The accuracies for EEG-only, respiration-only and joint
EEG/respiration SVM classifier were averaged among

Signal Processing
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Low/High pass filters

Recording Module
Meditation/Control
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Figure 2 Classification process flow chart.
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Figure 3 EEG spectral analysis. PSD estimation of EEG signal over alpha, beta and theta bands at different locations over scalp for meditation and
control conditions averaged across subjects (N = 34). Star symbols show which comparisons are statistically significant.

subjects. Figure 6 shows the accuracy of the three classi-
fiers. The joint classifier had a statistically higher accuracy
than either the EEG or Respiratory classifiers. The accu-
racies of the three classifiers were subjected to repeated
ANOVA and showed the effect of classifier type on accu-
racies (F(1,33) = 62.18, p < 0.001).

Discussion

The objective of the study was to evaluate EEG and res-
piration as objective measures of meditation ability. We
found that among three types of SVM classifiers con-
structed by EEG-only, respiration-only and both feature
vectors, we found the greatest accuracy using both EEG
and respiration signals to discriminate between the med-
itation and control condition. Combined EEG and respi-
ration signals may be a potential marker of meditation
ability.

Our spectral analysis results support most, but not
all, previous studies conducted on meditation on theta,
alpha, and beta frequencies. The spectral analysis from
34 novice meditators revealed a generalized increase
in beta and theta EEG power during meditation com-
pared to control state (except for frontal region in theta
band). This increase was smaller in the alpha band and
was more focused in the right temporal and occipital
locations. Increases in theta power have been widely
reported during meditation. In a meta-analysis of 64 stud-
ies examining electrophysiologic measures in meditation,
all of the studies that assessed theta reported an increase

during meditation [9]. Other studies have demonstrated
increased theta during meditation and also in expert med-
itators at baseline [9,15,38-41]. Additionally, the system-
atic review is consistent with our alpha findings. Most
studies show higher alpha power during meditation rel-
ative to controls as well as cross-sectionally in expert
meditators compared to non-meditators [9]. What is less
common is the observation of increased beta during med-
itation conditions. In one study, beta and occipital alpha
were increased in ten participants in a meditation versus
a control condition [42]. Our study also found increased
EEG synchrony in the meditation versus control condi-
tion.

Our respiration findings support previous studies that
report lower respiration rates during meditation. A clear
distinction between the meditation and control condi-
tions is visible after spectral analysis of respiration data
with the meditation condition having a lower respiration
rate. There is heterogeneity across meditation practices in
regards to regulation of breathing. Some meditation prac-
tices involve active control over inhalation and exhalation
while others do not include specific instruction to alter
the breath [2]. In this study, the meditation practice was
a sitting mindfulness meditation practice where attention
was focused on the breath, but there was no instruc-
tion to change the frequency of the breath. Other studies
of mindfulness meditation have found slower breathing
rates as a result of being conscious of the breath [21].
We have observed that experienced meditators had slower




Table 1 EEG spectral analysis results

Location

Alpha

Beta

Theta

Meditation

Control

Meditation

Control

Meditation

Control

Frontal

m=28193,0 =814

m=7837,0 =766

m=6514,0 =1227

m =5204,0 =804

m = 106.99,0 = 936

m = 107.16,0 = 10.06

Central

m = 40.79,0 = 6.26

m = 35.80,0 =5.80

m =49.10,0 =1226

m=23144,0 =79

m =4346,0 =7.72

m = 2859,0 =5.16

Parietal

m = 96.00,0 = 9.25

m=99456 =976

m = 5750,0 =1238

m =40.12,0 =812

m =7432,0 =964

m =6149,0 =902

Occipital

m = 329.13,0 =20.72

m = 30037,0 = 1635

m = 8950,0 =1225

m = 6274,0 = 863

m = 29144,0 = 29.09

m =17098,0 = 1333

R Temporal

m =163.18,0 = 1478

m = 130.74,0 = 10.06

m = 8040,0 = 12.64

m =5817,0 =827

*

m = 188.96,0 = 2233

m = 105.88,0 = 961

L Temporal

m = 14946,0 = 1134

m = 142.04,0 = 10.66

m=7604,0 = 1251

m = 56980 =825

*

m = 140.19,0 = 1435

m=110.11,0 = 10.05

EEG power for beta, alpha, and theta frequency bands in (11V/)? /Hz (m = mean, o = standard deviation) for control and meditation conditions. Star symbols show which comparisons are statistically significant between

meditation and control states.
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Figure 4 Respiration time frequency analysis. Time frequency Analysis of respiration signal shows more activity in lower frequencies during
meditation. The figure shows the Stockwell coefficients amplitude averaged across subjects (N = 34) in meditation and control conditions.

respiration rates compared to controls at rest and dur-
ing meditation [43]. It appears that regardless of whether
one is directing a slowed breathing rate during meditation,
respiration is slower during meditation.

This study advances meditation research in a number
of ways. First, the spectral analysis on EEG data supports
most but not all existing evidence that alpha and theta

Number of Pairs of Electrodes Higher Than the Threshold Averaged Across Subjects
501
40f
30|
20
@ — — - -8 Theta
B—————& Alpha
10} 4 -—-—P Beta
Control Meditation
Figure 5 EEG phase analysis. Number of pairs of electrodes with
higher PLV than the threshold averaged across subjects (N = 34). Star
symbols show which comparisons are statistically significant.

EEG power are increased during the meditative state. The
increase in beta band power is not as supported in the
meditation literature with only a few studies documenting
an increase in beta band power during various meditation
types [9]. This raises the hypothesis that beta band power
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Figure 6 SVM classification results. SYM classification accuracy
using EEG, Respiration and joint (N = 34). Besides the overall ANOVA
being significant, all pairwise differences using paired t tests were
significantly different. Star symbols show which comparisons are
statistically significant.
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may be more dependent on participant experience with
meditation and/or meditation type. The decrease in res-
piration rate during meditation is supported by other
studies documenting that respiration rates often slows
during meditation regardless of whether there is a spe-
cific instruction to do so or not. The lower respiration
rate, may be due to the theory that meditative state over-
laps with a relaxation response even though relaxation is
not a directed intention of meditation [44,45]. The slowed
respiration rate also provides a mechanism by which
meditation reduces stress in healthy adults and multiple
chronically ill populations [46,47].

This is also the first reported study to use joint SVM
classifier to discriminate between meditation and non-
meditation states. We found a joint EEG and respiration
SVM classifier had higher accuracy in classification than
EEG alone. The SVM classifier is a major step forward for
the meditation research field.

There are several limitations in this study. The study
used only novice meditators. A future study should
include expert meditators also. For this study, in order to
deal with the logistics of blinding the person recording
the physiological signals, the recording during medita-
tion preceded that during the podcast. While a sequence
effect cannot be ruled out, in general, the longer the
EEG recording the greater the drowsiness, which would
not be consistent with the observed differences. Future
studies will need to randomize or at least counterbal-
ance the order. This study used EEG and respiration only.
Future studies would include other physiological signals
in the SVM classifier to ascertain the accuracy could be
improved.

Conclusion

In conclusion, our study examined EEG and respiration
data during a control and meditation condition to evaluate
them as potential objective measures of meditation ability.
Three types of analyses were conducted: spectral analysis,
phase analysis and SVM classification. The EEG spectral
data support most, but not all, existing evidence that alpha
and theta EEG power are increased during the medita-
tive state and respiration rate is lower during meditation.
The SVM classifier was an accurate tool for predicting
meditation compared to a control state and performed
better with the addition of respiration to EEG data. The
SVM model with the inclusion of respiration rate and even
other physiological measures might improve the classi-
fier and could be used in other studies examining shorter
time periods to determine the depth/engagement of med-
itation within meditation conditions. The classifier could
be applied in real-time to assess meditation depth and
engagement of meditation. While it may be possible to
use the described SVM for real-time monitoring of med-
itation state, the definition of meditation state will evolve
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as scientists studying it use better objective markers that
coarsely relate to it.
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