Zhang et al. Journal of NeuroEngineering and Rehabilitation 2013, 10:43

\ |l JOURNAL OF NEUROENGINEERING
http://www.jneuroengrehab.com/content/10/1/43

AND REHABILITATION

RESEARCH Open Access

Early exercise improves cerebral blood flow
through increased angiogenesis in experimental
stroke rat model

Pengyue Zhang'", Huixian Yu'", Naiyun Zhou®?, Jie Zhang®, Yi Wu'®, Yuling Zhang', Yulong Bai', Jie Jia',
Qi Zhang', Shan Tian', Junfa Wu' and Yongshan Hu'"

Abstract

Background: Early exercise after stroke promoted angiogenesis and increased microvessles density. However,
whether these newly formatted vessels indeed give rise to functional vascular and improve the cerebral blood flow
(CBF) in impaired brain region is still unclear. The present study aimed to determine the effect of early exercise on
angiogenesis and CBF in ischemic region.

Methods: Adult male Sprague Dawley rats were subjected to 90 min middle cerebral artery occlusion(MCAQO)and
randomly divided into early exercise and non-exercised control group 24 h later. Two weeks later, CBF in
ischemic region was determined by laser speckle flowmetry(LSF). Meantime, micro vessels density, the expression
of tie-2, total Akt and phosphorylated Akt (p-Akt), and infarct volume were detected with immunohistochemistry,
2,3,5 triphenyltetrazolium chloride (TTC) staining and western blotting respectively. The function was evaluated
by seven point’'s method.

Results: Our results showed that CBF, vessel density and expression of Tie-2, p-Akt in ischemic region were higher in
early exercise group compared with those in non-exercise group. Consistent with these results, rats in early exercise
group had a significantly reduced infarct volume and better functional outcomes than those in non-exercise group.

Conclusions: Our results indicated that early exercise after MCAO improved the CBF in ischemic region, reduced
infarct volume and promoted the functional outcomes, the underlying mechanism was correlated with angiogenesis
in the ischemic cortex.

Keywords: Early exercise, Cerebral blood flow, Angiogenesis, Laser speckle flowmetry, Cerebral ischemia
and reperfusion

Introduction

Ischemic stroke is a major cause of disability and death
(American Heart Association, 2009[1]). With the ad-
vancement of the medical technology in the past de-
cades, more and more stroke patients survived from the
initial injury, however, most of them suffered from
neurological deficits such as motor, study, memory and
cognitive dysfunctions that reduce quality of daily life
significantly [2,3]. The abruptly reduced focal blood flow

* Correspondence: dr_huys@yahoo.com.cn

Equal contributors

'Department of Rehabilitation of Huashan Hospital, Fudan University,
Shanghai, China

Full list of author information is available at the end of the article

( ) BiolVled Central

is a predominant cause of stroke, which leads to the
exhausted nutrients and oxygen. Subsequently, the injury
cascade is initiated, such as release of excitatory glutam-
ate, neuroinflammation, apoptosis, and edema etc. [4-7].
To salvage the affected cells, the rapid recovery of blood
flow in the ischemic region was an effective treatment
strategy in ischemic stroke [8-10]. However, the only
thrombolysis agent supported by FDA, recombinant tis-
sue plasminogen activator (tPA), was limited by its nar-
row therapeutic window and side effect [11]. Thus, it is
necessary to find a strategy to supply impaired brain tis-
sue with fully blood flow in delayed phase.

Angiogenesis is a process that forms new blood vessels.
Although it occurs during normal embryonic develop-
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ment, some insults such as brain trauma and ischemia
induced angiogenesis and vascular remodeling in adult
[12,13]. Within a few hours after occlusion, hypoxia in-
duced up-regulated expression of a group of angiogenic
factors in infarct hemisphere including vascular endo-
thelial growth factor (VEGEF), Angl/2 and their receptor
Tie2. The synergistic effects triggered the proliferation of
endothelial cells and vascular remodeling [14-16]. Using a
brain vascular cast method, Krupinski et al. had described
the vascular buds and connections in a rat model [17].
Similarly, immunohistological analysis and expression of
mRNA studies had confirmed that angiogenesis was initi-
ated within 48 hours after ischemia and persisted for up
to a few weeks in rodent animal model [18-21]. New
blood vessels increased the blood flow in affected region
revealed by neuroimaging [22], it would be of important
significance for improving the exchange of oxygen and
glucose in hypoxic tissue, and subsequent functional out-
comes [18,23,24]. Indeed, clinical study indicated that
stroke patients with more newly formatted microvessels in
the infarct region had survived a longer time [25,26].
Thus, increasing the angiogenesis after cerebral ischemia
is a potential strategy for treatments of stroke.

Cumulative evidences indicated that exercise initiated
soon after stroke (early exercise) protected against ische-
mia brain injury and improved functional recovery
through angiogenesis, neurogenesis, suppressing apoptosis
and neuroinflammation [27-32]. Evidences came from pre-
clinical and clinic studies showed that exercise increased
capillary density in motor cortex and improved CBF in
normal condition [33-36]. These results implied that
angiogenesis took a crucial role in post-stroke recovery. In-
deed, in a mice model, Gertz et al. demonstrated that vol-
untary exercise after ischemia improved angiogenesis and
CBF through eNOS-dependent mechanism and promoted
the recovery of long-term outcomes [37]. Consisted with
these findings, our recent results indicated that treadmill
training initiated after stroke up-regulated the expression
of angiopoietins and promoted the angiogenesis, reduced
infarct volume and improved functional recovery in ex-
perimental stroke rats [30,38]. Though there is an increas-
ing amount of evidences about the increased angiogenesis
induced by exercise, it is not clear whether these newly
formatted vessels indeed give rise to functional vascular in
impaired brain.Laser speckle flowmetry (LSF) is a noninva-
sive imaging blood flow technique, which has widely been
used to measure the CBF with high temporal and spatial
resolution [39-42], and therefore, LSF can be allowed to
examine the relative change of CBF at multi time points in
same animal. Utilizing LSF technique in present study, we
demonstrated that early exercise (2 weeks) after stroke im-
proved angiogenesis in affected cortex; furthermore, rats
with early exercise had an increased CBE, reduced infarct
volume and promoted functional outcomes.
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Material and methods

Rat middle cerebral artery occlusion (MCAO) model

All animal experiments were performed according to
animal experimental committee of Fudan University at
Shanghai, China. Adult male Sprague—Dawley rats
(250-270 g, Shanghai SLAC Laboratory Animal Co. Ltd.)
were housed under a 12:12 h light: dark cycle with food
and water available ad libitum at 21 + 1°C. Rats were anes-
thetized with 10% chloral hydrate (0.36 ml/kg i.p.); the left
middle cerebral artery was occluded by the intraluminal
suture technique described by Longa with some modified
[43]. Briefly, a 4-0 nylon monofilament coated with a sili-
cone tip was introduced from the carotid bifurcation into
the internal carotid artery until mild resistance was felt.
Reperfusion was established by gently withdrawing the
filament after 90 min of occlusion. Free access to food and
water was allowed after recovery from anesthesia. In the
sham control group, all steps were included except for the
occlusion of the middle cerebral artery.

Treadmill training and group

In order to reduce the stress of treadmill training, all
rats were adapted to the treadmills (Litai Biotechnology
Co., Ltd, China) at a speed of 6 m/min for 3 consecutive
days (10 min per day) before MCAO. 24 hours after op-
eration, all rats with MCAO were randomly assigned to
early exercise and non-exercise group, the sham control
was the third group, 18 rats were included in each
group. Rats in early exercise group underwent treadmill
training begun at 24 hours after MCAO for 14 consecu-
tive days. The training intensity was gradually increased
from 5 m/min at first day to 12 m/min at third day and
persisted to 14™ day, which had been described in detail
in our previous study [30]. The time points and duration
were depicted in Figure 1 in detail. Rats in the remaining
two groups were placed on the treadmill for 30 min
without running [44].

Laser speckle contrast imaging procedures and analysis

Anesthetized rat was fixed on a stereotaxic apparatus
(David Kopf Instruments, Tujunga, California, USA).
The scalp was incised and periosteum was removed.
Then a 12x10 mm?® cranial window overlying the left
cerebral cortex (1-5 mm lateral, between coronal suture
and lambdoidal suture) was thinned evenly with high-
speed dental drill (Fine Science Tools, North Vancouver,
Canada) until the pial vasculature was visible. Cold sa-
line was used to prevent damage caused by heating the
surface of the brain during surgery. For imaging, rat was
placed under a macro lens (Nikon 60 mm /2.8 AF-S,
Nikon Inc., Melville, New York, USA) in the stereotaxic
apparatus. The aperture was adjusted to keep the speckle
size comparable to the area of a single pixel in a 12-bit
CCD (270XS 11066, Pixel fly, PCO, Kelheim, Germany)
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Figure 1 Schematic illustration of the experimental design. * represented the test points for laser speckle flowmetry (LSF). ** represented the
test points for infarct volume, immunohistological staining (IH) and western blotting (WB). # represented the test points for neurological score (NS).

camera. The shutter speed was set to an exposure time of
5 ms and images were continuously taken at a rate of 23
fps. The stereotaxic could be moved along the x-y axes for
location of the region of interest (full field within the cra-
nial window). Finally, a 785 nm laser beam (L785P025,
Visible Laser Diodes, Thorlabs China) was used to illu-
minate the cranial window in a diffuse and uniform man-
ner. Before MCAO, the baseline LSF imaging has been
conducted (100 consecutive frames of raw speckle images
were recorded), and then 90 min transient focal cerebral
ischemia was induced by left MCAQ.30 min after occlu-
sion, animal underwent a 15 min continuous LSF imaging
monitoring (50 consecutive sets of 100 consecutive frames
of raw speckle images were recorded). Two weeks later, all
of the rats were taken another 15 min continuous imaging
monitoring. These time points of test had been described
in Figure 1.

Analysis of laser speckle images and relative CBF
(rCBF) was performed using MATLAB 7.0 software
(Mathworks, MA, USA). In order to increase signal-to
-noise ratio, every 100 sequential raw speckle images
were calculated to form one speckle contrast image. Be-
cause the infarct region has different among different
animal, and exercise reduced the infarct volume in ani-
mal with exercise, we chose a region of interesting (ROI)
including most supplied area by MCA as measured
zone. The region of interesting was defined as a rect-
angular zone of 6 mm x 4 mm (2 mm lateral and 1Imm
anterior to the bregma) in each image, which had been
described in Figures 2 and 3. In ROI, the 1/k* were cal-
culated according to published method [45,46], which
was proportional to the velocity of red blood cells and
on behalf of rCBF [40,42]. For every rat, the change of
rCBF during MCAO and day-post-14 was defined as the
ratio of the 1/k* to its corresponding one of baseline.
The ratios were used for statistical analysis.

Determination of brain infarct volume

14 days after MCAO, 6 rats of each group were used to
determinate brain infarct volume. Briefly, euthanasia was
executed with 10% chloral hydrate, and brains were
quickly removed and put in an ice-chilled rodent brain

matrix (Braintree scientific, USA). Then the brain was cut
into six consecutive coronal sections with 2 mm thickness.
Then, these brain sections were rapidly put into 2% TTC
(2, 3, 5-triphenyltetrazolium chloride) solution for 30 min
at 37°C, followed by fixation in 4% paraformaldehyde buf-
fer. The fixed sections were photographed with a digital
camera (DC240; Kodak, USA). The pale area in section
was defined as the infarct zone, which was traced and cal-
culated using NIH Image software (available at: http://rsb.
info.nih.gov/nih-image/). The percentage of infarct vol-
ume was determined according to an indirect method
[47]: Infarct volume = (area of contralateral hemisphere —
area of normal region in the ipsilateral hemisphere) / area
of contralateral hemispherex 100%. The results were
presented as mean + SE.
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Figure 2 MCAO induced a markedly ischemia in impaired
cortex. Above row there were the representative images of before and
during MCAQ, the bar graph showed the relative CBF (% of baseline).
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Figure 3 Early exercise improved the CBF in ischemic cortex. A, Representative CBF pseudocolor images in ischemia cortex before, during
and 14 days post MCAO. B, Quantification of the relative CBF in ROI (% of baseline for each animal). n = 6 for each group. *p<0.05, versus the
no-exercise group; #, p<0.05, versus the sham group. Color bar represents the capacity of CBF. Abbreviations: ROI, region of interesting.
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Immunohistochemistry

14 days after MCAO, 6 rats of each group were anesthe-
tized with 10% chloral hydrate and perfused with saline
through the left cardiac ventricle followed by 4% para-
formaldehyde (pH 7.4). Thereafter, brains were removed
and dehydrated in 20% sucrose solution overnight. Fro-
zen serial coronal brain sections were sliced on a cryo-
stat (30 pm in thickness). For immunohistochemistry,
Sections were blocked in 3% H,O, and then in 10%
normal goat serum (Jackson ImmunoResearch Labora-
tories, U.S.A.) for 1 hour respectively. After that, sec-
tions were incubated with rabbit anti-rat CD31 (Abcam,
Cambridge, MA, 1:200) overnight at 4°C. At the next
day, sections were stained with biotinylated goat anti-
rabbit IgG secondary antibody (KPL, 1:200) at 37°C for
1 hour, followed by preformed avidin-horseradish perox-
idase complex (Vectastain Elite ABC-Reagent, Vector)
for another 30 min. Diaminobenzidine (Sigma-Aldrich)
was used for immunostaining and hematoxylin was used
for counterstaining nuclei. The sections were finally
dehydrated and clarified through a graded series of etha-
nol and xylene, then mounted under coverslips using
neutral gum. The number of positive cells was counted
in penumbra of hemisphere with the lesion under the
light microscope (400x). For each section, five visual
fields in penumbra of hemisphere with the lesion were
chosen at random for statistical analysis. Results were
expressed as the mean number of CD31 positive cells
per mm?,

Protein isolation and Western blotting

Cortex tissues of the ischemic hemisphere were homoge-
nized in RIPA Lysis buffer (Beyotime Biotechnology, China)
and clarified by centrifugation (14000 g, 20 min, and 4°C).
Supernatants were harvested and protein concentrations
were measured using the bicinchoninic acid assay (BCA;
Beyotime Biotechnology, China). For gel electrophoresis,
samples were separated on 12% SDS-polyacrylamide gels,
and then transferred onto polyvinylidene fluoride (PVDEF)
membranes (Millipore, USA). Membranes were blocked
for 1h with 5% w/v bovine serum albumin (Roche, USA) at
room temperature followed by incubated overnight with
primary antibody against Tie2 (Abcam, Cambridge, MA,
1 pg/ml) ,Akt and Phospho-Akt (Ser473) (Cell signaling
technology, Massachusetts, U.S.A., 1:1000) at 4°C. After
three washes, membranes were incubated for 1 h at room
temperature with horseradish peroxidase (HRP)-conjugated
antirabbit IgG (Jackson, U.S.A, 1:2000). Detection was
performed by pierce ECL kit (Thermo Scientific, U.S.A).
Bands were quantified by fluorescence densitometry using
a commercial imaging System (Bio-Rad, U.S.A). Western
blotting signals were normalized against the signals ob-
tained with horseradish peroxidase (HRP)-conjugated
mouse monoclonal anti-glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH; Kandchen, China).

Neurological deficits scores
At 1st, 7th and 14th day after MCAO, neurological defi-
cits scores were tested as previously described [30,48],
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all rats were scored by an observer blinded to experiment
design with the following criteria: 0, no neurological
symptoms; 1, unable to extend right forepaw fully; 2, re-
duced grip of the right forelimb; 3, torso turning to the
right side when held by tail; 4, circling or walking to the
right; 5, failure to walk without help; 6, no spontaneous
activity or narcosis; and 7, dead.

Statistical analysis

Data are presented as means zstandard error of the
mean (SEM). Statistical differences were assessed by
one-way analysis of variance (ANOVA) followed by post
hoc Fisher’s PLSD tests. P<0.05 was considered statisti-
cally significant.

Results

Change of cerebral blood flow during MCAO

The change of CBF before and after operation were deter-
mined in all of rats by LSF, the results showed that MCAO
induced a significant CBF decline (31.07%+1.95% of base-
line, Figure 2). In contrast, there was no change of CBF in
sham group after operation.

Early exercise improved the CBF in ischemic region
MCAO rapidly damaged the cerebral microvessel and
led to a hypoperfusion in ischemic cortex and striatum,
simultaneously, an emergency response system was
started to compensate the depressed CBF. These process
included construction of collateral circulation and an-
giogenesis in impaired brain tissue. Two weeks after
MCAO, we observed that the CBF returned to baseline
level (Figure 3A). Compared with non-exercise group,
the early exercise furthermore improved the recovery of
CBF that reached to 1.3 times of baselines (Figure 3). In
contrast, the CBF in sham group was not different from
baseline at the 14™ day. Our results suggested that early
exercise improved the recovery of CBF in ischemic
cortex.

Early exercise promoted the angiogenesis in ischemic
region

Immunocytochemistry was used to label brain mic-
rovessel endothelial cells. In all groups, many blood ves-
sels were intensively marked by CD31 monoclonal
antibody around the ischemic region (Figure 4). In the
non-exercise group (Figure 4B), the number of positive
cells was sparse compared to the early exercise group
(Figure 4C) and the sham group (Figure 4A) in penum-
bra. Quantitative analysis showed that density of micro
vessels in the early exercise group was significantly
higher than non-exercise group (22.3+3.3 per mm?” in
early exercise group vs. 10.2+2.5 per mm? in non-
exercise group, p<0.05), and the number of CD31 posi-
tive cell in early exercise group was no different from
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that in sham group (19.7+3.1 per mm?). These data indi-
cated that two weeks exercise promoted the proliferation
of microvessel endothelial cells and angiogenesis.

Early exercise enhanced the expression of angiopoietins
Tie-2 is a critical receptor of angiopoietins who take part
in angiogenesis after MCAO. Our results showed that
the expression of Tie-2 in early exercise group was sig-
nificantly greater than the other two groups (Figure 5).
There was no significant difference between the sham
group and non-exercise group. Furthermore, we
detected the expression of total Akt and p-Akt, an im-
portant protein which involved in cell survival and pro-
liferation. We found that early exercise increased the
expression of p-Akt significantly compared to the other
two groups (Figure 5). However, the exercise didn’t
affect the expression of total Akt (data not show) that
consisted with the results from post-conditioning’s pro-
tection against stroke [49]. These data showed that the
expression of tie-2 receptor, angiopoietin and p-Akt was
increased significantly in early excise group.

Early exercise reduced the infarct volume

The cerebral infarct volume was measured at 14th day
after MCAO (Figure 6). Compared to the non-exercise
group, early exercise significantly reduced the infarct
volume (48.35+6.03% vs. 32.46+3.81% in non-exercise
and early exercise groups, respectively, p<0.05) (Figure 6),
and the rats in the sham group did not exhibit any in-
farct region (Figure 6). The results showed that early ex-
ercise after MCAQO was able to reduce infarct volume
significantly.

Early exercise improved functional outcomes

All rats with MCAO exhibited severe neurological defi-
cits at first day (before the early exercise), and there was
no statistic difference between early exercise group and
non-exercise group (4.06£0.86 vs. 4.12+1.02 in non-
exercise and early exercise groups, respectively). The ef-
fect of early exercise on recovery of function was evalu-
ated at 7th and 14th day after MCAO. We observed that
early exercise significantly promoted functional out-
comes at 7th and 14th day after MCAO (p<0.05,
Figure 7). All rats in sham group exhibited no neuro-
logical deficits at 1st, 7th and 14th day after MCAO.
The results indicated that early exercise improved the
recovery of function after MCAO.

Discussion

Increasing researches in both stroke patients and ische-
mic animal models had indicated that exercise initiated
after MCAO protected against cerebral ischemia and im-
proved functional recovery [31,32]. In our recent study,
we found that early exercise inhibited acute neuroinfla-
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Figure 4 Early exercise promoted angiogenesis in ischemic cortex. In the early exercise group, intensive blood vessels (CD31"endothelial
cells) were found in perilesional zone (C). In contrast, in non-exercised group (B), the density of micro vessels was much lower than the early
exercise (C) and sham groups (A). The red dotted line indicated the infarct zone in upper left corner. (D) Quantification of the CD31" cells
showed that there was a significantly greater micro vessels density in the early exercise group. n = 6 for each group. *p<0.05, versus the no-
exercise group; #, p<0.05, versus the sham group.

mmatory response and promoted the functional recovery  rat model, the possible mechanism involved in angiogen-
from MCAO [30]. Here, using the LSF technology we esis in ischemic cortex.

demonstrated that two weeks treadmill training after Within minutes of MCAO, the core of the brain tissue
stroke improved CBE, reduced brain infarct volume, and  that exposed to the most dramatic blood flow reduction
promoted functional recovery in an experimental stroke is fatally injured and subsequently undergoes necrotic
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Figure 5 Early exercise increased expression of Tie-2 and p-AKT.A. Representative images of Western Blotting for Tie-2, p-AKT and GAPDH. B
and C, Quantification of the optical density for Tie-2 and p-AKT, normalized to GAPDH. There was a significantly increased expression of Tie-2 and
p-AKT in early exercise group. n = 6 for each group. *p<0.05, versus the no-exercise group; #, p<0.05, versus the sham group.
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cell death. This necrotic core is surrounded by a zone of
less severely affected tissue that is rendered functionally
silent by reduced blood flow, but these cells in this area
remain metabolically active. This border region, known
as the “ischemic penumbra”, may comprise as much as
half of the total lesion volume during the initial stages of
ischemia, thus there is an opportunity for salvage via
post-stroke therapy in this region [50]. The rapid recov-
ery of CBF to normal level in ischemic hemisphere is
very important for rescue of the cells in penumbra and
the functional recovery. Thrombolytic reagent used in
clinic currently can restore CBF in ischemia area and

4-
3.5+
3

Jsham M non-exercise M early-exercise
*

non-exercise %

Scores

Days post MCAO

Figure 7 Early exercise improved neurobehavioral recovery.
MCAO caused a markedly neurological deficit, and early exercise
reduced the neurological score at 7 day and 14 day after MCAO
compared to non-exercise group. In contrast, rats in sham group
performed no neurological deficit. n = 12 for each group. *p<0.05,
versus the no-exercise group.

facilitate the functional recovery, but was limited by its
narrow therapeutic window and side effect [11].

Angiogenesis was a process involving in proliferating
and sprouting of endothelial cells and subsequent forma-
tion of new vessels, which played a critical role in func-
tional recovery of brain insults including stroke and TBI
[13,51]. Ischemic stroke damaged the vessels net in im-
paired tissue, on the other hand, stroke stimulated angio-
genesis that aimed to constitute the new vessels net and
rescue the neuron in ischemic penumbra [52,53]. Even in
the first week, the increased microvessel density had been
observed [12,18]. Utilizing serial magnetic resonance im-
aging, Lin and colleagues [54] observed an increased
cerebral blood volume in ischemic hemisphere from 3 to
21 day after experimental stroke. In present study we
detected the CBF in the region supplied by MCA, includ-
ing infarct core and penumbra in ischemia hemisphere,
and we found that the CBF in ischemic cortex had
reached to the baseline level after two weeks spontaneous
recovery.

Reports from healthy human and animal suggested
that exercise increased the expression of angiogenic
growth factor including VEGE, VEGF receptor and
angiopoietin receptor, and improved the blood flow ca-
pacity in skeletal muscle [55-57] and brain tissue [58].
When initiated after cerebral ischemia, exercise in-
creased the expression of angiopoietins and their recep-
tor in ischemia region, such as Ang2/Tie-2 and VEGEF/
VEGER. Ang-2 is the most prominent member of a fam-
ily of angiogenic growth factors, which promotes angio-
genesis through its receptor Tie-2, a receptor of tyrosine
kinases that play essential roles in angiogenesis [59,60].
In stroke rat, Ang2/Tie2 was up-regulated during the
first 24 hour and lasted up to a few weeks after MCAQO
[61,62]. Increased expression of Ang2/Tie-2 stimulated
the sprouting of endothelial cells and development of
new vessels, and then enhanced the microvessels density
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[21,63]. In our previous study, we observed that 2 weeks
treadmill training up-regulated Ang-1 mRNA expression
in the ischemic cortex [38]. Here, we furthermore
conformed that early exercise increased Tie2 expression
by western blotting, which consisted with the enhanced
microvessels and improved CBF in ischemia cortex.

In addition to pro-angiogenic factor, the proliferation
of endothelial cells is another important aspect that sup-
ports angiogenesis and formation of new vessels. Akt is
a critical factor for endothelial cell survival and prolifera-
tion in cerebral ischemia injury [64-66]. In the present
study we determined the expression of total and phos-
phorylated Akt (p-Akt). Our results indicated that two
weeks treadmill training increased the expression of
p-Akt but not total Akt which were consisted with the
results from postconditioning’s protection against stroke
[49]. In order to examine the enhanced angiogenesis by
exercise, we detect the density of microvessel endothelial
cells in ischemia region; and our results show that early
exercise increased the density of microvessle endothelial
cells significantly. These results were consisted with the
improved CBF and functional outcomes.

Enhanced angiogenesis not only increased CBF in is-
chemia region, but also stimulated the neurogenesis,
both of them facilitated the functional recovery. Using
condition medium, Teng et al. [67] demonstrated that
endothelial cells from ischemic brain tissue stimulated
neural stem cells proliferation and neuronal differenti-
ation in vitro. The underlying mechanisms involved the
pro-angiogenesis factor VEGF and chemokine stromal
derived factor la (SDF-1la) secreted from endothelial
cells [67-70]. Administration or over expression VEGF
increased neurogenesis after stroke in pre-clinic study
[14,71]. SDF-1a was an important chemokine which me-
diated neuroblast migration along the cerebral vessels,
and blockade of this pathway abolished stroke-induced
neuroblast migration [72-74]. Combining the MRI ap-
proach, Pereira and coworkers demonstrated that im-
proved cerebral blood volume induced by exercise was
correlated with enhanced hippocampus neurogenesis in
mouse and promoted cognitive function in human [75].
In our previous study we had observed the promoted
learning and memory ability after two weeks treadmill
training post MCAO [30]. Here, we detected the in-
creased angiogenesis and improved CBF in early exercise
group, which were correlated with the better functional
outcomes. These results implied that improved CBF in-
duced by early exercise in ischemia cortex promoted the
functional recovery.

By detecting the speckle contrast values, which is in-
versely related to blood flow velocity, LSF can monitor
real-time dynamic of CBF changes in the same animal at
multiple time points. This technology make it possible
to compare CBF changes between pre and post treat of
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stroke, which is useful to assess the effect of therapeutic
intervention. However, because of the limited penetrat-
ing ability of laser, LSF only detects the CBF in surface
layer of cortex (about 1 millimeter in depth). So the en-
hanced CBF in our results was only detected in the out
layer of cortex. The CBF changes in deeper brain tissue
needed to be elucidated in future. Another limitation of
present study was the lack of a group with sham and ex-
ercise. So we couldn’t compare the CBF and angiogen-
esis between the normal and the ischemic condition.
Despite of these, the present data revealed that early ex-
ercise markedly induced angiogenesis, improved the
CBF in ischemic region, and promoted functional out-
comes after MCAO, and this work provided a support
for clinical application of rehabilitation at the early stage
of cerebral ischemia.

Conclusions

In this study, we showed that early exercise after MCAO
increased density of microvessels and improved blood
flow capacity in the ischemic cortex, reduced infarct vol-
ume and promoted the functional outcome. These results
implied that the newly formatted vessels were functional
and the angiogenesis may be one of the important mecha-
nisms in functional recovery.
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