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Abstract

Background: Time-Frequency analysis of electroencephalogram (EEG) during different mental tasks received
significant attention. As EEG is non-stationary, time-frequency analysis is essential to analyze brain states during
different mental tasks. Further, the time-frequency information of EEG signal can be used as a feature for classification
in brain-computer interface (BCI) applications.

Methods: To accurately model the EEG, band-limited multiple Fourier linear combiner (BMFLC), a linear combination
of truncated multiple Fourier series models is employed. A state-space model for BMFLC in combination with Kalman
filter/smoother is developed to obtain accurate adaptive estimation. By virtue of construction, BMFLC with Kalman
filter/smoother provides accurate time-frequency decomposition of the bandlimited signal.

Results: The proposed method is computationally fast and is suitable for real-time BCI applications. To evaluate the
proposed algorithm, a comparison with short-time Fourier transform (STFT) and continuous wavelet transform (CWT)
for both synthesized and real EEG data is performed in this paper. The proposed method is applied to BCI
Competition data IV for ERD detection in comparison with existing methods.

Conclusions: Results show that the proposed algorithm can provide optimal time-frequency resolution as compared
to STFT and CWT. For ERD detection, BMFLC-KF outperforms STFT and BMFLC-KS in real-time applicability with low
computational requirement.

Keywords: Time-Frequency analysis, Band limited multiple fourier linear combiner, Adaptive filter, Kalman filter,
Smoother, EEG

Introduction
EEG uses electrodes to record electrical brain activity
that originates from the post-synaptic potentials, aggre-
gates at the cortex, and transfers through the skull to
the scalp. The EEG signal is the reflection of brains
neuronal oscillations. These oscillations with similar fre-
quency and energy lead to the separation of frequency
bands [1]. Numerous studies have tried to identify the
relation between the frequency bands and brain states
and it still remains as a hotspot of ongoing neuroscience
research [2,3]. EEG activity related with voluntary move-
ments has been the center of interest, as it is applicable to
brain-computer interfaces (BCI) [4-8].
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Several BCI systems rely on an amplitude attenuation
phenomenon, namely event-related desynchronization
(ERD) that can be voluntarily controlled by movement
imagery. It was shown in [9] that during both planning and
execution of hand movements, the ERD can be detected
in most of the subjects within the band of μ-rhythm
(6 − 14 Hz). By utilizing this amplitude attenuation phe-
nomenon, an alternative communication pathway can be
built directly from human brain to the computer [4]. The
accuracy of this class of methods was examined in [6]. In
recent years, this type of BCIs has been applied for limb
function recovery [10] and robotic system control [7],
which can improve the quality of life of the subject with
severe motor function impairment. The energy decrease
in ERD usually occurs in a specific frequency band for
a subject. When the frequency characteristics of signal
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are required, the fast Fourier transform (FFT) is often
used. For BCI applications, the ERD in the EEG signal
is considered as a percentage change of the signal ampli-
tude with respect to a experiment cue [9,11-13]. Since the
FFT-basedmethods cannot provide time-frequency infor-
mation, the time-frequency representation (TFR) of EEG
signal is extremely important for ERD analysis.
As the performance of EEG-based BCI systems rely on

the time-domain and frequency-domain features, a vari-
ety of EEG features (such as power spectrum within a pre-
defined frequency band [14] and phase lock value [15])
that reflects ongoing brain states have been attempted
for designing BCI systems. In general, the feature extrac-
tion algorithm requires accumulation of sufficient number
of samples for generating control commands. In [16], an
EEG-based BCI for three-dimensional movement con-
trol has been implemented where the power spectrum
was calculated for every 50 ms with a 16-order autore-
gressive(AR) model. In a recent research [17], BCI with
a noninvasive functional electrical stimulation has been
studied. In the on-line processing phase, the BCI aggre-
gates 500 ms EEG signal and then FFT is applied to
obtain power estimates for classification. It is clear that
the response time of BCIs mainly depends on the time
required by the feature extraction algorithm to store and
process a sufficient number of samples. Since power spec-
trum is a frequency domain feature, the time-frequency
representation(TFR) methods that can provide ampli-
tude variation along time axis, can be directly applied
to BCI systems. Furthermore, the accuracy of BCIs can
be improved by employing a narrow subject-specific
frequency band [9,18,19]. In [18], an adaptive filter-
ing approach was employed for identifying the subject-
specific frequency band to improve the classification
accuracy.
The TFR methods can be categorized into two types,

namely non-parametric and parametric methods. The
non-parametric TFRs such as band-pass filtering, short
time Fourier transform (STFT) and continuous wavelet
transform (CWT) were successfully applied in time-
frequency analysis of EEG [20,21]. However, all the tra-
ditional methods have pros and cons in temporal and
spectral resolutions. In band-pass filtering, the temporal
and spectral resolution is highly dependent on the filter
type, center frequency of the filter and its order. The tem-
poral and spectral resolution of STFT is determined by
the window length. The CWT can be considered as the
best TFR technique among the available methods. How-
ever, it still suffers with the tradeoff between temporal and
spectral resolution as STFT. The computational require-
ment of CWT remains as a major barrier for real-time
BCI applications. A performance comparison of all the
TFR methods for EEG time-frequency analysis can be
found in [22].

Recently, a new method band-limited multiple Fourier
linear combiner (BMFLC) was developed for estimat-
ing band-limited signals within a pre-defined frequency
band [18]. By incorporating the idea of linear time vary-
ing model with a fixed frequency band, BMFLC can
provide an alternative spectral estimation method for
band-limited signals. The original BMFLC adopted a
truncated Fourier series as the model and estimated the
Fourier coefficients by least mean squares (LMS) algo-
rithm [23,24]. As LMS requires time to converge to the
steady-state, the algorithm accuracy cannot be guaranteed
for small data segments. Especially, LMS algorithm is not
suitable when the main objective is to accurately track the
amplitude changes of a band-limited signal. To improve
the accuracy of the time-frequency decomposition and
the tracking ability of the existing BMFLC for real-time
applications, Kalman Filter is employed. The proposed
method is designed to extract time-frequency amplitude
distribution that is more suitable for BCI applications. The
performance of proposed method is evaluated in com-
parison with STFT, CWT and the existing BMFLC-LMS
method.

Methods
This section first reviews the existing methods for time-
frequency representation and later presents the proposed
methods.

Classical time-frequency methods
As the traditional fast Fourier transform (FFT) does not
provide time-domain information, the intuitive way to
overcome this is to isolate the signal in time domain by
multiplying with a window function and compute the
Fourier coefficients in that time interval, then shift the
time window through the time line to capture the entire
time-frequency information of the signal [25].
In [26], the time-frequency resolution of STFT is inter-

preted by the Heisenberg uncertainty principle. It asserts
that the temporal and spectral resolutions cannot be guar-
anteed at the same time and the joint time-frequency
resolution has a lower bound given by

�t2�ω2 = 1
2

(1)

It can be illustrated as a box centered at (t,ω), with the
length equal to �t in time domain and the width equal
to �ω in the frequency domain, to sweep the whole time-
frequency domain to extract the time-frequency informa-
tion. Since this product remains constant, the increase
of one quantity will cause degradation in the other. This
degradation (leakage effect) is also due to this constant
product. Thus the information that can be extracted via
STFT is actually the information within that box. If the
window function has a Gaussian envelope, the STFT can
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achieve the lower bound defined in (1) [22]. The STFT
with a Gaussian window function is commonly referred as
Gabor transform.
In STFT, after fixing the length of the window function,

its time-frequency resolution remains constant for the
entire time-frequency domain. The continuous wavelet
transform (CWT) solves this problem by adopting a
dilated and translated versions of the same function
namely, the mother wavelet [26,27]. The dilated version of
the mother wavelet is controlled by a scalar parameter a
in CWT, where the corresponding time-frequency reso-
lution can be provided as �t

a × a�ω = 1
2 . Although the

time-frequency resolution is still bounded by Heisenberg
uncertainty, but the length and width are scaled by the
parameter a. Therefore, for CWT the time-frequency res-
olution can be adjusted by the parameter a compared to a
fixed time-frequency resolution in STFT.
If the mother wavelet is a complex function, then the

CWT is also known as complex CWT which is widely
used in EEG signal processing [12,22,28]. Similar to STFT,
the joint time-frequency resolution is optimized by a
mother wavelet that has Gaussian envelope [22]. Morlet
wavelet is one of them and is defined as [29]:

ψMorlet(t) = π−1/4 · (e jω0t − e−ω2
0/2) · e−t2/2 (2)

where ω0 defines the oscillation of the mother wavelet.
The e−ω2

0/2 term in (2) is a correction term employed to
satisfy the admissibility condition. If a sufficiently large ω0
is adopted, e.g. ω0 > 5, then the term can be neglected.
The joint time-frequency resolution can achieve its lower
bound with �t = 0.707 and �ω = 0.707 [30]. For Morlet
wavelets that have a dominant periodic component, the
relationship between scale and Fourier frequency [30] can
be obtained as

f = ω0
2πa

(3)

where f and a represent the Fourier frequency and
wavelets scale respectively.
The STFT and CWT belong to the analytic time-

frequency representation methods, where the time-
frequency resolution has a lower bound that is determined
by the Heisenberg uncertainty. To apply the CWT and
STFT to a signal, an appropriate length of the signal is
required, as all the samples within the window function
should be used at each time-frequency decomposition.
The power spectrum defined in STFT and CWT is rela-
tive to the true signal spectrum that can be obtained from
FFT. For some applications where the exact measurement
of amplitude or power at a specific frequency is required,
the CWT and STFT are not suitable.

Band-limited multiple Fourier linear combiner
The Fourier linear combiner (FLC) proposed in [31]
works by adaptively estimating the Fourier coefficients
of a known base frequency together with its harmon-
ics with the help of the least mean squares (LMS)
algorithm. In [18,23], to estimate the unknown band-
limited signal, a pre-defined frequency band [ω1 − ωn]
is considered and divided into ‘n’ finite number of
divisions. Then n-FLC’s are combined to form the
BMFLC to estimate bandlimited signals. The fre-
quency resolution of BMFLC, (i.e. �f = �ω

2π ),
is the frequency gap between two adjacent frequency
components. The selection of frequency gap is a balance
between signal characteristics and analysis requirement.
The signal model adopted by BMFLC [18,32] is given by

yk =
n∑

r=1
ark sin(ωrk) + brk cos(ωrk) (4)

where yk denotes the estimated signal at sampling instant
k. ark and brk represents the adaptive weights correspond-
ing to the frequency ωr at time instant k. The frequency
components xk and the corresponding adaptive weights
wk can be written in the matrix form as:

xk =
{ [

sin(ω1k) sin(ω2k) · · · sin(ωnk)
]T[

cos(ω1k) cos(ω2k) · · · cos(ωnk)
]T

}
(5)

wk =
{ [

a1k a2k · · · ank
]T[

b1k b2k · · · bnk
]T

}
(6)

By employing LMS algorithm [33], the estimation of
Fourier coefficients ŵk can be achieved by computing the
following recursive equation:

εk = yk − xTk ŵk (7)
ŵk+1 = ŵk + 2μxkεk (8)

where εk is the error between modeling and measurement
and μ is adaptive gain of LMS. As LMS algorithm relies
on gradient based method for error minimization, the
accuracy of the algorithm can be affected by the dynamic
changes in the characteristics of the signal. LMS algorithm
has only a single adjustable parameter for controlling the
convergence rate, namely, the adaptive gainμ. Selection of
proper μ is very important for stability and convergence
of the algorithm. For difference choices of frequency gap
(�f ), different values of μ are required to ensure stabil-
ity and convergence [18]. As shown in [18], BMFLC-LMS
requires around 5 seconds for the initial weights to track
the amplitude changes in a 25s EEG signal. For the prac-
tical BCI systems, the length of EEG signal is generally in
a few seconds after the experiment cue. To improve the
performance, we employ Kalman Filter (KF).
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BMFLC with Kalman filter (BMFLC-KF) for real-time
estimation
The BMFLC signal model can be rewritten in the con-
densed form as

yk = xTk wk + vk (9)

where xk and wk are defined in (5) and (6). Clearly, this
is a linear model with xk being the frequency component
at each time step k and vk the observation error. Together
with (5) and (6), and the output Equation (9), we have the
state-space form for the BMFLC. The architecture of the
proposed algorithm is illustrated in Figure 1.
The adaptive vector wk in this model is considered to

be state vector. The variation of the state when no pri-
ori information is available is typically described with the
random walk model [34]. The state equation can now
expressed as

wk+1 = wk + ηk (10)

where ηk is the state error.
We assume that the measurement error vk and state

error ηk are uncorrelated, zero mean, Gaussian white
noise processes and are denoted as

v ∼ N(0,R) (11)
η ∼ N(0,Q) (12)

where R and Q are measurement error covariance and
state error covariance respectively. By employing the
Kalman filter, the optimal estimation of the state of the
dynamical system at time instant k can be obtained with
the measurement sequence Y1: k−1 =[ y1, y2, · · · , yk−1]
where yk is the output defined in (4). Although the
premise of the noise may not hold for the signal to be
analyzed, it was shown in [35,36] that Kalman filter can

also provide the minimum mean-squared error estima-
tion within the class of linear estimators. The adaptive
algorithm together with the BMFLC is shown in Figure 1.
Throughout this section, we employ the the following

notation:

ŵk = E[wk|yk−1] (13)

where E[wk|yk−1] denotes the mathematical expectation
ofw at time instant k with respect to previous observation
y at k − 1. Given the measurement sequence Y1: k−1, the
estimated state (ŵk along with the estimated state error
covariance Pk) can be obtained with the Kalman filter as:

Kk = PkxTk [x
T
k Pkxk + R]−1 (14)

ŵk+1 = ŵk + Kk(yk − xTk ŵk) (15)

Pk+1 =[I − Kkxk]Pk + Q (16)

with initial condition ŵ0, P0. Kk is the Kalman gain
updated at each time instant. The BMFLC-KF does not
require the matrix inverse as it only involves a scalar
observation. The proposed BMFLC-KF is computation-
ally fast and is well suited for real-time applications.

BMFLC with Kalman Smoother (BMFLC-KS) for off-line
analysis
Furthermore, if the future measurements Yk+1:N are
available, they can be used to improve the accuracy
of the state estimation. Hence the estimator is named
as a smoother. In this paper, we adopt a fixed-interval
smoother to improve the state estimation accuracy.
The fixed-interval smoothing problem is to find the
minimum mean square estimator ŵk for each state
wk(k = 1, · · · ,N) given the observations y1, · · · , yN .

(b)(a)
Figure 1 Diagram of BMFLC. (a) BMFLC Architecture; (b) Frequency components distribution.
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The smoothed estimator denoted by wN
k can be obtained

as follows [35]:

wN
k−1 = wk−1

k−1 + Jk−1(wN
k − wk−1

k ) (17)

PN
k−1 = Pk−1

k−1 + Jk−1(PN
k − Pk−1

k )JTk−1 (18)

Jk−1 = Pk−1
k−1[P

k−1
k ]−1 (19)

where ws
k = E[wk|ys] and Ps

k = E[(wk − ws
k)(wk − ws

k)
T ]

are estimated through recursion with the Kalman filter.
The smoother estimation is then obtained by running
the stored estimates backward in time. This procedure is
suitable for off-line analysis.
The convergence properties of the proposedmethod are

determined by the Kalman filter. The convergence analy-
sis for autoregressive(AR) model with Kalman filter was
well documented in [37-40]. It was shown in [39] that
the Kalman filter is uniformly exponentially stable, if the
output matrix sequence and the covariance of state error
are bounded. In proposed method, the output matrix xTk
in (9) is a combination of user-defined frequency com-
ponents. As sine and cosine functions are bounded, the
output matrix xTk is bounded. The covariance of state
error is user-defined and is bounded. Hence the conver-
gence of proposed algorithm can be established similar to
[39]. Further the convergence rate can be quantified as in
[40].

Time-frequency decomposition with BMFLC
Based on (9) and (10), the weight vectors of BMFLC rep-
resents the Fourier coefficients of the band-limited signal.
We can combine the weights into the following form:

w f
k =

[√
a21k + b21k · · ·

√
a2nk + b2nk

]T
(20)

where w f
k is the absolute weight vector of the fre-

quency components at time instant k. The absolute time-
frequency weights decomposed matrix D can be obtained
for the signal withm samples as

D=[w f
1 · · ·w f

k · · ·w f
m]=

⎡
⎢⎢⎢⎢⎢⎢⎣

√
a211 + b211 · · ·

√
a21m + b21m√

a221 + b221 · · ·
√
a22m + b22m

...
. . .

...√
a2n1 + b2n1 · · · √

a2nm + b2nm

⎤
⎥⎥⎥⎥⎥⎥⎦

(21)

where each row vector presents the amplitude variation of
a single frequency component at each time instant k. The
energy distribution in the time-frequency mapping can be
obtained as

Power = D � D (22)

where the operator � represents the element by element
multiplication of the matrix. The D matrix provide the
time-domain information of all individual frequency com-
ponent and it can be directly used for time-frequency
representation.
Comparing with the LMS based BMFLC in [18,32], by

adopting the Kalman filter combined with the smoother
procedure, an accurate weights adaption process in
BMFLC can be achieved. Hence it provides an accurate
time-frequency decomposition. The usage of smoother is
optional and it depends on the purpose of analysis. For the
off-line analysis, if an accurate time-frequency mapping is
required, the smoother procedure can be employed.

Data sets
In order to compare the temporal and spectral resolutions,
three synthesized signals are used in this study. Since EEG
μ-band (6− 14)Hz is of special interest, three synthesized
signals are chosen to contain the frequency components
within this frequency band. The first synthesized signal is
defined as:

S1(t) =
{
4 sin(2π9t) + 2 sin(2π11t); 0 ≤ t < 5
2 sin(2π7t) + 4 sin(2π14t); 5 ≤ t ≤ 10

(23)

and is illustrated in Figure 2(a1). The signal has dis-
continuities in frequencies and has both amplitude and
frequency modulations. This signal is used to test the fre-
quency resolution and tracking ability of the algorithm.
The second synthesized signal is defined as

S2(t) =
{
4 sin(2π10t) + 2 sin(2π9t); 0 ≤ t ≤ 5, 7 ≤ t ≤ 12, 14 ≤ t ≤ 20

0; otherwise

(24)

and is shown in Figure 2(b1). The sudden burst in the sig-
nal is well-suited to test the temporal resolution of the
method. To further analyze the spectral resolution capa-
bilities of all the methods, a signal with four closely spaced
frequency components is chosen as

S3(t) = 4 sin(2π8.2t) + 3 sin(2π8.6t) + 2 sin(2π9t)
+ 4 sin(2π9.6t) (25)

For the analysis of steady-state behavior of BMFLC
based methods, an extended version of signal S1 is chosen
as

S4(t) =
{
4 sin(2π9t) + 2 sin(2π11t); 0 ≤ t < 60
2 sin(2π7t) + 4 sin(2π14t); 60 ≤ t ≤ 120

(26)

The EEG data set used in the study is from Brain Com-
puter Interface Competition IV [41]. The set contains
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Figure 2 Time-domain estimation accuracy of BMFLC,�f = 0.5 Hz. (a1), (b1) and (c1) are the synthetic signals S1(t), S2(t) and EEG
respectively; (a2), (b2) and (c2) are the estimated errors for BMFLC-KF; (a3), (b3) and (c3) are the estimated errors for BMFLC-KS; (a4), (b4) and (c4)
are the estimated errors for BMFLC-LMS.

EEG data of 9 subjects. EEG was recorded from 22
Ag/AgCl electrodes sampled at 250 Hz. All signals were
recorded monopolarly with the left mastoid as reference
and right mastoid as ground. Four classes of cue-based
motor imagery tasks were carried out, namely the imag-
ination of movement of the left hand, right hand, both
feet and tongue. Each subject data was recorded in 2 ses-
sions on separate days. Each session consists of 6 runs
separated by short breaks. One runs consists of 48 trials.
During the recording, the subjects sat on a comfortable
armchair in front of a computer screen. At the begin-
ning of each trial (t = 0s), a fixation cross appeared on
the black screen. Two seconds later, a cue in the form
of an arrow pointing either to the left, right, down or
up displayed on the screen and lasted 1.25s. The subjects
were asked to perform the motor imagery task until the

fixation cross disappeared from the screen at t = 6s.
The sequence is shown in Figure 3 (reproduced from
[41]). For more details about data collection, see [41].
In this paper the hand movement imagery is consid-
ered. For the hand movement imagery, EEG data from
the electrodes C3 and C4 placed over the sensorimo-
tor cortex according to 10/20 international system, where
the μ-rhythm originates, is selected for analysis. To limit
the analysis to μ-band, the data was filtered between
6 Hz and 14 Hz by a fifth-order Butterworth bandpass
filter.
To quantify the performance of BMFLC based algo-

rithm, we employ the root mean square defined as

RMS(s) =
√(∑k=n

k=1(sk)2/n where n and s are the num-

ber of samples and input signal respectively. sk denotes the
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Figure 3 Timing scheme of the experiment.

input signal at time instant k. The percentage accuracy is
defined as

RMS% = RMS(s) − RMS(e)
RMS(s)

× 100 (27)

where e is the estimation error.

Parameter selection
For estimation of synthesized signals and EEG, we set the
following parameters for BMFLC based algorithms: f1 = 6
Hz, ω1 = 2π f1, fn = 14 Hz, ωn = 2π fn. Frequency spacing
is set to be �f = 0.5 Hz [18]. The weights are initial-
ized with 0, i.e. w0 = 0. For the BMFLC-LMS algorithm,
the adaptive gain μ = 0.035 is chosen for optimal perfor-
mance for the corresponding frequency spacing �f = 0.5
Hz [18]. The co-relation between the parameter μ and
step-size is discussed in [18].
For implementation of BMFLC-KF/KS, the two param-

eters, the state noise covariance Q and measure noise
covariance R should be properly tuned. In the follow-
ing, several experiments are conducted for identification
of parameters to achieve better accuracy. To start with,
we assume that the state noise covariance is a diagonal
matrix in the form of Q = q ∗ I. Then the parameter q
is selected such that the root-mean-square (RMS) error is
minimized. In [34], the measurement noise covariance R
was estimated online by using the innovation process of
the Kalman filter. Then an optimal value for q is selected
to minimize the RMS error. Further, the selection of q
is also performed for pre-fixed R. Experiments are first
performed with synthetic signal S1 and S2 and the cor-
responding results are shown in Figure 4(a) and 4(b). It
shows that when q > 0, the RMS error is below 3% when
R is estimated online and 1% for pre-fixed R. Based on
the result of earlier experiment, we initialize q = 0.05
and then optimize R. The results obtained for signal S1(t)
are shown in Figure 4(c). As we vary the value of R, the
RMS error remains constant. This further shows that the
error performance of BMFLC-KF/KS is highly dependent
on the selection of q.
To further justify the selection of parameters, experi-

ments are conducted with the EEG data. EEG data of all

trials of subject 1 are selected. Similar to the earlier, R is
estimated in the algorithm, and the q is selected based
on the RMS error. Based on the RMS error obtained for
all selections of q and for all trials of the subject #1, the
95% confidence interval (CI) is estimated. To obtain reli-
able estimation of CI, Bootstrap method [42] with 2000
re-sampling is employed and the results are shown in
Figure 4(d)-(e). Hence, we select q = 0.01 and R = 0.01
for optimal performance.
The STFT and CWT are set to have the same frequency

resolution as BMFLC. The window function in STFT is set
according to

L = Fs
�f

(28)

where L denotes the length of the window function, Fs is
the sampling frequency and �f = �ω/2π . The step size
of STFT is 1/Fs. For the wavelet-based TFR method, the
Morlet wavelet is employed with ω0 = 6 to offer good
trade-off between temporal and spectral resolutions [22].
A total of 17 scales are calculated in this paper, which are
equally spaced within the range of 6Hz to 14Hz with the
same frequency gap employed in BMFLC and STFT. The
wavelet scale is transformed to Fourier frequency with (3).

Results
In this section, we provide comprehensive analysis of all
the five methods, BMFLC-LMS, BMFLC-KF, BMFLC-KS,
STFT and CWT for synthetic and EEG data sets discussed
in earlier section.

Estimation accuracy
To compare the estimation accuracy of BMFLC based
methods, the estimated signal together with the esti-
mation error for synthesized signals (23, 24) and single
trial EEG data (C3 electrode for right hand movement
imagery) are shown in Figure 2.
In Figure 2(a2) and Figure 2(b2), error can be observed

at the transition points for BMFLC-KF. By compar-
ing the results of BMFLC-LMS in Figure 2(a4) and
BMFLC-KF/KS in Figure 2(a2) and (a3), it is clear that
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selection with S1(t) for fixed q; (d) Subject #1 C3(all trials); (e) Subject #1 C4(all trials).

the estimation accuracy depends on the adaptive algo-
rithm. For the EEG data, BMFLC-KF/KS performed better
compared to BMFLC-LMS as shown in Figure 2(c4).
For BMFLC-KS, the error is backward averaged to

obtain the smoothed estimation. Since the system transi-
tion matrix is modelled as identity matrix, the accuracy of
the algorithm cannot be improved with Kalman-smoother
[36]. However, we can observe from Figure 2(b2) and
Figure 2(b3) that the transient performance can be
improved.
The RMS% error for all methods is tabulated in Table 1.

The results indicate that the proposed method accurately
models both the synthesized signals and EEG data. For a
large EEG data set, the accuracy remained nearly constant
with small variation.

Table 1 Estimation accuracy of BMFLC basedmethods

Methods
Signal

S1(t) S2(t) S3(t) EEGa C3_RH_Allb C4_RH_Allb

BMFLC-KF 99.47 99.39 99.49 99.22 99.19±0.14 99.03±0.20

BMFLC-KS 99.53 99.12 99.44 99.19 98.87±0.27 98.80±0.34

BMFLC-LMS 96.60 94.26 96.68 93.68 93.42±0.69 93.55±0.71

aSingle trial EEG data is considered.
bThe 68 trials data of subject 3 right handmovement imagery is considered.

To analyze the effect of frequency gap on estimation
accuracy, the RMS% accuracy for all methods for various
choices of frequency gap is computed with 68 trials of EEG
data (C3_RH_All). Table 2 shows that the choice of fre-
quency gap does not effect the accuracy of the estimation.
However, the selection of frequency gap affects the fre-
quency tracking that can be obtained from BMFLC. This
issue will be discussed in the following section.

Temporal and spectral resolution: comparison of all five
methods
The time-frequency representation of two synthesized
signals together with the single trial EEG data obtained
with STFT, CWT and BMFLC based methods are shown
in Figure 5. The leakage effects of STFT and CWT
can be clearly identified (Figure 5(a5), (b5), (a6) and
(b6)) in the adjacent frequency components. The colorbar
represents the absolute amplitude of corresponding

Table 2 Estimation accuracy for different frequency gaps

Methods
Frequency gap in BMFLC

�f = 0.1 Hz �f = 0.2 Hz �f = 0.5 Hz �f = 1 Hz

BMFLC-KF 99.80±0.03 99.63±0.05 99.19±0.14 98.50±0.11

BMFLC-KS 99.20±0.10 99.03±0.15 98.87±0.27 99.07±0.15

BMFLC-LMS 96.93±0.22 95.80±0.40 93.42±0.69 96.16±0.77
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Figure 5 Time-Frequency mapping for synthesized signals, S1(t) and S2(t),�f = 0.5 Hz. (a1) and (b1) are the synthetic signal S1(t) and
S2(t) respectively; (a2) and (b2) are the time-frequency mappings obtained with BMFLC-KF; (a3) and (b3) are the time-frequency mappings
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frequency components in the figure for BMFLC-LMS,
BMFLC-KF/KS. By construction, BMFLC models the sig-
nal into individual frequency components and hence the
leakage effect that occurs in STFT and CWT can be
mitigated.
BMFLC-KF provides accurate spectral estimation as

shown in Figure 5(a2) and (b2). However, when there is a
sudden change in the frequency, BMFLC-KF requires an

adapting period for tracking the spectral changes in the
signal. Although the estimation accuracy is high, there is
some disturbance at the frequency transition at 5 sec as
seen in Figure 5(a2) and (b2). As the amplitude weights of
BMFLC-KF are initialized with zero, BMFLC-KF requires
an initial adaptation period. This is mainly due to the
random walk model employed for the state transition in
BMFLC. By comparing Figure 5(a2) with Figure 5(a3) and
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Figure 5(b2) with Figure 5(b3), the estimation of smoother
relays on the information provided by the Kalman filter,
and operates backward to smooth the errors in the esti-
mation. It is clear that the BMFLC-KS provides improved
spectral estimation.
Another factor that affects the spectral estimation

is the selection of frequency gap �f . To study the
sensitivity of the method, synthesized signal S3(t) is
employed and the results for various �f are shown in
Figure 6. When source signal has several frequency com-
ponents located closely in the spectral domain, STFT
provides better spectral estimation compared to CWT.
It is also clear that, with STFT the estimated amplitude
is distorted. A frequency gap of 0.2 Hz is employed

for the analysis with BMFLC based methods. For a
frequency gap �f =0.1 Hz and 0.2 Hz, spectral esti-
mation obtained with BMFLC-KF/KS is better com-
pared to STFT. With BMFLC-KS the initial adaptation
period is reduced and the improved performance can
be seen in Figure 6(d). As the source signal S3(t)
has closely spaced frequencies, the results for BMFLC
with frequency gap 1 Hz are not accurate as shown
in Figure 6(h). Furthermore, the number of frequency
weights in BMFLC based methods can affect the ampli-
tude estimation. As shown in Figure 6(g), when �f =0.1
Hz gap is used, the estimated amplitude is smaller com-
pared to the actual amplitude of the synthesized signal
S3(t). These results clearly shows that the an appropriate
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frequency gap should be selected for accurate spectral
estimation.
The inadequacy of CWT for the synthetic signal S3(t)

in Figure 6(f ) is mainly due to the parameter selection
of the mother wavelets. The bigger the ω0 in Morlet
wavelets, the better frequency resolution can be obtained.
By proper tuning of ω0, an improved spectral resolution
can be obtained for S3(t) as shown in Figure 7(a). How-
ever, for the same parameter selection, the CWT for the
signal S2(t) is shown in Figure 7(b) and the temporal res-
olution is compromised. It is clear that if high accuracy is
required in the spectral domain, accuracy in the temporal
resolution cannot be guaranteed at the same time. Com-
paring the above results, BMFLC method provides better
frequency resolution without loss of temporal resolution.
Although the amplitude accuracy of BMFLC-LMS is

high, its corresponding frequency components cannot
adjust to the sudden changes in the frequency char-
acteristics of the signal. The weights of BMFLC-LMS
requires longer duration to track the changes in the fre-
quency characteristics of the signal. To highlight the prob-
lem, synthesized signal S4(t) is employed. Time-frequency
maps for BMFLC-LMS, BMFLC-KF/KS are shown in
Figure 8(a). Individual weights of BMFLC are shown in
Figure 8(b)-(d). It can be clearly seen in Figure 8(d) that
the frequency weights of BMFLC-LMS require more time
to settle to steady-state. Whereas BMFLC-KF/KS weights
settle to correct frequency values immediately as shown
in Figure 8(c)-(d). When the frequency components in
signal S4 change at 60s, the previous settled frequency
weights slowly decreases to 0 as the new frequency com-
ponents gradually increase. BMFLC-KF/KS can track the
sudden changes in frequency, whereas the corresponding
weights in BMFLC-LMS does not settle. This clearly high-
light the inadequacy of the BMFLC-LMS for extracting
fast changing frequency characteristics in the signal.

Computational complexity
In order to study the real-time applicability, the com-
putational complexity of the TFR methods is presented.
The difference between BMFLC-KF and non-parametric
methods (CWT and STFT) is that they require sufficient

length of input samples to be stored in order to provide the
time-frequency mapping. Therefore the computational
complexity of these methods relies on the length of the
input data.
On the other hand, the BMFLC-KF updates the esti-

mation at every sample. Therefore the computational
complexity only relies on the observation and state-space
dimensions of the Kalman filter and is independent of
the input data length. The computational complexity of
Kalman filter is given by O(3ln2), where l and n are obser-
vation and state-space dimensions respectively [43]. For
STFT, the input data is first multiplied with a window
function followed by FFT [44]. Hence the computational
complexity of STFT is O(Nlog2N), where N is the length
of the data being analyzed. The inverse Fourier transform
for CWT requires three FFT’s for a signal with length
N. Hence the computational complexity of CWT can be
computed asO(3Nlog2N). For comparison, the operations
required for all methods are tabulated in Table 3.
In BCIs, the feature required for generating a con-

trol command is extracted every 500 ms [16,45]. Let us
consider the sampling frequency as Fs = 512 Hz and fre-
quency resolution as �f = 0.5 Hz [18]. For the given �f ,
the order of BMFLC-KF can be obtained as n = fn−f1

�f × 2.
In order to maintain the same frequency resolution in
STFT and FFT with BMFLC, the data is padded with
zeros in order to have sufficient data length (28) for anal-
ysis. For quantitative comparison, the operations required
for all the methods are for a given data length is also
provided in Table 3. The computational complexity of
FFT [45] is also discussed in the Table. This comparison
quantifies the computational complexity of the algorithms
for real-time implementation. BMFLC-KF has compar-
atively lower computational requirement compared to
other methods.
The computational complexity of BMFLC-KF depends

on the dimensions of the state-space which grows linearly
as the frequency gap �f decreases. The computational
requirement of BMFLC-KF for various �f are given in
Table 4. For a small frequency gap �f = 0.1 or 0.2,
the computational complexity increases and the method
becomes impractical for real-time applications. However,
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for EEG applications with an appropriate frequency gap,
i.e. �f = 0.5 Hz as in [18], the BMFLC-KF can be used
for BCI applications to provide better spectral resolution
with less computation as compared to STFT and CWT.

ERD detection
In order to test the efficiency of the proposed algorithm
for BCI applications, we apply all five TFR methods to

Table 3 Computational complexity

FFTa STFTa CWTa BMFLC-KFb

Notation O(N1 log2N1) O(Nlog2N1) O(3N2 log2N2) O(3ln2)

Operationsc 10240 10240 6144 3072

aN is the data length; N1= 1024;N2= 256;
bl and n are the observation and filter orders respectively.
cFs = 512Hz,�f = 0.5Hz.

the EEG data for ERD detection. ERD detection can be
identified in two ways. It can be either seen as an energy
decreasing with respect to the experiment cue in the time-
frequency mapping or as an energy percentage change
with respect to a reference period (a pre-defined period
before the experiment cue onset). The percentage value
denoted as ERDf

j is defined similar to [42] as

Af
j = 1

N − 1

N∑
j=1

(
w f
i,j − w̄ f

j

)2
; (29)

Table 4 Computational complexity of BMFLC-KF

BMFLC-KF �f = 0.2 Hz �f = 0.4 Hz �f = 0.5 Hz �f = 1 Hz

Operations 19200 4800 3072 768
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R f = 1
k

r0+k∑
r0

Af
j (30)

ERDf
j = Aj − R

R
× 100% (31)

where w f
i,j are the estimated weights from time-frequency

decomposition algorithm at jth sample of the ith trial of
frequency f, w̄ f

j is the mean of weights over all trials and
N is the number of trials/subject. Rf is average power in
the pre-defined reference period [r0, r0 + k]. The refer-
ence period is generally the period before the cue is onset
[9]. In line with earlier works [9,32], we select the refer-
ence period as 0 to 1.5 s before the cue onset (cue at 2
sec) for calculation of ERD. The time-frequency map for
ERD is obtained by combining all the row vectors ERDf =[
ERDf

1ERD
f
2 · · ·ERDf

m
]
, with m being the number of data

samples in a given trial. The obtained ERD% is the average
over all trials of a subject.
The ERD detection of the corresponding electrode loca-

tion and all trials for 3 subjects (Subject 1 right hand
imagery, Subject 3 right hand imagery and Subject 7 right

hand imagery) is shown in Figure 9. ERD pattern can be
identified for all the three subjects in different frequency
bands for all the methods. Comparing the results of
BMFLC-KF (Figure 9(a1)-(c1)) with STFT (Figure 9(a3)-
(c3)) and CWT (Figure 9(a4)-(c4)), there is a small delay
in the event transition in the ERD pattern. Whereas
BMFLC-KS (Figure 9(a2)-(c2)) shows similar performance
compared to STFT and CWT. It is clear that BMFLC-KF
requires additional 0.5s for the settlement of frequency
weights (as depicted in the Figure 9(a1)-(c1) during the
initial 0.5 s).
To statistically validate the performance, bootstrap with

2000 times re-sampling is used to estimate the 95% con-
fidence interval for obtained ERD%. As stated in [42], if
both confidence values of an ERD show same sign then
it can be considered as significant. The bootstrap test
shows that the obtained ERDmapping is significant for all
methods.
In order to quantify the ERD, the difference between

maximal ERD percentage value and minimal ERD per-
centage value averaged over all frequency components is
analyzed. The results are shown in Figure 10. A z-test has
been applied to check whether the results are significantly
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Figure 10 ERD detection comparison for all subjects of right hand imagery.

different among methods. For all the subjects, the CWT
shows the highest difference in ERD detection in mean
value. The BMFLC-KF performs better than STFT over all
the subjects (z = 11.12, p < 0.01) and it also outperforms
BMFLC-KS (z = 15.01, p < 0.01). The CWT provides the
best performance compared to all the four methods.

To highlight the applicability of the proposed method
for BCI applications, single trial ERD pattern for sub-
ject 3 right hand imagery from C3 location (shown
in Figure 11(a1)) was analyzed. ERD for a single trial
data can be visually identified as an energy decreasing
phenomenon after cue is onset in Figure 11 for all the
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methods. Since the motor sensory ERD only exists before
the movement onset, this phenomenon is extremely sen-
sitive to time delay.
By comparing the results in Figure 11(b2)-(b5), ERD can

be observed in the frequency range of 10 Hz- 12 Hz in
all the methods except BMFLC-LMS. Within these meth-
ods, STFT (Figure 11(b4)) and CWT (Figure 11(b5)) offer
the best temporal accuracy. On the other hand, BMFLC-
KF/KS also provides narrower band similar to CWT. By
comparing the results of Figure 11(b1) and (b2), the adap-
tation period in Kalman filter can be decreased with the
smoother procedure. Also, the frequency transitions in
the spectral domain can be accurately estimated in the
time-frequency mapping for BCI applications with the
proposed method.

Discussion
Although the proposed method ensures high accuracy for
all choices of (�f ), an optimal selection of (�f ) is required
for real-time implementation. For EEG, a frequency gap of
0.5 Hz is optimal [18] and ensures accurate spectral esti-
mation. However, for off-line analysis a small (�f ) can be
selected. The comparative study conducted on computa-
tional complexity of the TFRs shows that the proposed
method has lower computational demand for a bandlim-
ited signal. Hence, the proposed method is more suitable
for accurate spectral estimation in a narrow frequency
band.
While the proposed method is only discussed for a nar-

row frequency band in this paper, the method can still
be applied for a wide frequency band. Multiple BMFLCs
can be implemented in parallel by dividing the wide band
into small narrow bands to ensure stability and accuracy
for the algorithm. However, if the band of interests is too
wide or the frequency resolution for each sub-band is too
high, traditional methods would be more appropriate. A
wide frequency band increases the computational require-
ment in BMFLC. As we confine our study to a narrow
frequency band, the CWT could not provide better per-
formance compared to STFT as the frequency resolution
in CWT is scaled in the narrow band.
Heisenberg uncertainty exists in all the methods. Even

though the estimation accuracy is high, the proposed
method requires an additional time for the frequency
weights to settle, as both amplitude and frequency can-
not be estimated at the same time. The uncertainty on
frequency can be clearly seen at the sudden frequency or
amplitude transition. For EEG signals, an additional 0.5 s
is required for the frequency weights to settle. How-
ever, it only occurs at the start of the estimation process.
This initial estimation delay is inherent for all adaptive
based methods and can be improved with proper ini-
tialization. The lower computational complexity of the
proposed method can offset for the delay caused in the

estimation compared to traditional methods. Compara-
tively, the CWT has the best performance in ERD detec-
tion. However, the implementation of CWT method can
be a problem for real-time applications.
Although only the ERD detection is considered in this

paper as application, the proposed algorithm is applicable
for any bandlimited signal estimation. As ERD and ERS
(event related synchronization) lies in a specific frequency
bands, the proposed method can be applied for ERD
and ERS detection simultaneously by employing multiple
BMFLC’s in parallel. Since the weights in the BMFLC are
directly related to the real amplitudes of the individual
frequency components, the algorithm can utilized where
an accurate amplitude estimation of a specific frequency
component is required.

Conclusions
In this research, the performance of existing BMFLC-LMS
is improved by incorporating a Kalman filter. A compar-
ison study of the BMFLC based methods with STFT and
CWT is performed with both synthetic and real EEG
data. The results indicate that the BMFLC-KF/KS can be
used as an alternative time-frequency analysis methods
for band-limited signals. As most of the frequency-based
BCI applications rely on amplitude features in a fixed
frequency band (μ rhythm) for classification, BMFLC-
KF can be directly applied to most existing BCI systems.
With the linear model employed, optimal estimation can
be obtained with the Kalman filter. Thus the proposed
method can provide an accurate time-frequency map-
ping with less computational complexity as compared to
STFT and CWT for real-time applications. The results
also show that the BMFLC-KS can provide more accurate
time-frequency representation for off-line analysis.
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