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Abstract
Background  Incorporating instrument measurements into clinical assessments can improve the accuracy of results 
when assessing mobility related to activities of daily living. This can assist clinicians in making evidence-based 
decisions. In this context, kinematic measures are considered essential for the assessment of sensorimotor recovery 
after stroke. The aim of this study was to assess the validity of using an Android device to evaluate kinematic data 
during the performance of a standardized mobility test in people with chronic stroke and hemiparesis.

Methods  This is a cross-sectional study including 36 individuals with chronic stroke and hemiparesis and 33 age-
matched healthy subjects. A simple smartphone attached to the lumbar spine with an elastic band was used to 
measure participants’ kinematics during a standardized mobility test by using the inertial sensor embedded in it. This 
test includes postural control, walking, turning and sitting down, and standing up. Differences between stroke and 
non-stroke participants in the kinematic parameters obtained after data sensor processing were studied, as well as in 
the total execution and reaction times. Also, the relationship between the kinematic parameters and the community 
ambulation ability, degree of disability and functional mobility of individuals with stroke was studied.

Results  Compared to controls, participants with chronic stroke showed a larger medial-lateral displacement 
(p = 0.022) in bipedal stance, a higher medial-lateral range (p < 0.001) and a lower cranio-caudal range (p = 0.024) 
when walking, and lower turn-to-sit power (p = 0.001), turn-to-sit jerk (p = 0.026) and sit-to-stand jerk (p = 0.001) 
when assessing turn-to-sit-to-stand. Medial-lateral range and total execution time significantly correlated with all the 
clinical tests (p < 0.005), and resulted significantly different between independent and limited community ambulation 
patients (p = 0.042 and p = 0.006, respectively) as well as stroke participants with significant disability or slight/
moderate disability (p = 0.024 and p = 0.041, respectively).

Conclusion  This study reports a valid, single, quick and easy-to-use test for assessing kinematic parameters in 
chronic stroke survivors by using a standardized mobility test with a smartphone. This measurement could provide 
valid clinical information on reaction time and kinematic parameters of postural control and gait, which can help in 
planning better intervention approaches.
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Introduction
Stroke is the second-leading cause of death in adults 
and represents a major cause of disability worldwide [1]. 
There are 12.2 million new cases of stroke each year, and 
101  million people are living with the consequences of 
a stroke [1]. This number has almost doubled in the last 
30 years [1]. It is noteworthy that 70% of strokes and 
87% of stroke-related deaths and disability-adjusted life-
years occur in low- and middle-income countries [2]. 
The impact of persistent stroke-related disability is sig-
nificant to both individuals and society. Therefore, there 
is an ongoing need to address the challenges faced by 
stroke survivors [3]. Stroke typically causes sensorimo-
tor deficits such as muscle weakness in the paretic limbs, 
impaired proprioceptive capabilities, sensory loss, vision 
problems, and spasticity [4]. These deficits affect the pos-
tural stability of stroke survivors and have significant 
influence on their mobility [5], causing functional mobil-
ity impairment after stroke [6].

Since functionality is related to daily life activities (i.e., 
sitting and standing, walking, turning, and going up and 
down stairs) [6], its impairment negatively affects the 
quality of life of post-stroke subjects [7]. Furthermore, 
functional mobility in the community requires not only 
the ability to maintain balance while walking and turning, 
but also to ambulate at 0.80 m/s or faster [8, 9]. Thus, dif-
ficulties with mobility control, particularly in balance and 
gait, are a priority clinical concern in this population [10].

In that sense, monitoring the improvement of func-
tional mobility post-stroke is relevant as it could help to 
determine the effect of rehabilitation and thus expand 
therapeutic options [11–13]. The gold standard mea-
surement of functional mobility is photogrammetry [14]. 
However, it is time-consuming and difficult to perform in 
clinical practice. Therefore, several tests have been used 
in clinical settings and research to determine functional 
mobility in stroke. Particularly, the Time Up and Go Test 
(TUG) [7], the Tinetti’s Scale of Mobility and Balance [7], 
the Dynamic Gait Index [15] and the Rivermead Mobil-
ity Index [16, 17]. These tools are quick and easy to use 
and do not require expensive materials. However, they 
provide a subjective evaluation and are less sensitive in 
detecting changes [18]. Therefore, incorporating instru-
mental systems into clinical assessments could improve 
the accuracy of results. These devices provide objective 
information on biomechanical aspects such as posture, 
movement, and compensatory strategies [18].

In this regard, Lin et al. [5] compared the results of 
clinical assessment scales (lower extremity subscale of 
the Fugl-Meyer Assessment, Berg Balance Scale and 
TUG) versus instrumental balance assessment (stability, 

proprioception and limits of stability) and showed that 
the later was superior to clinical alternatives in detecting 
balance impairments in stroke patients with mild balance 
disorders. As a conclusion, these authors recommended 
that clinicians consider the use of both classic clinical 
tests and quantitative biomechanical tools when evalu-
ating stroke patients to improve the accuracy of assess-
ments, leading to a better individualized treatment plan 
[5]. Similarly, the Stroke Recovery and Rehabilitation 
Roundtable of the International Stroke Recovery and 
Rehabilitation Alliance considered kinematic measures 
to be essential in assessing sensorimotor recovery [19]. 
Therefore, the use of a device that can help measure kine-
matic data when performing several daily activity tasks 
(such as rising, walking, turning, and sitting down) in a 
single test could help clinicians in evidence-based deci-
sion making. For such a purpose, current evidence exam-
ines various technological approaches. Many of them are 
not portable or easy to move, and the evaluation proce-
dure is complex and time-consuming [20]. As a result, 
researchers have begun using smartphone applications to 
assess walking activity and balance performance in stroke 
[21].

Smartphones are equipped with advanced comput-
ing capabilities, global positioning system receivers, and 
sensing capabilities such as an inertial measurement unit 
(IMU), magnetometer, and barometer [22]. These fea-
tures can also be found in wearable ambulatory monitors 
[22]. Hence, smartphones are currently gaining inter-
est in post-stroke clinical assessment due to their valid-
ity, reliability, portability and price [21, 23], not only for 
measuring upper limb range of motion [24] but particu-
larly for gait and balance assessment [21]. A systematic 
review of smartphone technology [25] found that a few 
systems have utilized IMU sensors embedded in smart-
phones, while more systems have integrated external 
sensors for data acquisition and used the smartphone as 
a data processing unit in stroke patients. For gait and bal-
ance assessment, smartphones has primarily been used 
to determine step counts and cadence [26, 27], recognize 
human movement activity [28], study posturography [20, 
29], and analyze kinematic data during gait [23, 30, 31]. 
It should be noted that the current scientific evidence 
indicates that more studies are needed [20, 21], especially 
with standardized protocols and appropriate sample cal-
culations [21]. To the best of our knowledge, no study 
has been found that uses a smartphone in a single test to 
evaluate kinematic data during the joint performance of 
different tasks relevant to activities of daily living, such as 
reaction time, sitting down, getting up or turning around, 
in stroke population. Therefore, this study aimed to assess 
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the validity of using an Android device to evaluate kine-
matic data during the execution of a standardized mobil-
ity test that includes various tasks relevant to activities of 
daily living in people with chronic stroke and hemipare-
sis. To achieve this objective, the data registered by the 
sensor were compared between stroke and non-stroke 
individuals. In addition, the relationship between clinical 
tests and kinematic parameters were studied for patients. 
If our working hypothesis is met, the inclusion of an 
inertial sensor on an Android device when performing a 
standardized mobility test will provide further informa-
tion about which daily activity tasks have greater impair-
ment in the population with chronic stroke, without the 
need to allocate more time for the clinical assessment.

Materials and methods
Study design and participants
This is a cross-sectional design study that included indi-
viduals with stroke in chronic phase (onset > 6 months) 
and hemiparesis as well as age-matched healthy subjects 
without a history of falls in the preceding year. Adults 
with stroke were recruited from several brain injury 
associations of patients located in the region of Valencia 
(Spain), and the healthy participants were recruited from 
the authors’ institution and through personal contact. 
Recruitment was performed from January 2022 to March 
2023. Inclusions were made if participants had motor or 
sensorimotor hemiparesis affecting only the lower limb 
or both the lower and upper limbs, could walk for at least 
10 m with or without an assistive device or supervision 
(functional ambulation classification of the Hospital of 
Sagunto [FACHS] ≥ 2 [32]), did not present with severe 
disability (modified Rankin scale [mRS] ≤ 3 [33]), and had 
the ability to understand verbal instructions to undergo 
the assessment tests (evaluated by a neuropsychologist 
expert in brain injury). Exclusions were made in cases of 
vestibular, neurological (e.g. Parkinson’s disease, ataxia), 
or severe musculoskeletal conditions (e.g. recent surgery, 
amputations) and pain (visual analogue scale ≥ 3 [34]) 
that interfere with mobility, as well as any other impair-
ment that precluded participants from performing the 
assessment tests.

Prior sample size was estimated with the GRANMO® 
calculator (Institut Municipal d’Investigació Mèdica, 
Barcelona, Spain, Version 7.12). For this purpose, data 
of a previous pilot study was used [35]. Specifically, the 
sample size was calculated based on the mean differ-
ence between stroke and non-stroke subjects in the time 
required to perform the standardized mobility test. Set-
ting both alpha and beta errors at 0.05 in a two-sided 
test, assuming a common deviation of 10.11 s [35] to be 
recognized as statistically significant, and ascertaining a 
between-group difference of ≥ 9.57s [35], established that 
30 subjects per group were needed (60 total).

All study participants were fully informed about 
the purpose of the study and the experimental pro-
cedure, and provided written informed consent. The 
study conformed to the Declaration of Helsinki and was 
approved by the Ethics Committee of Human Research 
(H1417615024926) of the authors´ institution. This arti-
cle adheres to the STROBE guidelines [36].

Experimental procedures
A single-session assessment was arranged for each par-
ticipant. They were asked to attend the session in com-
fortable clothing and well-fitting footwear, and to avoid 
vigorous physical activity on the assessment day. Ankle 
foot orthoses were allowed if necessary.

Sociodemographic and clinical data were collected 
from a clinical interview and medical records. Muscle 
spasticity of the paretic calf was measured with the modi-
fied Ashworth scale (MAS) [37], the ability to walk was 
assessed with the functional ambulation classification 
of the Hospital of Sagunto (FACHS) [32], disability was 
evaluated with the mRS [33] and cognitive status was 
assessed with the Montreal Cognitive Assessment [38]. 
Height and weight were measured and body mass index 
(BMI) was calculated. Then, participants went on to per-
form the assessment tests.

Functional mobility tests
According to the functional tasks involved in the stan-
dardized mobility test, three tests were performed:

1.	 The Timed Up and Go test (TUG) [39]. This is a 
frequently used test in clinical settings that addresses 
basic mobility skills. Participants were asked to 
stand up from a chair, walk a 3-meter distance at a 
comfortable and safe walking speed, turn, walk back 
and sit down on the chair. Participants were timed 
from when they stood up to when they sat down, 
and this time was recorded. A trial test was allowed 
before timing the test and for familiarization. A 
lower time is indicative of a better outcome. The 
TUG has shown excellent intra-rater (intraclass 
correlation coefficient [ICC]: 0.95–0.96) and inter-
rater (ICC: 0.97–0.99) reliabilities in stroke survivors 
[40].

2.	 The 10-meter walk test (10MWT) [41]. This test was 
employed to measure walking speed. Participants 
were asked to walk at a comfortable peace along 
a 10-meter walkway. The time taken to walk the 6 
central meters was measured, as 2-meter distances 
at the beginning and at the end of the walkway 
were allowed for acceleration and deceleration, 
respectively. The test was performed twice, and the 
shortest time was registered. The walking speed was 
then calculated and used for statistical purposes; a 
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higher walking speed indicated a better ambulation 
capacity. This test has been found to have excellent 
test-retest (ICC: 0.85–0.97), intra-rater (ICC: 0.92–
0.94), and inter-rater (ICC: 0.96–0.97) reliabilities in 
people with chronic stroke [41].

3.	 The five times sit-to-stand test (5xSTS) [42]. This test 
was used to measure sit-to-stand ability. Starting at 
a sitting position with the back against the back of a 
standard-height chair, participants were instructed 
to stand up and sit down five times as quickly and 
safely as possible without using the arms for support. 
The amount of time required to perform the five 
repetitions was measured and registered, with lower 
times indicating better outcomes. Reliability of the 
5xSTS has been found to be excellent (ICCs for intra-
rater, inter-rater, and test-retest ranging from 0.970 
to 0.999) in populations with chronic stroke [43].

Standardized mobility test
The standardized mobility test was conducted using 
an inertial sensor (High Performance 6-Axis MEMS 
MotionTracking™ composed of a 3-axis gyroscope, 3-axis 
accelerometer and a Digital Motion Processor™ [TDK- 
ICM-20689) at 100 Hz] embedded in an Android device 
smartphone (Xiaomi Redmi 4x Model MAG138). Only 

one type of smartphone was used in this study because 
literature reports only small differences among different 
models: about 0.3 m/s in velocity, one degree in roll and 
pitch [44] and 0.3 degrees in the Root Mean Square mean 
values for static protocols [45]. For dynamic conditions, 
differences may increase and depend on the sampling fre-
quency, the acceleration sensitivity, and especially of the 
data analysis protocol [46]. These differences are similar 
to those also found among various types of commercial 
IMUs, whether integrated into smartphones or not [47]. 
Throughout the test, the inner sensor registered the 
accelerations generated by each participant´s movement 
while the sensor signals were recorded with the FallSkip® 
app system (Instituto de Biomecánica de Valencia, Valen-
cia, Spain). The system’ s raw data (recordings of mea-
surements and testing times) were used in this study and 
were processed on a custom specific software (see sensor 
data processing section). The Fallskip® measurement sys-
tem was validated against the Kinescan/IBV v7.0 photo-
grammetry system (Instituto de Biomecánica de Valencia, 
Valencia, Spain), and all parameters showed ICCs greater 
than 0.7 [48].

To perform the standardized mobility test, the protocol 
developed for the FallSkip® system was used [49]. In the 
assessment procedure, the test was first explained and 
demonstrated. Next, participants were equipped with a 
lumbar belt with the Android device fixed horizontally 
and parallel to the ground so that the upper edge was 
aligned with the joining of the posterior-superior iliac 
spines (Fig. 1). The positioning and fixation of the device 
in correspondence with the center of mass (COM) of the 
whole body, by means of an elastic belt able to secure it 
and to avoid any displacement, was in line with previ-
ous literature on the instrumental assessment of walk-
ing ability and stability in patients with stroke performed 
with a single wearable device [50–57]. The validity of this 
approach with specially developed wearable devices fixed 
with an elastic belt had already been demonstrated, but 
the use of a smartphone, which incorporates an inertial 
unit and could allow for a more widespread use of this 
technique, had not been tested.

Then, the four phases of the test were consecutively 
performed in a single recording (Fig. 2):

 	• Phase 1: Bipedal stance. The measurement started 
with the participant standing still with arms hanging 
relaxed at the sides of the body for 30 s.

 	• Phase 2: Walking. At the sound of an acoustic signal, 
the participant was required to immediately start 
walking and go through a 3-meter corridor straight 
toward a chair.

 	• Phase 3: Sitting down on a chair and standing up 
from it. At the end of the corridor, the participant 
had to stop for three seconds, turn around, sit down Fig. 1  Position of the Android smartphone
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Fig. 2  Graphical presentation of the sensor data recordings during each phase of the mobility test. Data of a 65-year old male participant with stroke 
is displayed in the upper two graphs and data of his healthy age-matched control is displayed in the bottom two graphs. ML: Medial-lateral axis; AP: 
Anterior-posterior axis; CC: Cranio-caudal axis; ACC: acceleration; ANG_V: angular velocity
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on the chair, remain seated for three seconds and 
then stand up from the chair.

 	• Phase 4: Walking. Finally, the participant had to walk 
back to the starting point.

A single evaluator performed all the tests. During the 
whole test, the evaluator walked one meter away from the 
participant as a precautionary measure. In elderly people, 
this assessment protocol has shown good to excellent 
test–retest reliability for all the kinematic variables (ICC: 
0.75–0.93) [58].

Sensor data processing
All the raw data acquired by the sensor were processed 
on custom specific offline Python (3.x) scripts according 
to the procedure showed in Fig. 3.

Data filtering
To filter the raw sensors signals, the study utilized the 
methodology for inertial sensor data analysis proposed 
by Pedrero-Sánchez et al. [59], which built on Zijlstra´s 
[60] and Nishiguchi et al.´s [61] work. The data registered 
by the Android device inertial sensor were collected at a 
fixed sampling rate of 100 Hz. To assure that data points 
were equally distributed in time and that information was 
not missed between consecutive samples, an interpola-
tion of the registered signal was performed. Then, signals 
were filtered with a low-pass Butterworth filter (fourth-
order zero-lag at 20 Hz).

Test segmentation
To identify the time events related to the tasks under 
interest, each test recording was manually split up by the 
same individual. To this end, the beginning and ending of 
each phase was determined by using a graph plotting the 
data vectors of accelerometers, gyroscopes and magne-
tometer. The segmentation process utilized the following 
key moments of the test [58, 62]:

t0, conclusion of the postural control test 30  s after 
initiation.

t1, onset of walking identified by the increase in activity 
of acceleration (acc) signals.

t2, cessation of walking indicated by the stabilization of 
acc signals near baseline (t0) values, preceding a 3-sec-
ond pause.

t3, beginning of turning displayed by a constant change 
in acc and/or gyroscope (gyro) magnitudes.

t4, completion of the sitting down phase identified by 
the stabilization of both acc and gyro signals, preceding 
the 3-second pause.

t5, initiation of standing up displayed by a consistent 
change in both acc and gyro magnitudes.

t6, conclusion of the standing up phase characterized 
by the return to baseline (t0) values of both acc and gyro 
magnitudes.

t7, beginning of walking backward, determined by 
either at t6 or when acc signals increase after the pause.

t8, termination of the backward walking phase, charac-
terized by the stabilization of acc signals close to baseline 
(t0) values.

Parametrization
In this phase, kinematic parameters (per phase and for 
the complete test) were computed based on previously 
validated research [60, 61, 63, 64]. The sensor’s orienta-
tion was determined from the accelerations and angular 
velocities using Favre’s method [65]. The orientations 
were expressed in Euler angles (Roll, Pitch, and Yaw) and 
quaternions (qw, qx, qy, and qz). Orientation was used 
to segment the test phases and identify the moments of 
directional change, such as turning to sit. The sensor’s 
position was then calculated analytically in the frequency 
domain by double integrating the acc signal using the 
Fourier transform and its inverse, as described by Ribeiro 
et al. [63]. The purpose of this approach was to minimize 
the signal shift when double integrating acc signals to 
determine displacement. Hence, kinematic variables were 
extracted from the various position signals in the differ-
ent phases of the test. Table 1 shows the dependent vari-
ables and their respective methods of acquisition (please, 
refer to supplementary material 1 for further detail of cal-
culating the kinematic variables).

The variables selected for this study and used for sta-
tistical analysis were based on scientific literature. These 

Fig. 3  Sensor data processing procedure
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variables include the displacements along body axes of 
the COM during posture and gait [67] and the time for 
executing the turn-to-sit-to-stand [68], its relative power, 
and the jerk that is the derivate in time of acceleration 
[69]. Medial-lateral and anterior-posterior displacements 
are commonly measured to reflect steadiness in terms 
of COM displacement during postural control assess-
ment [70]. The cranio-caudal range can be considered a 
measure of energy cost [64, 71] and may relate to walk-
ing efficiency [62]. Additionally, the medial-lateral range, 
along with energy cost, represents the ability to control 
body movement during gait [72]. The turn-to-sit task and 
the sit-to-stand task necessitate cognitive planning and 
a proper neuromuscular system coordination to control 
COM displacement and postural alignment [48]. Finally, 
reaction time is indicative of the cognitive processing 
required for postural control after a stroke [73].

Statistical analyses
For the descriptive analysis, continuous data are reported 
as mean (standard deviation) or median (interquartile 
range) while categorical data are shown as percentage. 

The normality of continuous data was checked with the 
Kolmogorov-Smirnov test and the Shapiro-Wilk test, as 
appropriate.

To assess validity, the differences in the dependent 
variables obtained after sensor data processing (Table 1) 
between the stroke group versus the non-stroke group 
were first studied by using a series of independent t-tests 
or Mann-Whitney U tests, as appropriate. Effect size sta-
tistics (r) were also calculated and interpreted as r = 0.12 
small effect, r = 0.20 medium effect, and r ≥ 0.32 large 
effect [74]. Second, the association between the func-
tional mobility tests (TUG time, 10MWT walking speed 
and 5xSTS time) and the kinematic variables (Table  1) 
was established by using the Pearson´s or Spearman’s 
Rho correlation coefficient (ρ), interpreting 0.1 < ρ < 0.3 
as small, 0.4 < ρ < 0.6 as medium and ρ ≥ 0.7 as large [75]. 
Although multiple correlation tests were performed, 
they did not refer to a single specific null hypothesis, so 
no adjustments were adopted to the alpha level of sig-
nificance [76]. Third, for disability (mRS) and ambula-
tion ability (FACHS), stroke participants were divided 
into two groups: those without significant disability 

Table 1  Kinematic parameters calculated
Variable Description Calculation Measure-

ment
units

Assessment of postural control
Medial-lateral displacement
(MLDisp)

Medial-lateral excursion of the COM during the 
30 s bipedal phase.

90th percentile of the double integra-
tion of the acc signal [63] and an 
inverted pendulum model [60]

mm

Anterior-posterior displacement
(APDisp)

Anterior-posterior excursion of the COM during 
the 30 s bipedal phase.

mm

Assessment of gait
Cranio-caudal range
(CCrange)

Vertical COM movement, taking the average of 
walking forth (t1,t2)* and back (t7,t8)* over the 
3-meter distance.

90th percentile of the double integra-
tion of the acc signal [64]

mm

Medial-lateral range
(MLrange)

Horizontal COM movement, taking the average 
of walking forth (t1,t2)* and back (t7,t8)* over the 
3-meter distance.

mm

Assessment of turn-to-sit-to-stand
Turn-to-sit power
(PturnSit)

Mean power generated when turning around 
and sitting on the chair (t3,t4)*.

Estimated by the trajectory of the 
COM during movement, participant’s 
weight and height, and the time 
taken for stand-to-sit and sit-to-stand 
[66].

Watts

Sit-to-stand power
(Pstand)

Mean power generated by getting up from the 
chair (t5,t6)*.

Watts

Turn-to-sit jerk
(RangeJerkSit)

Range of over acceleration when turning around 
and sitting on the chair (t3,t4)*.

Obtained by subtracting the maxi-
mum minus the minimum of the Jerk 
during the gesture.

m/s3

Sit-to-stand jerk
(RangeJerkStand)

Range of over acceleration when getting up from 
the chair (t5,t6)*.

m/s3

Assessment of time
Total execution time Time needed to complete all the phases of the 

test.
Sum of the split of walking (t1,t2 and 
t7,t8)* and sit (t3,t4)* to stand times 
(t5,t6)*.

seconds

Reaction time Time elapsed from the acoustic signal to gait 
initiation (t0,t1)*.

seconds

* timing used during the segmentation process (please, refer to the test segmentation section)

COM: Center of mass; acc: acceleration
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(mRS = 0–1) or slight/moderate disability (mRS = 2–3) 
for the former; and those with independent community 
ambulation (FACHS = 4 or 5 points) or limited commu-
nity ambulation (FACHS = 2 or 3 points) for the latter. 
Then, independent t-tests or Mann-Whitney U tests were 
used to compare the kinematic variables between groups, 
and the effect size statistics (r) were calculated.

Statistical analyses were performed with IBM SPSS Sta-
tistics software (SPSS Inc., Chicago, IL, USA, v.28). Sig-
nificant results were reported if p < 0.05.

Results
Participants
Thirty-six individuals with chronic stroke (mean age 
58.5 ± 8.7 years; 25% women) and 33 healthy counterparts 
(mean age 61.1 ± 10.1 years; 45.5% women) were enrolled 
in the study. Table 2 shows the participants’ characteris-
tics. There were significant differences between groups 
in BMI (p = 0.001), cognitive status (p < 0.001), degree of 
disability (p < 0.001) and ambulation ability (p < 0.001), 
with better results in the non-stroke group. Functional 
mobility tests were significantly different between groups 
(p < 0.001), with the stroke group showing worst results. 
In the stroke group, the average time since stroke was 

68.8 ± 47.5 months, 58.33% of participants had left hemi-
paresis and 83.4% had suffered a single stroke.

Validity results
The inferential analysis comparing the dependent vari-
ables between groups (stroke versus non-stroke) is dis-
played in Table  3. There was statistical significance in 
the between-group differences in the medial-lateral dis-
placement (postural control assessment) (p = 0.022), the 
cranio-caudal and medial-lateral ranges (gait assessment) 
(p = 0.024 and p < 0.001, respectively), in the turn-to-sit 
power (p = 0.001), turn-to-sit jerk (p = 0.026) and sit-to-
stand jerk (p = 0.001) (assessment of turn-to-sit-to-stand), 
and in the total execution and reaction times (p < 0.001 
in both cases). Compared to the non-stroke group, the 
stroke participants showed a greater medial-lateral dis-
placement and medial-lateral range, shorter cranio-cau-
dal range, lesser turn-to-sit power, turn-to-sit jerk and 
sit-to-stand jerk, and an increased total time and reaction 
time.

When the Android device’s performance was evalu-
ated against the TUG in the stroke group (Table 4), the 
TUG time correlated positively and significantly with the 
medial-lateral range (p < 0.001) and the total execution 
time (p < 0.001). A negative and significant correlation 

Table 2  Characteristics of the participants
Stroke group
(n = 36)

Non-stroke group
(n = 33)

Between-group differences
t/U/χ2 P ES

Demographics and anthropometrics
Age, mn ± SD 58.5 ± 8.7 61.1 ± 10.1 1.148 0.258 0.139
Men/women, % 75/25 54.5/45.5 3.176 0.075
BMI, mn ± SD 29.01 ± 5.53 25.17 ± 3.71 3.353 0.001 0.377
Clinical characteristics
Cognitive status – MOCA, mn ± SD 22.81 ± 3.53 26.21 ± 2.60 4.534 < 0.001 0.485
Disability-mRS, md (IQR) 2 (1–2) 0 (0–0) 49.500 < 0.001
Ambulation ability- FACHS, md (IQR) 4 (3–4) 5 (5–5) 115.500 < 0.001
TUG Time (s) 11.6 (9.6–14.7) 7.7 (6.7–8.3) 141 < 0.001 0.655
Walking speed- 10MWT (m/s), mn ± SD 0.95 ± 0.32 1.37 ± 0.15 7.012 < 0.001 0.257
Sit-to-stand ability − 5xSTS (s), md (IQR) 13.98 (12.53–18.29) 11.28 (9.46–12.84) 212.5 < 0.001 0.551
Stroke Characteristics
More than 1 stroke, % 16.6
Left hemiparesis, % 58.33
Poststroke duration (in months), mn ± SD 68.8 ± 47.5
Muscle spasticity paretic calf- MAS, %
0 41.67
1 11.11
1+ 27.78
2 11.11
3 5.56
4 2.78
Data are expressed as mean (mn) ± standard deviation (SD), median (md) (interquartil range [IQR]) or otherwise stated. Significant differences are highlighted in 
bold. Between-group differences were calculated by using the independent t-test or the Mann-Whitney U test for continuous data and the Chi Squared test, for 
categorical data. ES: r effect size statistics (r = 0.12 small effect; r = 0.20 medium effect; r ≥ 0.32 large effect [74]). BMI: Body mass index; MOCA: Montreal Cognitive 
assessment; mRS: modified Rankin scale; FACHS: functional ambulation classification of the Hospital of Sagunto; TUG: Timed up and go test; 10MWT: 10-meter walk 
test; 5xSTS: five times sit-to-stand test; MAS: modified Ashworth scale
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was found between the TUG time and the turn-to-sit 
power (p = 0.031), the sit-to-stand power (p = 0.038), and 
the sit-to-stand jerk (p = 0.039).

Table  4 also illustrates the results of the correlation 
analyses between the kinematic variables and both the 
walking speed (10MWT) and the sit-to-stand ability 
(5xSTS) in the stroke group. Significant negative cor-
relations were found between walking speed and the 
medial-lateral range (p < 0.001) and total execution 
time (p < 0.001). The 5xSTS time correlated significantly 
and positively with the anterior-posterior displace-
ment (p = 0.039), the medial-lateral range (p = 0.028) and 
the total execution and reaction times (p < 0.001 and 
p = 0.002, respectively). It correlated significantly and 
negatively with the turn-to-sit jerk (p = 0.008) and sit-to-
stand jerk (p = 0.013).

When participants with stroke were grouped accord-
ing to their degree of disability (mRS; Table 5), significant 
between-group differences were found for the medial-lat-
eral range (p = 0.024), total execution time (p = 0.041) and 
reaction time (p = 0.040). These three variables showed 
higher values in stroke participants with slight/moderate 
disability.

Regarding the comparison of stroke participants 
according to their community ambulation ability 
(FACHS; Table 6), there were statistically significant dif-
ferences for the medial-lateral range (p = 0.042) and the 
total time (p = 0.006) between groups, with stroke par-
ticipants with limited community ambulation showing 
higher values in both variables.

Table 3  Between-group differences in the kinematic variables
Stroke group
(n = 36)

Non-stroke group
(n = 33)

Between-group differences
t(67)/U P ES

Android device: assessment of postural control
Medial-lateral displacement (mm) 6.76 (4.71–9.65) 5.17 (3.04–7.82) 404 0.022 0.275
Anterior-posterior displacement (mm) 14.34 (11.89–19.63) 13.53 (10.43–20.57) 549 0.589 0.065
Android device: assessment of gait
Cranio-caudal range (mm) 29.08 (23.05–40.62) 38.13 (28.71–50.65) 406 0.024 0.272
Medial-lateral range (mm) 74.29 (60.56–99.82) 56.22 (38.93–63.61) 304 < 0.001 0.419
Android device: assessment of turn-to-sit-to-stand
Turn-to-sit power (W) 100.77 ± 37.08 137.54 ± 46.52 3.646 0.001 0.407
Sit-to-stand power (W) 224.39 ± 95.04 250.74 ± 84.58 1.212 0.23 0.147
Turn-to-sit jerk (m/s3) 18.42 (15.04–23.91) 23.31 (17.06–32.46) 409 0.026 0.268
Sit-to-stand jerk (m/s3) 24.12 ± 9.05 31.64 ± 9.13 3.434 0.001 0.387
Android device: assessment of time
Total time (s) 15.54 (12.81–17.52) 10.21 (9.71–11.13) 104.5 < 0.001 0.708
Reaction time (s) 1.15 ± 0.48 0.77 ± 0.30 3.981 < 0.001 0.437
Data are expressed as mean (mn) ± standard deviation (SD) or median (md) (interquartil range [IQR]). Significant results are highlighted in bold. Between-group 
differences were calculated by using the independent t-test (t) or the Mann-Whitney U test (U).

ES: r effect size statistics (r = 0.12 small effect; r = 0.20 medium effect; r ≥ 0.32 large effect [74])

Table 4  Correlation results between the functional mobility tests and the kinematic variables in the stroke group (n = 36)
MLDisp APDisp CCrange MLrange PTurnSit PStand Range

JerkSit
Range
JerkStand

Total time Reaction
time

TUG time Correlation
coefficient

− 0.070 0.082 0.077 ,661 -,360 -,347 − 0.296 -,345 ,847 0.236

p 0.684 0.635 0.657 < 0.001 0.031 0.038 0.080 0.039 < 0.001 0.165
Walking speed 
(10MWT)

Correlation
coefficient

0.000 − 0.085 0.013 − 0.569 .287a .278a 0.103 .323a − 0.752 − .229a

p 0.999 0.622 0.942 < 0.001 0.089 0.101 0.550 0.055 < 0.001 0.179
5xSTS time Correlation

coefficient
− 0.117 0.346 − 0.278 0.367 − 0.283 − 0.162 − 0.435 − 0.411 0.577 0.502

p 0.497 0.039 0.101 0.028 0.095 0.344 0.008 0.013 < 0.001 0.002
a Association assessed with the Pearson´s correlation coefficient.

TUG: Timed up and go test; 10MWT: 10-meter walk test; 5XSTS: five times sit-to-stand test; MLDisp: Medial-lateral displacement; APDisp: Anterior-posterior 
displacement; CCrange: Cranio-caudal range; MLrange: Medial-lateral range; PTurnSit: Turn-to-sit power; PStand: Sit-to-stand power; RangeJerkSit: Turn-to-sit jerk; 
RangeJerkStand: Sit-to-stand jerk.

Significant results are highlighted in bold.
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Discussion
Based on our results, a standardized mobility test per-
formed with a smartphone inertial sensor is a valid, sin-
gle, quick and easy-to-use test that assesses kinematic 
parameters in various tasks related to activities of daily 
living in people with chronic stroke. Compared to their 
age-matched healthy counterparts, people with chronic 
stroke showed motor impairment in gait, turning and sit-
ting, reaction time, and total execution time. In addition, 
a relationship between some of these parameters was 
demonstrated with physical functions usually related to 

impaired mobility after stroke. Likewise, the medial-lat-
eral range of the COM when walking was found to be a 
relevant parameter for distinguishing between indepen-
dent and limited community ambulation patients and 
stroke participants with significant disability or slight/
moderate disability.

Consistent with previous evidence [77], stroke partici-
pants in our study took more time than healthy controls 
when performing both the standardized mobility test 
with the Android device and the functional mobility tests 
(TUG, 10MWT, and 5xSTS). Besides the increased time 

Table 5  Differences in the kinematic variables according to the degree of disability (mRS) of stroke participants (n = 36)
Stroke group without
significant disability 
(mRS = 0–1)
(n = 11)

Stroke group with 
slight/moderate disability 
(mRS = 2–3)
(n = 25)

Between-group 
differences
t(34)/U P ES

Android device: assessment of postural control
Medial-lateral displacement (mm) 5.25 (3.51–8.48) 7.18 (5.01-10) 101 0.210 0.214
Anterior-posterior displacement (mm) 13.27 (10.97–17.95) 16.51 (12.13–24.12) 87 0.083 0.297
Android device: assessment of gait
Cranio-caudal range (mm) 31.73 (22.93–42.07) 27.56 (23-37.43) 118 0.503 0.114
Medial-lateral range (mm) 61.38 (51.44–75.15) 77.78 (65.15-104.96) 72 0.024 0.385
Android device: assessment of turn-to-sit-to-stand
Turn-to-sit power (W) 103.84 ± 30.72 99.41 ± 40.07 0.326 0.747 0.055
Sit-to-stand power (W) 216.15 (167.31-278.69) 191.34() 129 0.770 0.050
Turn-to-sit jerk (m/s3) 19.38 (16.43–25.36) 18.30 () 108 0.311 0.173
Sit-to-stand jerk (m/s3) 27.53 ± 11.31 22.61 ± 7.65 1.530 0.135 0.253
Android device: assessment of time
Total time (s) 12.89 (10.36–16.34) 16.26 (14.20-19.46) 78 0.041 0.350
Reaction time (s) 0.91 ± 0.27 1.26 ± 0.51 2.133 0.040 0.343
Data are expressed as mean (mn) ± standard deviation (SD) or median (md) (interquartil range [IQR]). mRS: modified Rankin Scale Between-group differences were 
calculated by using the independent t-test (t) or the Mann-Whitney U test (U). Significant results are highlighted in bold. ES: r effect size statistics (r = 0.12 small effect; 
r = 0.20 medium effect; r ≥ 0.32 large effect [74]).

Table 6  Differences in the kinematic variables according to the community ambulation ability (FACHS) of stroke participants (n = 36)
Stroke group with 
independent community 
ambulation
(n = 21)

Stroke group with limited 
community ambulation
(n = 15)

Between-group 
differences
t(34)/U P ES

Android device: assessment of postural control
Medial-lateral displacement (mm) 6.59 (4.33-13,76) 6.92 (4.74–9.59) 153 0.885 0.024
Anterior-posterior displacement (mm) 13.89 (11.30-19.38) 14.47 (13.46–22.45) 135 0.470 0.123
Android device: assessment of gait
Cranio-caudal range (mm) 28.55 (23.17–36.46) 33.11 (22.43–41.94) 130 0.378 0.151
Medial-lateral range (mm) 66.57 (52.21–94.71) 78.31 (67-112.71) 94 0.042 0.349
Android device: assessment of turn-to-sit-to-stand
Turn-to-sit power (W) 102.46 ± 30.59 98.39 ± 45.72 0.320 0.751 0.054
Sit-to-stand power (W) 216.15 (169.54-278.74) 179.88 (132.85-247.95) 118 0.205 0.217
Turn-to-sit jerk (m/s3) 21.03 ± 6.91 18.28 ± 7.19 1.156 0.256 0.194
Sit-to-stand jerk (m/s3) 25.96 ± 10.05 21.54 ± 6.93 1.468 0.151 0.244
Android device: assessment of time
Total time (s) 14.14 ± 2.71 18.91 ± 5.57 3.063 0.006 0.577
Reaction time (s) 1.09 ± 0.38 1.24 ± 0.60 0.968 0.340 0.163
Data are expressed as mean (mn) ± standard deviation (SD) or median (md) (interquartil range [IQR]). Between-group differences were calculated by using the 
independent t-test (t) or the Mann-Whitney U test (U). Significant results are highlighted in bold. ES: r effect size statistics (r = 0.12 small effect; r = 0.20 medium effect; 
r ≥ 0.32 large effect [74])
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to perform the tests, the Android device showed that 
participants with hemiparesis had greater medial-lateral 
displacement of their COM while standing and walking. 
They also showed lower cranio-caudal COM movement 
when walking, lower power and range of over accelera-
tion when turning and sitting, and lower range of over 
acceleration when getting up.

In the stroke group, some statistically significant rela-
tionships were found between the clinical tests (TUG, 
10MWT, and 5xSTS) and some of the kinematic param-
eters reported by the Android device (mainly, medial-lat-
eral range when walking and total execution time). These 
relationships indicated that the more clinical impairment 
a subject showed, the more different these kinematic 
parameters would be. Finally, the medial-lateral range 
of COM during walking and the total execution time of 
the test seem to be the variables that discriminate the 
most between stroke participants with independent com-
munity ambulation (FACHS = 4 or 5 points) and those 
with limited community ambulation (FACHS = 2 or 3 
points). Similarly, these two variables and the reaction 
time discriminated between stroke participants without 
significant disability (mRS = 0–1) and those with slight/
moderate disability (mRS = 2–3). These study’s results 
are significant because a recent systematic review on 
smartphone-based gait and balance assessment in stroke 
survivors emphasized the importance of evaluating 
smartphone applications to differentiate between varying 
levels of impairment [21].

Postural stability when standing has been frequently 
studied post-stroke using force platforms to measure the 
center of pressure (COP) trajectories [78]. In line with 
previous studies that have determined greater displace-
ments of the COP in people with chronic stroke [79, 80], 
our participating chronic stroke survivors also displayed 
higher values of COM displacement in the medial-lat-
eral direction. This is an interesting result since balance 
recovery post-stroke is characterized by a reduction in 
postural sway and instability, particularly in the frontal 
balance plane [81]. In this regard, it should be noted that 
although during posturography subjects typically main-
tain their feet in a standardized position, the methodol-
ogy of our test considers comfortable foot positioning 
during the bipedal stance. A recent study [80] deter-
mined that, in the stroke population, standardization of 
position does not lead to reduced variability in the test. 
Thus, adoption of a comfortable position might be ben-
eficial since it allows for a more practical and realistic 
evaluation of postural control.

Chronic stroke survivors exhibited altered gait, as was 
indicated by a higher medial-lateral range and a lower 
cranio-caudal range of COM when walking [82]. The 
cranio-caudal range could be considered a measure of 
energy cost [64, 71], while the medial-lateral range, in 

addition to energy cost, is representative of the dynamic 
stability during walking. In that case, the higher medial-
lateral range demonstrated by the stroke participants 
could be explained because, to maintain stability dur-
ing locomotion, effective neuromotor control of the 
lower extremities contributes to regulating the COM 
position and movement relative to the base of support. 
Thus, compared to healthy controls, chronic stroke sub-
jects have a reduced capacity to rapidly shift their COP 
to the stance limb during gait initiation, which reflects 
abnormalities in balance control during weight transfer 
[83]. Walking and other common daily activities require 
constant COP shifting within the limits of body stability 
in both the anteroposterior and mediolateral directions. 
Subjects with greater COP displacement are more unsta-
ble [84]. Other authors reported alterations in the COM 
trajectory of post-stroke subjects when walking in order 
to identify postural control impairments [85, 86]. How-
ever, such researchers use photogrammetry during gait 
studies in a laboratory setting. The novelty of our study 
is that it considers the analysis of several daily life func-
tional tasks, not only isolated activities, using a single 
device (a smartphone) in a single test.

Regarding the performance of mobility test with bio-
mechanical devices in stroke subjects, Bonnyaud et al. 
[87] used an optoelectronic motion capture system and 
David et al. [88] used a pair of insoles. High-precision 
laboratory systems are complex and expensive [89]. Thus, 
new motion analysis devices are being developed that are 
smaller and lighter with more data storage space and less 
time-consuming, and are found to be an alternative to 
measure patterns of movement in clinical settings [90]. 
The latest generation of smartphones often incorporates 
micro-electromechanical inertial systems with acceler-
ometers and gyroscopes, endowing them with an enor-
mous potential for monitoring the parameters of human 
movement [56, 89]. In addition, the large onboard mem-
ory capacity and wireless connectivity for data transfer 
make modern smartphones ideal candidates for remote 
health monitoring [56]. Current evidence demonstrates 
that both classic clinical tests and instrumental measure-
ments are required when assessing balance after stroke, 
leading to development of a better individualized treat-
ment program [5]. Taking into account our results, the 
use of both types of tools would also be helpful in ana-
lyzing motor impairment during mobility tasks after a 
stroke. Future research is needed in this aspect. A stan-
dardized mobility test, performed using with a smart-
phone, offers an accessible alternative that increases the 
value of functional mobility tests by identifying kinematic 
variables. This test can be used in clinical, community, 
and home settings [91].

Our results showed that stroke participants also had 
lower cranio-caudal ranges. A lower cranio-caudal range 
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is associated with greater energy expenditure because 
of greater mechanical work performed at the lower 
limb joints [70 ] and may relate to inefficient gait. Other 
authors have also found lower COM elevation in stroke 
participants than in controls during gait when supporting 
their weight with the affected limb. These authors related 
such alterations to spasticity and muscle weakness, which 
are frequent after stroke [82, 85]. A marked increase of 
the paretic calf muscle tone was observed in 19.45% of 
our stroke population.

The medial-lateral range significantly correlated with 
all the clinical tests studied, and it discriminated between 
more and less impaired stroke participants. Current evi-
dence illustrates that the COM is a kinematic variable 
that is useful in detecting gait alterations after stroke 
[85]. Furthermore, COM parameters in the medial-lateral 
direction are good indicators of dynamic balance, and 
frontal plane imbalance has been described as a major 
consequence of stroke [82]. In addition, both the range of 
over acceleration and the estimated mean power gener-
ated when turning around and sitting on the chair were 
significantly lower in the stroke participants compared 
to healthy controls. These results can be explained by the 
fact that ambulatory people with chronic stroke have a 
marked loss of strength in most major muscle groups of 
both lower limbs compared to age-matched controls [92]. 
A negative correlation was found in the turn-to-sit power 
with the TUG, which is interesting because the TUG 
seems to be a relevant locomotor task to analyze fall risk, 
especially in the turning phase [93].

Finally, coinciding with previous literature [94], the 
reaction time was longer in the stroke participants. It 
is likely that this difference is not only indicative of an 
increase in cognitive processing requirements for pos-
tural control after stroke, but also occurs instead as a 
consequence of brain injury [73]. Indeed, the stroke 
participants showed a worse cognitive status than their 
counterparts. Walking itself requires cognitive skills, 
such as looking around, lifting heavy objects, and engag-
ing in social activities. Stroke survivors may experience 
a greater decline in performance when performing cog-
nitive and motor tasks simultaneously, such as more 
severe gait deficits and postural instability while walk-
ing. This may increase their susceptibility to falls [95]. In 
this sense, the standardized mobility measure with the 
Android device allowed for evaluating reaction time in a 
simple way.

The measurement procedure followed in this study is 
that established by the Fallskip® system [48], which was 
originally developed for assessing the functional status of 
older adults. Previous studies on balance and gait assess-
ment in this population have mainly focused on spe-
cific functional assessments, utilizing multiple sensors 
attached to an external device. However, the Fallskip® 

system was designed to use simple instrumentation. It 
consists of a single inertial sensor in a smartphone that 
can manage the entire process of recording biomechani-
cal variables of clinical interest. With this premise, and 
based on the literature about assessing balance and gait 
with portable sensors in older adults [48], it was decided 
to instrument at the trunk level during its development 
process. This was because it had been the most com-
monly instrumented body segment when using a single 
sensor to monitor an older adult’s activity. Therefore, 
this system analyzes the kinematics of this single point 
located near the center of gravity, which is positioned at 
the level of the S2 sacral vertebra [96]. Due to the chal-
lenge of instrumenting this anatomical region with a sen-
sor and the nature of the mobility test, which includes 
sitting in a chair, the authors of this methodology opted 
to use the lumbar area at the L4-L5 level to obtain kine-
matic data from this point. This location enabled the 
adjustment of a belt around the iliac crests. Likewise, 
research has demonstrated that the kinematics of the 
lower lumbar region provide insight into energy expen-
diture while walking [97]. Furthermore, this sensor loca-
tion has been previously used in research on the balance 
and gait of people who have suffered from a stroke. In 
a review of the use of inertial sensors in assessing bal-
ance in neurological diseases [98], 66.6% of the included 
studies focused on stroke used a single inertial sensor 
located in the lumbosacral area. Similarly, when smart-
phones were used for this purpose in stroke survivors, 
the lumbo-sacral region has also been used [20, 29, 30]. 
Therefore, the sensor location used in this study is con-
sistent with previous studies on the assessment of walk-
ing ability and stability in patients with stroke performed 
with a single wearable device and the study’ s results 
have shown the validity of the Fallskip® measurement 
system in chronic stroke. However, combining multiple 
data recording devices (e.g. having more than one IMU 
[99, 100]) may improve the precision of the kinematic 
variables measured by a smartphone. Nonetheless, this 
approach could negatively impact the usability and speed 
of assessments, which are crucial in the clinical context. 
In addition, it is important to note that current validation 
studies do not support the use of inertial technology as a 
substitute for traditional human movement analysis tech-
niques, such as photogrammetry. Therefore, the Fallskip® 
system, which uses a single sensor on a smartphone, may 
be valuable in clinical settings for assessing kinematic 
data during the performance of functional tasks of indi-
viduals with stroke. This includes their ability to perform 
activities of daily living, balance and walking. Hence, 
clinicians can use this quick, portable and easy-to-use 
assessment system to monitor their patient’s kinematic 
parameters during the performance of functional tasks 
and track its progression.
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This study has some limitations that must be pointed 
out. A purposive sampling was used for the recruitment 
of the volunteers instead of simple randomization. In 
addition, generalization of the present results should be 
limited to the individuals with chronic stroke who could 
walk at least 10 m with or without a walking aid, which 
is also a requirement to perform the TUG. It would 
have been desirable to include a cognitive measure as 
an inclusion criterion. However, as this would limit the 
inclusion of subjects with expressive aphasia and right 
hemiparesis, this requirement was ultimately not con-
sidered in order to have a more representative sample of 
the chronic stroke population. Furthermore, our analy-
ses proved the validity of using a smartphone inertial 
sensor for assessing kinematic data during the execu-
tion of a standardized mobility test in of stroke patients. 
In this sense, future research about the test reliability in 
the stroke population is needed, including the precision 
with which the smartphone is located on the subject. 
In addition, future research could investigate the influ-
ence of different sequelae of people with stroke on their 
kinematic data during the performance of mobility tasks 
(i.e., capability of the upper limb, trunk control, cognitive 
impairment, etc.). On the other hand, although we have 
used the results of the MAS only as a descriptive variable 
of muscle spasticity of the paretic calf, caution is required 
when stating that the MAS is a measure of spasticity. Evi-
dence suggests that resistance to passive movement is not 
an exclusive measure of spasticity and will vary according 
to the level of activity in the alpha motor neuron of ago-
nist and antagonist muscles, the viscoelastic properties 
of soft tissues and joints [101]. Finally, since fewer female 
patients participated in this study, gender influence could 
not be investigated.

Conclusions
This study reports the validity of an Android device in 
assessing kinematic data in people with chronic stroke 
and hemiparesis when conducting a standardized mobil-
ity test. The inclusion of an easy-to-use inertial sensor 
embedded in an Android device when performing essen-
tial functional mobility tasks facilitated the identification 
of kinematic differences between people with chronic 
stroke and their healthy counterparts. Adding the 
Android device to a standardized mobility test provided 
insight into the performance in the kinematic param-
eters of postural control, gait, turning and sitting down, 
and getting up without spending much more time in the 
clinical evaluation. All these are relevant and required 
tasks in the activities of daily living [87]. Assessing all 
these functional activities in a single test, using only one 
wearable sensor easily attached to the lower back, implies 
a qualitative leap in the clinical assessment of kinematic 
parameters related to functional status in people with 

chronic stroke. Adding kinematic variables beyond the 
time required to perform a clinical functional mobility 
test might be useful for better characterizing functional 
task biomechanical patterns and better planning inter-
vention approaches.
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