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Abstract
Background Tracking gait and balance impairment in time is paramount in the care of older neurological patients. 
The Minimal Detectable Change (MDC), built upon the Standard Error of the Measurement (SEM), is the smallest 
modification of a measure exceeding the measurement error. Here, a novel method based on linear mixed-effects 
models (LMMs) is applied to estimate the standard error of the measurement from data collected before and after 
rehabilitation and calculate the MDC of gait and balance measures.

Methods One hundred nine older adults with a gait impairment due to neurological disease (66 stroke patients) 
completed two assessment sessions before and after inpatient rehabilitation. In each session, two trials of the 
10-meter walking test and the Timed Up and Go (TUG) test, instrumented with inertial sensors, have been collected. 
The 95% MDC was calculated for the gait speed, TUG test duration (TTD) and other measures from the TUG test, 
including the angular velocity peak (ωpeak) in the TUG test’s turning phase. Random intercepts and slopes LMMs with 
sessions as fixed effects were used to estimate SEM. LMMs assumptions (residuals normality and homoscedasticity) 
were checked, and the predictor variable ln-transformed if needed.

Results The MDC of gait speed was 0.13 m/s. The TTD MDC, ln-transformed and then expressed as a percentage of 
the baseline value to meet LMMs’ assumptions, was 15%, i.e. TTD should be < 85% of the baseline value to conclude 
the patient’s improvement. ωpeak MDC, also ln-transformed and expressed as the baseline percentage change, was 
25%.

Conclusions LMMs allowed calculating the MDC of gait and balance measures even if the test-retest steady-state 
assumption did not hold. The MDC of gait speed, TTD and ωpeak from the TUG test with an inertial sensor have been 
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Background
In medicine, it is extremely important to determine 
whether a patient has worsened significantly, for example 
because of disease progression, or improved significantly, 
such as after rehabilitation [1, 2].

The Minimal Detectable Change (MDC) represents the 
smallest change in a measured variable not attributable 
to measurement error [2, 3]. The MDC is a confidence 
interval (CI), most commonly a 95% CI, built around a 
null difference between two measures. In front of a dif-
ference between measures exceeding the 95% MDC, one 
can be 95% confident that this difference is not due to a 
mere measurement error.

Central to the MDC calculation is the estimation of the 
Standard Error of the Measurement (SEM). As the stan-
dard deviation of the measurement error [4], SEM quan-
tifies the precision of a single measure [5]: the lower the 
SEM, the smallest the measurement error and the better 
(i.e., the more precise) the measure. In turn, the lower 
the SEM, the lower the MDC since the MDC is the SEM 
multiplied by a constant.

Various neurological diseases, such as stroke, periph-
eral neuropathy of the lower limbs and Parkinson’s dis-
ease, impair gait and balance in older adults [6]. This gait 
and balance impairment reduces the person’s indepen-
dence [7] and increases the risk of falling [8, 9]. Therefore, 
it is critical to identify people with impaired mobil-
ity, estimate the amount of this impairment, administer 
treatments that may improve it effectively, and monitor 
the impairment over time.

In this context, it is not surprising that numerous 
gait and balance measures have been developed so far. 
Among the gait measures, it is worth mentioning the gait 
speed, which has been shown to predict several adverse 
events (including falls, hospitalisation and mortality) 
[10]. Among the balance measures, i.e. mobility measures 
reflecting the ability to not fall, are those from the Timed 
Up and Go (TUG) test [11, 12]. In this test, examinees 
are asked to stand up from a chair, walk straight for a few 
meters, turn, walk back to the chair and sit down. A lon-
ger TUG test duration is associated with an increased 
risk of falls in older adults [6, 13].

Given the importance of adequately monitoring gait 
and balance in time, the MDC has been calculated for 
gait and balance measures, and even systematic reviews 
are available on this topic. However, these same reviews 

point out that the MDC is the least frequently assessed 
psychometric property of mobility measures [14], 
encouraging further research on its adoption in different 
clinical conditions, ranging from knee osteoarthritis [15] 
to stroke [16].

Conventionally, dedicated test-retest experiments are 
run to estimate SEM. Individuals are measured twice (i.e., 
tested and retested), with an interval between assess-
ment sessions short enough so that no modification of 
the patient’s status occurs (e.g. there is no disease pro-
gression) but sufficiently delayed so that to prevent test 
recall. Central to these experiments is the steady-state 
assumption, i.e., the measured variable’s quantity does 
not change between the two assessment times.

Three methods are commonly used for estimating SEM 
from test-retest, steady-state experimental designs [5, 
17], namely. SEM can be:

1. Derived from a reliability index like the intraclass 
correlation coefficient (ICC);

2. Estimated by the limits of agreement of a Bland-
Altman analysis;

3. Calculated as the square root of the mean square 
error term from an Analysis of Variance (ANOVA) 
model.

Each approach has pros and cons, but it is interesting to 
note that the first one, likely the most commonly used, 
has been harshly criticised to the point that some psy-
chometricians discourage its application [17].

For example, since different reliability indices are avail-
able (e.g. a family of ICCs [18, 19]), the choice of the reli-
ability index can affect the SEM size [5] and comparing 
the SEM of different studies can be challenging. On the 
contrary, this limitation does not apply to the estimation 
of SEM from ANOVA residuals, making this method rec-
ommendable [5].

Recently a novel method for estimating the SEM, which 
applies the linear mixed-effects models (LMMs) to data 
collected before and after treatments, has been proposed 
[20–24]. Compliance with the steady-state assump-
tion is hard to defend when patients receive treatment 
between the two assessment sessions. In this scenario, 
LMMs come to the rescue. With this approach, time and 
treatment effects are incorporated into the model and 
accounted for: statistical modelling creates a steady state 

provided. These indices allow monitoring of the gait and balance impairment, which is central for patients with an 
increased falling risk, such as neurological old persons.

Trial registration NA.
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in the analysis phase, rather than in the experimental 
phase, so that repeated measures with a different mean 
structure can be used to quantify the measurement error 
[20]. Similarly to the above-mentioned ANOVA analy-
sis, the SEM is eventually estimated through variance 
decomposition and from the residual variance in the first 
place.

On these bases, the present study aims to calculate the 
SEM and the 95% MDC of common measures from the 
walking and TUG tests administered to older neurologi-
cal patients. To this aim, SEM is estimated from LMMs 
run on data from older neurological patients collected 
before and after rehabilitation, which included balance 
training. Emphasis is placed on simple assessment pro-
cedures and low-tech measures that can be easily imple-
mented in the normal clinic and research setting.

Methods
This observational, longitudinal study analyses data from 
a more extensive project, approved by the local ethics 
committee (Comitato Etico Milano Area 2; 568_2018bis) 
on fall risk assessment in neurological patients at dis-
charge from rehabilitation. The primary study’s results on 
fall risk have been recently published [25].

Inclusion criteria were:

  • Age over 65 years;
  • Affected by one of the following neurological 

syndromes: hemiparetic gait secondary to a 
stroke, peripheral neuropathy of the lower 
limbs or parkinsonism secondary to a vascular 
encephalopathy or Parkinson’s disease.

  • Informed consent to participate in the study.

With respect to the exclusion criteria:

  • Presence of two neurological diagnoses (e.g. 
hemiparesis and Parkinson’s disease);

  • Inability to complete the TUG test and the 10 m 
walking test without touching assistance on 
admission or discharge;

  • Completing any of the mobility tests using an 
assistive device (e.g. a cane, a walking frame) on 
admission or discharge;

  • Completing the TUG test in more than 30 s on 
admission or discharge;

  • Severe visual impairment or hearing loss.

Assessment
Participants completed two assessment sessions, the first 
at the beginning (T0) and the second at the end (T1) of 
the rehabilitation program (Fig.  1). In each session, a 
detailed balance and gait assessment was administered. 

In the current study, only data from the 10 m walking test 
and the TUG test are reported.

A physiotherapist or an occupational therapist admin-
istered both tests, and both the 10 m walking test and the 
TUG test were repeated five times in each session. Partic-
ipants completed the TUG test with an inertial measure-
ment unit (mHT-mHealth Technologies, Bologna, Italy) 
attached to their lower trunk.

In the 10 m walking test [26], participants were asked 
to walk straight while a clinician measured with a stop-
watch the time taken to walk the central six meters of a 
10 m long trajectory.

The conventional three m TUG test [11] was adminis-
tered as follows. Participants were asked to wait for a go 
signal from the experimenter and then stand up from a 
chair, walk in a straight line, turn around a traffic cone, 
return to the chair and sit down. Trunk acceleration and 
angular velocity along the three axes were recorded by 
the inertial sensors. In addition, the experimenter mea-
sured the TUG test duration (TTD) with a stopwatch.

The 10 m walking and TUG tests were completed at the 
patient’s comfortable speed.

In our previous works, the five test repetitions were 
analysed individually, mobility metrics1 were col-
lected from each, and their median value was used as 
the patient’s mobility measure (e.g. [12, 27–29]). Here, 
instead, persons’ measures were obtained from two repe-
titions, a full-fledged shortened version of the five repeats 
mobility tests. This choice was taken to calculate more 
accurate LMMs for SEM estimation (i.e. maximal mod-
els [30] with random intercepts and slopes, see below). 
As a preliminary step, the measurement accuracy of the 
reduced tests was compared to our previous measure-
ment reference (i.e., the five repeats tests).

The gait speed (m/s) was calculated for each 10 m walk-
ing test repetition, and from each TUG test repetition the 
following were collected:

1. TUG test duration (TTD, s),
2. Sit-to-walk (STW) duration (s),
3. Turning duration (i.e. the duration of the first turning 

phase; s),
4. Peak angular velocity along the vertical axis during 

turning (ω, °/s).

For the reduced versions of the walking and TUG tests, 
the first of the five repetitions was considered a “test ride” 

1  In the current paper, we will call “metric” the measure of the variable of 
interest from a single test repetition. Metrics are in effect measures. How-
ever, to avoid confusion between measures of test repetitions and the sub-
ject’s measure (i.e. the subject’s gait speed and the like) we will use “measure” 
and “measurement” specifically to indicate the subject’s measure, which, as 
explained later, is returned by the median or the mean of several metrics.
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(e.g. the patient gets confidence with the test set), thus 
being discarded.

Metrics from repetitions 2 and 3 (which together form 
Trial2 − 3) are averaged, and these average values are called 
Trial2 − 3 measures. Similarly, metrics from repetitions 4 
and 5 are averaged and referred to as Trial4 − 5 measures.

It is worth stressing that in the reduced versions of the 
walking and TUG test set up here, a single participant’s 
measure (e.g., the participant’s gait speed and TTD) 
comes from two test repetitions. Hence, in each session, 
two participants’ measures were collected. As explained 
below, Trial4 − 5 is used to assess the stability of the 
Trial2 − 3 measures.

The inertial measurement unit software automatically 
returned the STW, turning duration, and ω metrics for 
each test repetition [31].

Statistics
Assessing the agreement between the reduced and the five-
repeat mobility tests
The agreement between the measures from the reduced 
versions of the walking and TUG tests and those from 
the complete tests (i.e. the five-repeat tests) was assessed 
with the method-comparison analysis [32], popularised 
by Bland-Altman [33], and the absolute percentage error 
(APE).

In the Bland-Altman analysis run in the current study, 
the x-axis reported the full test measures, i.e. the refer-
ence measures. On the y-axis was the difference between 
the measures from the reduced test measures and the ref-
erence measures.

The reduced test measures are considered a good 
approximation of the criterion standard if the Bland-Alt-
man analysis shows no bias and the limits of agreement 
are sufficiently narrow: the absence of bias indicates that 
the new measures are accurate; the tight limits of agree-
ment suggest that these are precise.

Fig. 1 Time course of the mobility assessment. Gait and balance have been assessed in two assessment sessions, T0 and T1 (dark grey boxes), the first at 
the beginning and the second at the end of the participants’ inpatient rehabilitation stay (light grey box). Five repetitions of the 10 m walking and TUG 
tests have been collected in each session. Trial2 − 3 is constituted of repetitions 2 and 3 while Trial4 − 5 by repetitions 4 and 5. Measures of the variable of 
interest from a single test repetition are referred to here as “metric” (e.g. the five repetitions of, say, the 10 m walking test return five metrics of gait speed). 
Participants’ measures are given by the mean of two metrics (e.g. participants’ gait speed measures from Trial2 − 3 are the mean of the gait speed metrics 
from repetitions 2 and 3) or by the median of all five repetitions. Horizontal arrows: time, expressed in days and minutes for the upper and lower drawings, 
respectively
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Acceptable limits must be defined a priori [34], and 
deciding if the limits of agreement are sufficiently tight 
depends on what the new measure is used for [35]. This 
indication is recommendable and relatively easy to imple-
ment for widely used measures such as gait speed and 
TTD. However, judging the maximum tolerable ampli-
tude of the limits of agreement is more challenging for 
newer, less investigated measures, such as those from the 
inertial sensors.

For this reason, APE was also calculated as follows:

 
APE = 100 ×

∣∣∣∣
N − R

R

∣∣∣∣ (1)

With N : new measure (here the measures from the 
reduced tests, i.e. Trial2 − 3 measures), R : reference mea-
sure (here the measures from the five repeat tests, i.e. the 
reference measures).

The APE 95th percentile (APE95%) was chosen as an 
agreement indicator.

SEM estimation with linear mixed-effects models
In the Classical Test Theory (CTT) framework, a single 
measure is the sum of the true quantity of the measured 
variable plus the measurement error. Under the assump-
tion of (i) random, (ii) uncorrelated errors and (iii) errors 
uncorrelated with the true value of the measured vari-
able, the variance of measures (i.e. the observed variance, 
in the CTT jargon) results from the sum of the true and 
error variances [4, 36].

The ANOVA is commonly used to disentangle the 
different sources of variation, with variance estimates 
derived from ANOVA mean square values [5, 37].

In particular, the total variance is modelled from 
the sum of the between-subjects mean square and the 
within-subjects mean square, with the within-subjects 
mean square equalling the error variance [5]. In this 
regard, SEM is simply the square root of the error vari-
ance [4].

As an alternative to ANOVA, linear mixed-effects 
models (LMMs) [38] can decompose the variance in dif-
ferent sources and isolate the measurement error vari-
ance [20].

LMMs are an invaluable statistical method for the anal-
ysis of complex datasets, such as those, common in medi-
cine, made of contrasting groups of participants (e.g. 
patients vs. controls; patients receiving different treat-
ments) assessed repeatedly in time (e.g. before and after 
treatments).

The formula of an LMM has three parts, one for han-
dling fixed effects, another for random effects and a third 
consisting of an error term.

The fixed effects are used to represent sources of sys-
tematic variation in the data. In the regression jargon, the 
fixed effects correspond to the predictors.

Random effects account for variations within clus-
ters, accounting in this way for an amount of variance 
of the response variable which is not explained by the 
fixed effects. For example, random effects can be used 
to model the variability of a cluster of non-independent 
measures, such as repeated data collected by an individ-
ual at a time point.

Finally, LMMs also contain an error term, which 
accounts for the residual variance not explained by the 
fixed or random effects.

Consider a clinical trial in which patients are random-
ized into two treatment groups and assessed three times. 
In each assessment session, multiple measures are col-
lected from each participant, a common approach to 
address measurement error and obtain robust person 
estimates.

In the LMM framework the patient’s group (e.g. treat-
ment A vs. treatment B), the assessment session (e.g. 
before, immediately after treatments and at follow-up) 
and the group × session are modelled as fixed effects. 
Random effects would be here the subjects, modelled 
as random intercepts and, in a maximal model [30], the 
assessment session, modelled as random slopes.

In this example, LMMs would be used for significance 
testing and an Analysis of Variance could be run on the 
LMM showing, say, that the response variable is signifi-
cantly improved after treatment compared to before.

To put it simply, the fixed effect returns the average 
improvement in the response variable in the sample after 
treatments. The random intercept component specifies 
that each participant has a unique baseline value for the 
response variable and the random slope that each par-
ticipant can improve to a different extent at the treat-
ment end (i.e. that each participant has their slope of 
improvement).

In addition to significance testing, LMMs can also 
be used for prediction or, as done here and mentioned 
above, for variance decomposition to estimate the stan-
dard error of the measurement. This last application of 
LMMs is still unconventional and will be better devel-
oped in the following paragraphs.

Among the strengths of LMMs, in addition to the 
aforementioned ability to manage data not independent 
of each other, there is their robustness to missing data 
and the possibility they offer to easily control for con-
founding effects [37].

The participants recruited in the current study received 
physiotherapy and occupational therapy between the 
two assessment sessions. Indeed, they completed a reha-
bilitation program to improve their balance and gait. In 
line with our former findings [27, 28], it is reasonable 
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to expect that, on average, the patient’s gait and balance 
at T1 were likely better than at T0. This fact violates the 
“steady-state assumption”, i.e., that the patient does not 
evolve, which is fundamental to SEM estimation in CTT 
[21].

In a typical CTT study in which a clinical measure’s 
reliability and SEM are calculated, subjects are measured 
twice, usually one or two weeks apart. This time inter-
val between the two measurements is considered long 
enough to prevent recall but short enough not to change 
the “true” value of the measured variable [39]. In this sce-
nario, it can be reasonably assumed that the true value 
of the variable remains the same in the two sessions. Any 
difference in measurement between the two sessions can 
then be attributed only to the measurement error.

LMMs provide a suitable solution if the steady-state 
assumption is not valid [21]. The idea is straightfor-
ward. Therapeutic exercise is expected to improve gait 
and balance in neurological patients, thus causing a 
change between T0 and T1 in the variables of interest 
and measures. By using LMMs, this change in time can 
be estimated and removed: the steady state is created 
mathematically.

In the current study, the following LMM model was 
used to estimate SEM of measurement Y (say Y is TTD, 
but the next holds for any of the mobility measures con-
sidered here):

 Ysi = (β0 + I0i) + (β1 + I1i)Xs + rsi  (2)

With Ysi , the predicted TTD for session s  and individual 
i ;

β0, the TTD baseline level (i.e. the model’s intercept); 
the TTD at T0, when the predictor equals zero;
I0i , the random intercept component, indicating the 
deviation from β0 for subject i ;
β1, the session effect (i.e. the model’s slope); the change 
in TTD associated with a predictor’s change;
I1i , the random slopes component, indicating the devia-
tion from β1 for subject i ;
Xs , the predictor variable, here session, which takes val-
ues 0 for T0 and 1 for T1;
rsi , the residuals, calculated for each i  in each session s .

The model also specifies that rsi , I0i  and I1i  are nor-
mally distributed, have mean equals zero, and each their 
variance. In particular, rsi  variance is labelled σ2. More-
over, LMMs also consider the covariance between I0i  
and I1i .

Including the random intercepts and slope terms allows 
the model to consider two clinically essential aspects.

First, it is unrealistic that all participants have the same 
TTD at baseline (i.e., that β0 is the same for all partici-
pants). Instead, it seems more likely that at T0, they are 
distributed around an average value.

Second, it is equally unrealistic for a participant to 
change the same after the rehabilitation (i.e., that β1is the 
same for all). Even if unexpected, some individuals could 
worsen, for example, due to the occurrence of a compli-
cation. Moreover, even if all persons would improve, the 
amount of improvement (i.e. the responsiveness to reha-
bilitation) is likely to be different in different patients.

When LMMs are used for estimating SEM, it is 
assumed that deviations in the observed measure from 
the model’s prediction (i.e. the model’s residual) are 
caused by the measurement error. Hence:

 SEM =
√

σ2  (3)

And once SEM has been estimated, the 95% MDC can be 
calculated as customary:

 95%MDC = 1.96 ×
√

2 × SEM  (4)

It is worth stressing that, according to Eq.  (2), the mea-
sured variable (in the example the TTD) depends, and 
only depends, on the assessment session (i.e. if it has 
been collected in T0 or T1) and the person being evalu-
ated (and the estimated random effects variances and 
covariances and residuals variance). Any additional, 
unmodeled source of variation that moves the observa-
tions away from the model’s predictions and causes an 
increase in residuals is included in the residual variance.

The following will make this last point clear. In the cur-
rent study, in each assessment session, two trials were 
repeated. It can be reasonably assumed that the quan-
tity of the variable of interest, say TTD, does not change 
within a session (in a sense, a within-session steady-state 
assumption holds). Therefore, any difference in measures 
from Trial2 − 3 and Trial4 − 5 can be attributed to measure-
ment error.

However, the LMM Eq.  2 does not explicitly model 
TTD as affected by the trial. In other words, the trial 
is not considered a source of TTD variation and any 
trial effect on TTD remains unquantified. Instead, any 
within-session difference in the measures from Trial2 − 3 
and Trial4 − 5, a difference attributed to the measure-
ment error, would be included in the residual variance of 
model 2.

Complying with the linear mixed-effects models’ assumptions
Equation  (2) LMM relies on two assumptions: residu-
als are normally distributed and have constant variance. 
Therefore, when built on LMMs, SEM and MDC also rely 
on these assumptions.

Quantile-quantile plot and the absolute residuals plot 
as a function of the predicted values are used here to 
assess residuals’ normality and homoscedasticity. If these 
are violated, the response variable is ln-transformed. 
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Notably, if the predictor is ln-transformed, the MDC 
obtained from the LMM is meant to be applied to ln-
transformed measures.

Say that ω needs to be ln-transformed and that a 
patient improved their peak angular velocity during 
turning at rehabilitation end. This improvement is a real 
improvement if:

 lnωT1 − lnωT0 > MDC

This inequality can be rearranged as follows:

 
ln

(
ωT1

ωT0

)
> MDC

 

ωT1

ωT0

> eMDC

 

ωT1 − ωT0

ωT0

> eMDC − 1

Therefore, when the measure is ln-transformed, the 
MDC can be understood as the baseline measure’s mini-
mum percentage change exceeding the measurement 
error.

Longitudinal agreement between the 95% MDCs and the “all 
five repetitions better than the best” method
We have previously proposed a method, referred to in 
the current study as “all five repetitions better than the 
best”, which is considered here the reference method to 
determine if a patient’s mobility measure has improved 
(or worsened) after rehabilitation [28]. According to this 
method, a participant improved if all five repetitions in 
the T1 session were better than the best repetition in T0. 
Conversely, if all five repetitions in the T0 session were 
better than the best repetition in T1, the participant got 
worse.

The accuracy of the 95% MDC was assessed by evalu-
ating their agreement with the “all five repetitions bet-
ter than the best” method. Since the agreement between 
these two methods is about the change of the patients in 
time, it will be referred to as a “longitudinal agreement” 
to avoid confusing it with the cross-sectional agreement 
assessed in the previous analyses.

Two indices have been used to assess longitudinal 
agreement: the weighted Cohen’s kappa and Youden’s J.

For Cohen’s kappa analysis, participants were classified 
as improved, stable and worsened according to the 95% 
MDC (Trial2 − 3 measures) and the reference method.

Cohen’s kappa is a chance-corrected agreement mea-
sure [40]. The weighted variant (squared weights) con-
siders that disagreement can have different seriousness. 
For example, consider a patient flagged as improved by 

the reference methods but indicated as stable by the 95% 
MDC. If the 95% MDC had identified this patient as 
worsened, it would have been a more severe error.

While the intuition behind chance-corrected agree-
ment methods is valuable, Cohen’s kappa can give para-
doxical and unreliable results with some datasets. For 
this reason, it has been recommended that the results of 
a complementary analysis, essentially based on sensitiv-
ity and specificity, are presented alongside Cohen’s kappa 
[41]. Youden’s J [42] was calculated here for this purpose.

Participants were dichotomised into stable and 
changed (i.e. significantly got better or significantly 
got worse) according to the 95% MDC and the refer-
ence method. The number of true and false positives 
and negatives is counted (e.g. true positives: number of 
participants that changed their status according to the 
95% MDC and the reference method), and Youden’s J is 
calculated.

Youden’s J ranges from 0 to 1 (with 1 meaning there are 
no false positives or negatives) and can be interpreted as 
the probability of correctly classifying a patient (i.e., cor-
rectly identifying a changed patient or a stable patient) 
penalised by the chance of making an error.

SEM estimation from reliability indices from the subset of 
steady participants: a control analysis
According to the previous analysis, participants can be 
divided into changed (i.e. participants who improved 
after rehabilitation or, less likely, who got worse) and 
stable (i.e. participants who did not change between ses-
sions with respect to the variable of interest).

Patients who did not change represent a pool of indi-
viduals for whom the steady-state assumption holds. 
CTT reliability indices and the corresponding SEM can 
be calculated on this subset of participants and compared 
to the SEM returned by the LMM analysis.

For this complementary analysis, stable participants 
were defined according to the complete five repetitions 
tests (i.e., the reference tests), similarly to what was 
done in the longitudinal agreement analysis but applying 
stricter criteria.

A single participant was considered stable, i.e. the 
steady-state assumption was verified in them in the case 
of the following:

 [max (T0) > max (T1)] & [min (T0) < min (T1)]

With max (T0), the maximum value of the variable on the 
five repetitions collected in session T0 (remaining sym-
bols alike). Of course, the steady-state assumption also 
held if the opposite occurred.

In other words, stable participants are those for which 
the two extreme repetitions (e.g. the shortest and the 
longest TTD, the fastest and the lowest for gait speed) in 
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a session (i.e. T0 or T1) are more extreme than the two 
extreme repetitions in the other session (i.e. T1 or T0).

Once the subset of unchanged participants was con-
stituted, the Intraclass Correlation Coefficient (ICC) was 
calculated as the CTT reliability index.

A two-way mixed effect, absolute agreement (i.e. 
including systematic and variable error), single measure-
ment model was used in this analysis as recommended 
for assessing test-retest reliability [43, 44]. Note that this 
model, nomenclature according to McGraw and Wong 
[18], corresponds to ICC2,1 of Shrout and Fleiss [19] from 
a strict computational point of view [5].

Only Trial2 − 3 measures from T0 and T1 have been con-
sidered for the ICC calculation.

To correspond with the primary analysis, ICC2,1 has 
been chosen over alternative models, such as ICC2,k.

As previously mentioned and as done elsewhere, e.g. 
[45]. , two metrics from two test repetitions were aver-
aged to provide a single measure in this study. This one 
measure was used then as the response variable in the 
LMMs for the primary analysis. Hence, these measures 
were also included in the ICC models in place of the orig-
inal metrics. Since a single measure was obtained from 
two metrics, a single-measurement, absolute agreement 
ICC model was chosen.

About the choice of ICC2,1, it is also worth noting that 
the mobility measures used here are, in a way, compos-
ite measures precisely because they are derived from 
two preliminary metrics. In this scenario, computing the 
ICC2,1 is similar to calculating the ICC2,1 of questionnaire 
total scores, where the questionnaire total score is the 
one measure that is derived from many metrics (i.e. the 
questionnaire items).

It should also be stressed that the subset size can differ 
for the different measurements and is the smallest for the 
measure with the highest responsiveness to rehabilitation 
[27, 28].

A sums of squares approach (i.e. ANOVA) was used for 
reliability estimation rather than regression (i.e. LMMs) 
to stay more in line with the CTT framework.

After estimating reliability, the SEM was calculated 
according to:

 SEM = SDT0 ×
√

1 − ICC  (5)

With SDT0, the standard deviation of the T0 measures.
Finally, the 95% MDC was obtained per Eq. (4).
All analyses were run in R version 4.2.3 “Shortstop 

Beagle” (The R Foundation for Statistical Computing). 
The library “lme4” [46] was used for fitting LMMs. Type 
1 error probability was set at 0.05 and corrected in post 
hoc tests, according to Holm [47]. As done for the SEM 
estimation, when used for hypotheses testing, LMMs 

assumptions were assessed, and the response variable 
was ln-transformed if needed.

Results
The participants’ sample consisted of 109 neurological 
patients, 43 females (39.5%).

Thirty-nine individuals were older than 80 (35.8%), and 
the participants’ median age was 78.4 years (1st to 3rd 
quartile = 72.3 to 81.5 years).

Sixty-six patients (60.6%) had a hemiparetic gait 
impairment secondary to a stroke, 23 (21.1%) had periph-
eral neuropathy of the lower limbs, and 20 (18.4%) had 
parkinsonism.

The median length of stay in rehabilitation was 35.0 
days (1st to 3rd quartile = 24.0 to 47.0 days).

Overall, before rehabilitation (i.e. at T0), the partici-
pants suffered a moderate mobility impairment as indi-
cated by their median gait speed (0.87  m/s; 1st to 3rd 
quartile = 0.70 to 1.11  m/s) and TTD (14.5  s; 1st to 3rd 
quartile = 11.6 to 18.8 s; reference tests).

Agreement between the reduced and the reference 
mobility tests
Figure 2 shows the Bland-Altman plots and the APE for 
the gait speed and the TTD measured with the reduced 
and the five-repeat tests.

Regarding the gait speed (Fig.  2A), the bias from the 
Bland-Altman analysis is negligible (0.00  m/s) in both 
assessment sessions. The precision of the measures from 
the reduced walking test is also satisfactory, as indicated 
by the limits of agreement, which are reasonably nar-
row (0.07 m/s at most) at T0 and T1. No trend is appar-
ent between the measures difference (y-axis) and the 
reference measures (x-axis), and no heteroscedasticity is 
found.

The APE analysis confirms the excellent agreement 
between the gait speed measured with the two tests. 
The mean APE was 2.8% and 2.3% in the first and sec-
ond assessment session, respectively, and APE95% is well 
below 10% (T0: 6.8%; T1: 6.3%).

Regarding the TTD (Fig. 2B), bias on T0 (0.17 s) and T1 
(0.10 s) is slight, and the amplitude of the limits of agree-
ment is satisfactory (T0: 1.30 s; T1: 1.05 s).

The study of the APEs confirmed these findings of 
the Bland-Altman analysis. The mean APE from the T0 
assessment is 3.0%, and 2.4% from T1. Similarly to gait 
speed, the APE95% is smaller than 10% on T0 (8.0%) and 
T1 (6.0%).

Figure 3 shows the agreement between the reduced and 
the full TUG test for the STW duration, turning duration 
and ω.

The APE95% of the STW and the turning duration are 
the most prominent (> 20%) in both assessment sessions. 
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Fig. 2 (See legend on next page.)
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A better APE95% was found for ω (T0: 15.9%; T1: 12.8%), 
even if larger than the APE95% of the gait speed and TTD.

Within- and between-sessions time course of the 
measurements from the mobility tests
Figure  4 illustrates the gait speed and the TTD time 
course in the two sessions (i.e. T0 and T1). Measures from 
the two trials (Trial2 − 3 and Trial4 − 5) are shown together 
with the first habituation repetition.

In both sessions, participants’ performance was poorer 
in the first repetition than in the subsequent trials: 
gait speed was lower, and the total TUG test duration 
increased. Participants moved faster at T1, i.e., after the 
end of the rehabilitation, than at baseline, i.e. T0.

The ANOVA substantiates these findings. Session 
(F1,979 = 482.5; p < 0.001) and trial (F2,979 = 52.8; p < 0.001) 
were significant gait speed predictors, while their interac-
tion was not (F2, 979 = 0.33; p = 0.718).

In particular, gait speed was significantly higher on T1 
(1.06 m/s, 95%CI: 1.01 to 1.11 m/s) than on T0 (0.90 m/s, 
95%CI: 0.85 to 0.95 m/s).

According to posthoc testing, regardless of the ses-
sion, gait speed was significantly lower in the first repeti-
tion (0.92 m/s, 95%CI: 0.87 to 0.98 m/s) than in Trial2 − 3 
(0.99 m/s, 95%CI: 0.94 to 1.04 m/s; p < 0.001) and Trial4 − 5 
(1.02 m/s, 95%CI: 0.97 to 1.07 m/s; p < 0.001). Despite the 
few centimetres per second, gait speed was higher on 
Trial4 − 5 than Trial2 − 3 (p < 0.001).

Regarding the total TUG test duration, the ANOVA 
again showed the significance of session (F1, 981 = 382.9; 
p < 0.001) and trial (F2,981 = 43.9; p < 0.001) factors, while 
their interaction did not reach the significance level 
(F2,981 = 0.66; p = 0.518).

Similarly to gait speed, the total duration of the TUG 
test significantly improved (i.e. decreased) in T1 (13.3  s, 
95%CI: 12.6 to 14.0 s) as compared to T0 (15.7 s, 95%CI: 
15.0 to 16.4 s).

Post hoc comparisons showed that, in both sessions, 
the total TUG test duration was significantly longer in 
the first repetition (15.4  s, 95%CI: 14.6 to 16.1  s) than 
in Trial2 − 3 (14.3  s, 95%CI: 13.6 to 15.0  s; p < 0.001) and 
Trial4 − 5 (13.9 s, 95%CI: 13.2 to 14.6 s; p < 0.001). The dif-
ference between Trial2 − 3 and Trial4 − 5, although tiny, was 
also significant (p = 0.003).

About the TUG test measures from inertial sensors 
(time course provided in Fig. 5), STW and turning dura-
tion and ω showed a similar pattern of significance on 
ANOVA.

STW duration was significantly lower at T1 (1.31  s, 
95%CI: 1.25 to 1.36 s) than at T0 (1.35 s, 95%CI: 1.30 to 
1.41 s; F1,956 = 4.8; p = 0.023). Turning duration was also 
significantly lower in T1 (2.64  s, 95%CI: 2.52 to 2.77  s) 
than T0 (2.84  s, 95%CI: 2.72 to 2.97  s; F1,952 = 27.0; 
p < 0.001) while ωpeak significantly increased in T1 (115 
°/s, 95%CI: 109.4 to 120 °/s) compared to T0 (104 °/s, 
95%CI: 98.9 to 110.0 °/s; F1,950 = 111.5; p < 0.001).

No trial effect was found for STW duration and ω, 
while a tiny trial effect was found for the turning dura-
tion. The session times trial interaction was not signifi-
cant in the three models.

The complete details of the statistical analysis are pro-
vided in Supplementary Materials 1.

SEM and 95% MDC of the mobility tests measurements
The SEM and the 95% MDC of the gait and TUG test 
measurements from the reduced tests are provided in 
Table 1.

All the measurements were ln-transformed to better 
comply with the assumptions of the regression mod-
els used for SEM estimation. Gait speed was the only of 
the five measures acceptably performing when inputted 
untransformed in regression.

Similarly to the previous agreement analysis, STW and 
turning duration worked poorly. In fact, from the 95% 
MDC value calculated on the ln-transformed data, the 
STW duration should decrease (or increase) by about 
50% of the baseline value to conclude a real change. Simi-
larly, the turning duration would have to change by about 
40% from the baseline value.

The smallest 95% MDCs were those of the TTD (15% 
of the baseline measurement needed to conclude a real 
TTD change) and that of the gait speed (14% change).

Between the two extremes, the 95% MDCs of the ω was 
about 25%.

Longitudinal agreement between the 95% MDCs from the 
reduced and the reference tests
According to the 95% MDC of Trial2 − 3 measures, gait 
speed and TTD had the highest responsiveness (Table 2). 

(See figure on previous page.)
Fig. 2 Cross-sectional agreement between the measures from the shortened gait and TUG tests and the reference variant. (A) agreement for gait speed; 
(B) agreement for TUG test duration (TTD). Agreement is reported separately for the first (T0, left) and the second (T1, right) assessment session. Upper 
plots in panels A and B are Bland-Altman plots of the difference between measures from the shortened and the reference test (y-axis) as a function of 
the reference test measures (x-axis). Reference test: the test is repeated five times, metrics collected from each repetition and the person’s measure is the 
median of five metrics. Comparison (new, shortened) test: the test is repeated three times, the first repetition is discarded, metrics are collected from the 
second and third repetition, and the person’s measure is the mean of two metrics (i.e. Trial2 − 3 measures). Continuous horizontal line: bias (i.e. mean dif-
ference between measures); horizontal dashed lines: limits of agreement. Lower plots in panels A and B show the absolute percentage error (APE, y-axis) 
of the measures from the reduced tests as a function of the measures from the reference tests (x-axis). Lower horizontal dashed line: mean APE (label not 
shown for graphical reasons). Upper horizontal dashed line: APE 95th percentile. Each dot marks a person’s measure
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Fig. 3 Cross-sectional agreement between the measures from the shortened and the reference TUG test: measures from the inertial sensors. Absolute 
percentage error is depicted. Same graphics as Fig. 1. STW: sit to walk
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Fig. 4 Time course within and between sessions of gait speed and TUG test duration. Gait speed (A) and TUG test duration (B) from the reduced tests. 
White dots: metric from the first test repetition, i.e. the habituation repetition. Black dots: measures from Trial2 − 3 and Trial4 − 5. Lower graphs in panels A 
and B report the significance analysis from ANOVA on linear mixed-effects models. Session (left) and trial (right) predictors were significant, while their 
interaction was not both for the gait speed and the TUG test duration. Horizontal bars mark significant contrasts on post hoc testing. Estimated marginal 
means and their 95% confidence interval from linear mixed-effects models are depicted. TUG test duration was ln-transformed to comply with regression 
assumptions. It is shown here as untransformed for graphical reasons
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In fact, according to these measurements, more than half 
of the participants significantly improved at the end of 
the rehabilitation.

STW and turning duration had the lowest responsive-
ness since about 90% and 80% of participants did not 
change above the 95% MDC.

Again, ω results were in between the gait speed and 
TTD on the one hand and those of the STW and turn-
ing duration on the other, with about 20% of participants 
improving after rehabilitation per the ω 95% MDC.

Table 2 also reports the responsiveness analysis for the 
reference method.

The agreement between the 95% MDC and the refer-
ence methods is displayed in Fig. 6.

The weighted Cohen’s kappa (Fig.  6A) indicated sub-
stantial agreement between the two methods for TTD 
and moderate agreement for gait speed and ω. The agree-
ment for turning duration was fair, while that of STW 
duration was poor.

This ranking is confirmed when the longitudinal agree-
ment was assessed with Youden’s J (Fig. 6B).

Fig. 5 Time course of the TUG test measurements from inertial sensors. Same graphics as Fig. 3. STW: sit to walk. The main finding from statistical testing 
(ANOVA) was a significant difference between the two sessions. All three variables were ln-transformed and reported here as untransformed
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95% MDCs from the subset of steady participants: a 
control analysis
The gait speed of ten participants was strictly unchanged 
(p = 0.846, Wilcoxon signed rank exact test), while TTD 
was strictly unchanged in 18 participants (p = 0.966). As 
expected, given the analysis above, the number of par-
ticipants strictly unchanged was larger for the STW and 
turning duration (32 for both, p = 0.106 and p = 0.065, 
respectively). No modification of ω was found in 24 indi-
viduals (p = 0.114).

The SEM and the 95% MDC calculated on the sample 
of steady patients are reported in Table 1.

The MDC derived from the ICC is larger than that 
from LMMs for all five mobility measures. However, this 
difference is quite small, the smallest for TTD and gait 
speed and the largest for STW duration.

For example, according to the 95% MDC from LMMs, 
TTD should decrease by about 15% to conclude a signifi-
cant change in patient’s mobility. According to the 95% 
MDC from the steady state patients, the TTD reduction 
should be about 17%.

Discussion
The current study reports the SEM and the 95% MDC of 
the gait speed and TUG test duration, measured with a 
stopwatch, and measures from the sit-to-walk and turn-
ing phase of the TUG test, recorded with an inertial mea-
surement unit.

The 95% MDC of the gait speed and the TTD were the 
smallest, while those of the STW and turning duration 
were the largest. The 95% MDC of ω was between these 
extremes. More precisely, gait speed and TTD should 
change by about 15% of their baseline value to conclude 
an actual patient’s modification. This change is 25% for ω, 
but 40% or more for STW and turning duration.

This study is certainly not the first in which the SEM 
and the 95% MDC of gait and TUG test measures have 
been calculated, but our work nonetheless offers an 
important addition to the current literature.

Firstly, to our knowledge, this is the first time LMMs 
have been used to estimate SEM of gait and mobility 
measures from data collected from neurological patients 
undergoing rehabilitation due to their balance impair-
ment. This represents an important methodological nov-
elty in the field of mobility assessment.

Second, further investigation of the SEM and the 
MDC of gait and other mobility measures is still needed. 
Indeed, while many previous studies report the reliabil-
ity of gait and mobility measures, the number of studies 
reporting the MDC of these measures is rather limited 
(e.g. [16]. ). A systematic review [14] concluded that the 
MDC is the least frequently assessed psychometric prop-
erty of walking and mobility measures in neurological 
patients. Systematic reviews also indicated the need for 
further investigations of the SEM and MDC of gait and 
mobility measures in different diseases, including neu-
rological ones [16]. It should also be noted that the SEM 

Table 1 95% MDC of gait and TUG tests mobility measures
Complete sample LMMs Steady participants CTT

SEM MDC eMDC SEM MDC eMDC

gait speed, m/s 0.047 0.130 1.139 0.055 0.152 1.167
TUG test duration (ln), s 0.052 0.143 1.154 0.058 0.159 1.173
STW duration (ln), s 0.152 0.422 1.524 0.169 0.469 1.599
Turning duration (ln), s 0.123 0.340 1.405 0.135 0.374 1.453
ω (ln), °/s 0.080 0.222 1.249 0.093 0.257 1.294
LMMs: linear mixed-effects models; CTT: classical test theory; STW: sit to walk; ω: peak angular velocity along the vertical axis during the first turning phase of the 
TUG test; SEM: standard error of the measurement; MDC: 95% minimal detectable change; e: Euler’s number. eMDC on the gait speed row (italics) is from LMMs or 
ANOVA with ln-transformed gait speed as the predictor. Complete sample LMMs: SEM and MDC were calculated from the full participants’ sample using random 
intercepts and slopes LMMs with the session (T0 vs. T1) as a fixed effect. Steady participants CTT: SEM and MDC were calculated from the subset of stable participants 
(i.e. strictly unchanged after rehabilitation) using ANOVA.

Table 2 Longitudinal agreement between the 95% MDC and the reference method
Reference 95% MDC

got better unchanged got worse got better unchanged got worse
gait speed (%) 53 (48.6) 51 (46.8) 5 (4.6) 57 (52.3) 47 (43.1) 5 (4.6)
TUG test duration – ln (%) 49 (45.0) 55 (50.5) 5 (4.6) 57 (52.3) 46 (42.2) 6 (5.5)
STW duration – ln (%) 12 (11.0) 95 (87.2) 2 (1.8) 8 (7.3) 97 (89.0) 4 (3.7)
Turning duration – ln (%) 12 (11.0) 94 (86.2) 3 (2.8) 10 (9.2) 88 (80.7) 11 (10.1)
ω – ln (%) 23 (21.1) 84 (77.1) 2 (1.8) 24 (22) 75 (68.8) 10 (9.2)
STW: sit to walk; ω: peak angular velocity along the vertical axis during the first turning phase of the TUG test. The number of subjects and their percentage 
(between brackets) is reported. Reference: reference method (i.e. the “all five repetitions better than the best” method) for establishing the patient’s change after 
rehabilitation (i.e. in session T1 compared with T0). 95% MDC: patient’s change is defined according to the 95% minimal detectable change (MDC) from the reduced 
tests. After rehabilitation, participants got better (i.e. increased their gait speed, decreased their TUG test, STW and turning duration or increased ω), did not change 
(unchanged) or got worse
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Fig. 6 Longitudinal agreement between the 95% MDCs from the reduced tests and the reference method for assessing the patient’s change in time. 
Reference method: “all five repetitions better than the best” method. Novel method: 95% MDC from linear mixed-effects models run on Trial2 − 3 and 
Trial3 − 4 data from T0 and T1 sessions. (A) participants are classified as unimproved, improved or worsened, and Cohen’s K (squared weights) is used as the 
agreement index. (B) participants are classified as stable or changed (i.e. worsened or improved), and Youden’s J is calculated as the agreement index. 
Measures are ranked according to their agreement with the reference method (the higher the index, the better the agreement). Grey bars, i.e. instrumen-
tal measures, are from the TUG instrumented with inertial sensors. White bars, i.e. manual measures, are from a stopwatch. TTD: TUG test duration; GS: gait 
speed; ω: peak vertical angular velocity during the first turning phase; Turning: duration of the first turning phase; STW: sit-to-walk duration. Youden’s J of 
STW was negative (-0.04) and plotted as zero for graphical reasons
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and MDC of the mobility measures obtained with inertial 
measurement units are probably the least known.

Estimating the Standard Error of the Measurement 
when the steady-state assumption does not hold: what 
witchcraft is this?
Patients are assessed twice in a typical test-retest experi-
ment for estimating SEM or the reliability of mobility 
measures, usually one week (e.g. [48]). or a couple of 
weeks apart (e.g. [49]).

In this period, patients are appropriately instructed to 
not to exercise or participate in rehabilitation, and a few 
weeks is too short for a disease to progress. Therefore, 
it can be assumed that there is no systematic changes in 
the effective amount of the variable under examination 
to occur during the test-retest interval. As a result, if this 
steady-state assumption is complied with, any measure-
ment change between the two assessment sessions can be 
attributed solely to the measurement error.

The steady-state assumption is central to SEM estima-
tion in the CTT framework [21]. More technically, when 
SEM is estimated, CTT assumes “parallel tests”, namely 
that measures have the same “true” value and error vari-
ances in the two assessment sessions [50].

In the current study, the steady-state assumption is bla-
tantly violated because of a treatment effect. In cases such 
as this, the LMMs represent a valuable solution for esti-
mating reliability and SEM since they can easily account 
for changes in measurement over time. According to 
some Authors [21], LMMs actually make the steady-state 
assumption, i.e. that the quantity of the measured vari-
able does not change between the test and retest sessions, 
unnecessary.

Regarding the steady-state assumption, it is worth 
mentioning that for some of the literature this assump-
tion is “extreme”, “unrealistic in many practical situa-
tions”, and “often violated in practice” [21, 50].

To our knowledge, this is the first study in which data 
before and after rehabilitation are entered into LMMs to 
estimate the SEM of gait and TUG test measures.

While this approach is new when applied to the study 
of mobility measures, it has been used in other fields. For 
example, reliability indices (which provide for SEM esti-
mation) have been calculated by applying LMMs to data 
from clinical trials, which, as in the case dealt with here, 
are unstable because of a treatment or time effect [20]. In 
this case, similar to what we did here, LMMs have been 
used to account for time and treatment effects by enter-
ing them as fixed effects of the model [20].

The major limitation of the method used here for SEM 
estimation in which the treatment effect is removed 
thanks to LMMs is that any between-session difference in 
measures genuinely caused by measurement error is also 
removed (in a sense, the time effect is “taken out” from 

data, not just the treatment). Three points should be dis-
cussed about this.

First, two SEM types have been defined: SEM consis-
tency and SEM agreement, the former considering only 
the residual variance and the latter the residual variance 
plus variance due to systematic differences (e.g. between 
raters, between sessions) [17, 39]. If no bias is present, 
consistency and agreement coincide.

When time is included as a fixed effect in the LMMs 
for SEM estimation, the systematic difference between 
sessions is removed, and SEM consistency is obtained.

Even if some Authors have recommended SEM agree-
ment [39], SEM consistency is also used alongside SEM 
agreement. For example, the MDC calculated as the lim-
its of agreement from the Bland-Altman method applied 
to a test-retest, steady-state study is an MDC consis-
tency [17, 39, 51]. Some Authors consider the MDC, as 
well as the limits of agreement, to be equivalent indica-
tors of measurement errors (e.g. [15]). Moreover, accord-
ing to the Risk of Bias checklist for systematic reviews of 
Patient Reported Outcome Measures developed by the 
COnsensus-based Standards for the selection of health 
Measurement INstruments (COSMIN) [52], studies 
reporting the SEM, the MDC, or the limits of agreement 
should be considered “very good”. Studies in which only 
the limits of agreement are calculated are still considered 
as “adequate”.

Second, it is important to note that studies employ-
ing conventional steady-state, test-retest experimental 
designs pointed out the absence of bias for mobility mea-
sures between the two assessment sessions. For example, 
no systematic difference has been found for several gait 
variables in walking tests in chronic stroke patients [48]. 
A bias is not explicitly underlined in a systematic review 
of the reliability of gait measures [53].

Finally, we run a control analysis to experimentally 
investigate the differences between the SEM returned by 
LMMs with treatment as the fixed effect and SEM from 
test-retest steady-state reliability indices. For this analy-
sis, only a subset of participants who remained strictly 
stable (i.e. neither improved nor worsened) after the 
rehabilitation was considered in order to be able to cal-
culate steady-state test-retest reliability and SEM. Even if 
the SEM calculated with this strategy was larger than that 
from the LMMs for all five mobility measures, the differ-
ence between the two indices was small and likely of little 
practical significance.

The larger SEM could be because an agreement and 
a consistency SEM have been calculated with the reli-
ability and the LMMs analyses, respectively. However, it 
can also be speculated that a (slightly) larger measure-
ment error could have happened idiosyncratically in the 
strictly unchanged patient subset, which remained stable 
precisely because of this inflated measurement error.
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Are the reduced tests good enough?
In all our previous works, the median metric from the 
five repetitions of the gait and TUG tests was used as 
the patient’s mobility measure (e.g. [12, 27–29]). These 
studies aimed to assess the validity and responsiveness of 
mobility measures, mainly from the TUG test, as balance 
measures, i.e., a person’s ability not to fall.

As explained in the methods section, measures from 
reduced, shortened tests were used in the current work 
to specify maximal LMMs [30] and estimate SEM more 
accurately.

The cross-sectional (and longitudinal) agreement 
between the measures from the novel, shortened test ver-
sions and our reference was assessed as a preliminary, 
in a sense mandatory, step so that our previous findings 
(e.g., that measures from the turning TUG test phase are 
valid balance measures) can also be applied to the new 
measures.

Even if this control analysis was run to give continuity 
to our previous studies, and statistical reasons prompted 
the development of a shortened version of the mobility 
tests, its findings are also attractive for another reason.

To our knowledge, there is no agreement on the num-
ber of times the walking and the TUG test should be 
repeated. For example, in some studies, these tests are 
performed just once in an assessment session [54], while 
in other studies, the tests are repeated even ten times per 
session [53].

A two repeats test is clearly more readily applicable 
than a longer one, and the availability of a more straight-
forward test is vital in the clinic and research setting. In 
our experience, repeating the walking and TUG tests 
five times can be somewhat burdensome. This fact is 
especially true if additional measures are collected in an 
assessment session, such as balance scales or question-
naires for assessing the self-perceived balance or the 
6 min walking test, which is often the case. Evaluating if 
a shortened test returns measurements as good as those 
from a longer one seems thus valuable.

We show that cross-sectional and longitudinal agree-
ment is satisfactory for the gait speed and TTD measured 
with a simple stopwatch. The two agreement types are 
poor for the STW and turning duration, while those of ω 
are acceptable.

These conclusions are about the agreement of mea-
sures of single persons (i.e. measures precision) and are 
sustained by the 95% percentile APE values. It should be 
noted that when sample mean measures are considered, 
the mean APE points out a reasonable agreement (i.e. 
good accuracy) for all the measurements evaluated here.

The main message is that when interested in measur-
ing a single person, for example, estimating their risk 
of falling or change after treatments, the “repeat three 
times, leave the first out and average the remaining two” 

assessment variant returns gait speed and TTD measures 
with high validity. The validity of ω, a balance measure, 
from this method is also acceptable.

Are the 95% MDCs calculated here in line with those of 
previous studies?
We already showed that the MDCs calculated on before-
after rehabilitation data with LMMs align with those 
obtained estimating reliability from a steady-state, test-
retest experiment (see above). Moreover, our findings are 
in line with those of previous investigations.

In a systematic review of old persons with dementia 
[55], the 95% MDC of the gait speed measured with the 
10 m walking test was 0.16–0.17 m/s.

In another systematic review [14], the MDC of the gait 
speed measured with the 10 m walking test was 0.15 m/s 
in stroke patients when walking at their usual pace. A 
slightly higher value (0.19  m/s) was found in the same 
study in Parkinson’s disease.

A systematic review assessing the reliability and the 
MDC of gait parameters measured with instrumented 
walkways [53] showed that 95% MDC of gait speed was 
about 0.13 m/s when different conditions, including neu-
rological disease, were considered altogether. The largest 
95% MDC was found in multiple sclerosis (0.28 m/s) and 
the smallest in stroke and old persons (about 0.11 m/s).

For a measure to be acceptable, its MDC must be 
smaller than the minimal clinically important differ-
ence (MCID) [52]. Otherwise, the measurement error is 
so significant that the measure cannot index changes in 
patients deemed clinically significant.

A recent study [49] calculated the MDC and the MCID 
of comfortable walking speed in stroke patients, the for-
mer being 0.13 m/s and the latter 0.18–0.25 m/s. Nota-
bly, the gait speed MDC that was found was comparable 
to the MDC found by [49] and, most importantly, lower 
than their MCID.

Comparing the MDC of the TTD is less straightfor-
ward since it is often reported as seconds rather than per-
centages, as we did. For example, the TTD 95% MDC in 
dementia ranged from 2.4 to 7.7 s [55].This fact leads us 
to point out an issue rarely considered in studies where 
the reliability or SEM are calculated. Both when SEM 
is estimated from ICC and ANOVA or using LMMs, 
SEM relies on these models’ assumptions, normality 
and homoscedasticity of residuals in the first place. For 
example, when variability increases as the measured val-
ues increase, as is always the case for TTD (e.g. [56]). , 
the data are heteroscedastic [57]. The assumptions of the 
models used for SEM estimation are violated: SEM esti-
mation may therefore be unreliable.

Here, we show that the ln-transformation solves or 
improves adherence with the regression assumptions 
(Supplementary Materials 1). Therefore, it is advisable to 
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express the MDC as a percentage change of the baseline 
measure.

Previous studies suggested that the 95% MDC can be 
considered acceptable if smaller than 30% of the mean 
test-retest measure [53].

Regarding the measures from the TUG with instru-
mental sensors, the STW and turning duration are 
beyond this threshold (while ω is below). Given the 
results of the cross-sectional agreement analysis, this 
finding is unsurprising.

Measurement error seems the largest for STW and 
turning duration. When the number of repetitions is low-
ered, the measurement error is less likely to be cancelled 
from trial to trial. A larger measurement error eventually 
inflates the 95% MDC.

The reason for a larger measurement error could be in 
these measures’ lower signal-to-noise ratio. For example, 
it is relatively simple to distinguish the TUG test end to 
that TTD can be obtained manually with a stopwatch. 
On the contrary, identifying the onset or the offset of the 
STW and turning phase is more challenging (e.g. signals 
do not start or do not return to zero).

Study limitations and future developments
To our knowledge, it is the first time “unstable” data, 
in the psychometric sense, are used to assess the SEM 
of mobility measures. For this reason, we tested the 
simplest LMMs that allow estimating SEM, hence the 
current analysis should be considered introductory. Sta-
tistical packages are available, such as the R libraries 
“CorrMixed” [58] and “rptR” [59], which allow not only 
the variance partitioning which was run here but also 
provide additional tools for advanced analysis (e.g. confi-
dence intervals of the estimates).

For example, we modelled the assessment sessions as 
before (T0) and after rehabilitation (T1) without consid-
ering the exact days (i.e. the length of stay in rehabilita-
tion) between the two assessments. Future studies could 
also consider if the SEM changes as the length of stay 
increases as reliability may decrease with increasing time 
between test-retest sessions (e.g., learning effects may 
vanish).

In this study, in most instances, the response variable 
of the LMMs has been ln-transformed (e.g. TTD), pri-
marily to adhere to the model’s assumption of residual 
normality.

Instead of transforming the response variable and 
computing the LMMs on this new variable, an alternate 
approach would have been to use more sophisticated for-
mulations of the mixed models, such as the generalised 
LMMs [38].

For the reasons listed below, nevertheless, we chose not 
to pursue this alternative.

When mixed models are utilised for prediction or sig-
nificance testing, using the generalised LMMs rather 
than the LMMs on the transformed response variable 
appears to be a suitable solution. Notably, some schol-
ars could even think that this is a better option in this 
scenario.

However, utilising the generalised LMMs presents 
some difficulties when interested in variance decom-
position to estimate the residual variance and SEM. 
Because of the link function, if the generalised LMMs 
were employed in this situation, the residual variance 
(and SEM eventually) would not be on the same scale as 
the response variable (i.e. the measure of interest). Con-
versely, using the LMMs and maintaining the SEM on the 
same scale as the (transformed) response variable makes 
more straightforward the application of the MDC in 
future research and clinical settings.

Furthermore, as the Methods section “Complying with 
the linear mixed-effects models’ assumptions” explains, 
when the ln-transformation is applied to the response 
variable, ln-transformed variables find an immediate 
practical meaning, even though technically the trans-
formed variable is something different from the original 
(the two variables are monotonically related).

Lastly, it is important to emphasise again how unique 
this method is for SEM estimation. At this stage, we 
believe it is better to use simpler modelling techniques 
(e.g. LMMs) as opposed to more complex ones (e.g. gen-
eralized LMMs).

Only two sessions – before (T0) and after (T1) rehabili-
tation – were used to gather data for this investigation. 
However, it is worth noting that LMMs would allow esti-
mating the SEM with no difficulty also in the case data 
were available from multiple sessions (e.g. before and 
after treatments and from early and late follow-up ses-
sions) [20]. In this case, having more data available for 
statistical modelling would probably result in estimates 
(the SEM in the first place) that are more robust, indeed.

This study is preliminary also because different neuro-
logical syndromes have been grouped together, although 
united by the fact of being they are older persons with 
neurological pathologies with a high risk of falling. An 
obvious development would be comparing the SEM in 
the different diseases to assess if the SEM is the same for 
different diagnoses. Proving the absence of interaction 
between error and neurological disease would ease SEM 
applicability.

SEM of STW and turning duration should also be fur-
ther assessed. The SEM of the measures from the five 
repeats test (i.e., the median of the five metrics) could be 
calculated as a starting point. As previously discussed, 
more repetitions are expected to lower the measurement 
error.
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Conclusions
Linear mixed-effects models provide valid estimates of 
test-retest SEM of mobility measures when the steady-
state assumption does not hold, such as when mobility 
data are collected before and after rehabilitation.

The SEM and the 95% MDC of the gait speed, TUG 
test duration, and the vertical angular velocity peak in the 
TUG test’s first turning phase (ω, a balance measure) are 
small enough to be meaningfully applied in clinical and 
research settings.

These indices, calibrated here in neurological old per-
sons, allow assessing the gait and balance modification in 
time in this population characterised by an increased fall-
ing risk.
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