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Abstract 

Background Knee osteoarthritis (KOA) is an irreversible degenerative disease that characterized by pain and abnor-
mal gait. Radiography is typically used to detect KOA but has limitations. This study aimed to identify changes 
in plantar pressure that are associated with radiological knee osteoarthritis (ROA) and to validate them using machine 
learning algorithms.

Methods This study included 92 participants with variable degrees of KOA. A modified Kellgren–Lawrence scale 
was used to classify participants into non-ROA and ROA groups. The total feature set included 210 dynamic plantar 
pressure features captured by a wearable in-shoe system as well as age, gender, height, weight, and body mass index. 
Filter and wrapper methods identified the optimal features, which were used to train five types of machine learning 
classification models for further validation: k-nearest neighbors (KNN), support vector machine (SVM), random forest 
(RF), AdaBoost, and eXtreme gradient boosting (XGBoost).

Results Age, the standard deviation (SD) of the peak plantar pressure under the left lateral heel (f_L8PPP_std), 
the SD of the right second peak pressure (f_Rpeak2_std), and the SD of the variation in the anteroposterior displace-
ment of center of pressure (COP) in the right foot (f_RYcopstd_std) were most associated with ROA. The RF model 
with an accuracy of 82.61% and F1 score of 0.8000 had the best generalization ability.

Conclusion Changes in dynamic plantar pressure are promising mechanical biomarkers that distinguish 
between non-ROA and ROA. Combining a wearable in-shoe system with machine learning enables dynamic monitor-
ing of KOA, which could help guide treatment plans.
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Background
Osteoarthritis (OA) is a chronic, irreversible disease 
characterized by degeneration of the hyaline articular 
cartilage, subchondral bone, ligaments, capsule, syn-
ovium, and periarticular muscles [1, 2]. Over 300 mil-
lion people worldwide suffer from OA [3], and knee 
osteoarthritis (KOA) accounts for approximately 85% 
of the burden [4]. However, most cases of OA are not 
appropriately managed [1]. KOA can result in substantial 
economic losses [5]. In addition, individuals with KOA 
may be debilitated by pain, stiffness, decreased range of 
motion, and gait dysfunction [6, 7]. As an age-related dis-
ease, KOA is a leading cause of pain and disability among 
the elderly [6]. Dynamic function tests such as the 40-m 
(4 × 10  m) fast-paced walking test and timed up and go 
test are recommended by the Osteoarthritis Research 
Society International [8]. The incidence of KOA cases is 
on the rise due to the global population aging and the 
increasing prevalence of obesity [6], thereby exacerbating 
the socioeconomic burden associated with this disease. 
Thus, examinations in different dimensions are essential 
for effective treatment of KOA.

Imaging examinations like radiography can be used 
to diagnose OA, grade OA severity, assess OA progres-
sion, and monitor treatment responses [9]. Radiography 
is the first choice in the clinical setting [10]. Radiological 
OA (ROA) is defined as a case whose Kellgren–Lawrence 
(K–L) grade is ≥ 2 and indicates that there are definite 
changes in joint structure. Although the semi-quantita-
tive K–L grading system is widely used in clinical settings 
[11], it only reflects the static joint structure and requires 
large equipment and specialized professionals. Explor-
ing additional dynamic features related to radiodiagno-
sis, such as plantar pressure during walking can enhance 
assessment tools and offer a new perspective for treat-
ment management.

Gait function, an important indicator of rehabilitation, 
declines with the progression of KOA. Compared with 
the Western Ontario and McMaster University Osteoar-
thritis Index (WOMAC) and the Knee Injury and Oste-
oarthritis Outcome Score, quantified gait parameters 
are more objective for functional assessment of KOA 
patients [12]. Normal individuals and KOA patients can 
be distinguished by assessing gait parameters such as 
center of pressure (COP) [13–15], regional pressures [13, 
16], contact area [16], and peak pressure [15, 16]. Plan-
tar pressure can be measured using a force platform or an 
in-shoe system (e.g. pedar-X system). Force platforms are 
typically limited to controlled settings like hospitals and 
laboratories, whereas in-shoe systems, which comprise 
pressure sensors and Bluetooth transmission devices, 
provide a clear advantage in terms of flexibility, efficiency, 
and portability [17, 18]. Moreover, optimal shoes for 

patients with KOA remain unknown [19–21]. Changes 
in plantar pressure for patients with KOA are one of the 
important factors to consider when designing modified 
footwear. Thus, how dynamic plantar pressure changes in 
patients with KOA should be further investigated, which 
may provide guidance for the optimal modified footwear.

Machine learning uses algorithms that learn from data 
and make decisions with minimal human intervention 
[22]. Implementing machine learning in wearable devices 
will allow long-term and dynamic monitoring, which has 
already been used to detect plantar fasciitis [23], assess 
fall risk [24, 25] and stroke rehabilitation [26], and moni-
tor freezing of gait in patients with Parkinson’s disease 
[27]. Although Wang et  al. [28] used wearable insoles 
and machine learning to detect KOA, the progression 
of KOA could not be characterized in the study popula-
tion, which included patients scheduled for surgery due 
to ineffectively conservative treatment as well as healthy 
subjects without symptoms of KOA. Other studies devel-
oped machine learning models to classify patients based 
on K-L grades [29] and WOMAC scores [30] using other 
gait parameters (e.g. spatial–temporal parameters) cap-
tured by force plates and three-dimensional optical 
motion capture systems. However, wearable devices and 
machine learning are seldom used to classify the severity 
of KOA based on plantar pressure distributions.

This study aimed to identify changes in dynamic plan-
tar pressure associated with non-ROA and ROA using 
wearable devices and machine learning models. We 
hypothesized that dynamic plantar pressure measure-
ments would significantly change following structural 
alterations of knee (i.e. ROA). This study offers insights 
into the dynamic monitoring of KOA and also guides the 
rational design of modified footwear to improve treat-
ment outcomes for patients with KOA.

Methods
Participants
All participants were enrolled between January 2022 and 
February 2023 from the Pearl River Osteoarthritis Cohort 
(PROC) study at the Zhujiang Hospital of Southern Med-
ical University, Guangzhou. This study was approved by 
an Institutional Review Board (IRB No. 2019-KY-016-02), 
and informed consent was obtained from all participants. 
The PROC includes people aged  45–79  years  old from 
OA outpatient clinics and the communities nearby, who 
have never had knee surgery but reported having expe-
rienced knee pain most of the time in the past month. 
Exclusion criteria in this study were as follows: (1) with 
a history of spine surgery and severe spine disease (e.g. 
radicular pain to the lower extremity); (2) hip, ankle, or 
foot arthritis; (3) foot deformity (foot varus/valgus, flat-
foot, etc.); (4) inability to walk at least 100  m without 
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assistance; (5) acute knee injury in the past year. The cal-
culated methods of the total sample size were as follows: 
(1) the sample size of the training set should be at least 
ten times of the included features; (2) the sample size 
ratio of training set to testing set was 3:1.

Data collection
A wireless footwear system (Fig.  1) with a sampling 
frequency of 20  Hz was provided by the South China 
University of Technology and used to acquire plantar 
pressure signals. An insole with a pressure sensor array 
and data acquisition unit was embedded in the footwear. 
Sensors were distributed across eight regions: the great 
toe (sensor 1), the first metatarsal head (sensor 2), the 
second and third metatarsal head (sensor 3), the fourth 
and fifth metatarsal head (sensor 4), the medial mid-
foot (sensor 5), the lateral midfoot (sensor 6), the medial 
heel (sensor 7), and the lateral heel (sensor 8). The sen-
sor positions mentioned above were determined based 
on previous research [15]. The stability and effectiveness 
of the footwear system have been validated by previous 
studies [24, 31, 32]. The participants were asked to wear 
socks and appropriate shoes. To reduce deviations from 
their natural gait, participants walked freely for three 
minutes before the measurements began. In the formal 
walking stage, the participants were asked to walk 60 m 
(three times back and forth on a 20-m straight level 
walkway). Real-time data were transmitted wirelessly via 
Bluetooth and displayed on a smartphone.

Bilateral anteroposterior radiographs were acquired 
while the participants were weight-bearing in a double-
leg stance (DLS) at a knee flexion angle of 20°–30°. ROA 
was diagnosed by an experienced radiologist accord-
ing to the modified K–L (mK–L) grading system [33, 
34]. ROA was defined as mK–L grade ≥ 2; all other cases 
were defined as non-radiological knee OA (non-ROA). 

Additional file  1: Table  S1 describes the mK–L grading 
system. Radiographs of 20 randomly selected cases were 
assessed by another experienced radiologist; the intra-
observer (κ = 0.814) and inter-observer (κ = 0.827) reli-
abilities were good.

Data preprocessing
Abnormal and unstable data were discarded according to 
the midgait method [35] and the bimodal characteristics 
of plantar pressure. Sixty valid gait cycles were obtained 
from each participant after segmentation and splicing.

Feature extraction
The extracted multidimensional features of dynamic 
plantar pressure were as follows: the peak plantar pres-
sure (PPP), the pressure gradient (PG), time-domain 
features, impulse, the medial–lateral (M/L) plantar 
pressure ratio, the COP, the symmetry index, and the 
mean and standard deviation (SD) of the above param-
eters in 60 valid gait cycles. Methods used to calculate 
dynamic plantar pressure are described in Additional 
file  1: Method S1. The total plantar pressure feature set 
included 210 features (Additional file 1: Table S2). Physi-
ological features related to KOA: age, body mass index 
(BMI), gender, height, and weight were also included in 
the feature selection.

Feature selection
Selecting effective feature subsets from the total feature 
set can reduce overfitting and increase generalizability 
of the model. The Shapiro–Wilk test was used to assess 
the normality of the data. The Mann–Whitney U test and 
independent t-test were used to classify features that did 
not significantly differ between groups. Statistical signifi-
cance was defined as a p-value < 0.05. A wrapper method 
was used to further optimize the selection of features 
among different groups.

Machine learning model training and evaluation
The optimal features were used to train five types of 
machine learning algorithms including k-nearest neigh-
bors (KNN), support vector machine (SVM), random 
forest (RF), AdaBoost, and eXtreme Gradient Boosting 
(XGBoost). Ten-fold cross-validation was implemented 
to train and evaluate the models, whose performance 
was measured based on accuracy and F1 scores obtained 
from the confusion matrix. Figure  2 outlines the meth-
odology used to build the model. This study used Python 
3.10.8 for model training and testing. The Optuna frame-
work was used for hyperparameter tuning, which is an 
automated hyperparameter tuning software framework 
specifically designed for machine learning algorithms 
using Python programming.Fig. 1 Wearable in-shoe system
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Results
Participant characteristics
A total of 92 participants were recruited, of whom 
43 were classified as ROA and 49 as non-ROA. Their 
demographic characteristics are shown in Table 1. The 
ROA group was older (p = 0.018) and had a larger BMI 
(p < 0.001) on average.

Sample set division
Four features were input to model building. Thus, at least 
54 participants were needed (< 92 recruited in our study). 
Participants were randomly divided into the training set 
(75%) and testing set (25%), which included 69 partici-
pants (37 non-ROA and 32 ROA) and 23 participants (12 
non-ROA and 11 ROA), respectively.

Fig. 2 Flowchart of model building
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Optimal features
As shown in Table 2 and Fig. 3, 18 features (2 physiologi-
cal features and 16  dynamic plantar pressure features) 
significantly differed between groups. These plantar pres-
sure features included the PPP, the MaxPG, the MinPG, 
COP displacement, SI, the second peak pressure, and the 
unloading rate.

The accuracy of model was highest (Additional file  1: 
Fig. S1) when it considered the following four features: 
age, the SD of PPP in the left lateral heel (f_L8PPP_std), 

the SD of the right second peak pressure (f_Rpeak2_std), 
and the SD of variation in the anteroposterior displace-
ment of the COP in the right foot (f_RYcopstd_std).

Performance comparisons across models
Figure 4 shows the accuracy and F1 score of each model 
in the training set. The accuracy and F1 score were higher 
than 77% and 0.7000, respectively, for the RF, AdaBoost, 
and XGBoost models. The testing set was applied to 
each model; the confusion matrix is shown in Fig. 5. The 
model with the best generalization ability, RF, had an 
accuracy of 82.61% and F1 score of 0.8000 (Fig. 6).

Discussion
This study aimed to identify changes in dynamic plantar 
pressure associated with non-ROA and ROA, which was 
monitored dynamically using an intelligent footwear sys-
tem. Machine learning models were developed to distin-
guish between ROA and non-ROA based on key features 
and showed good diagnostic performance.

Several changes in plantar pressure parameters were 
detected in those with ROA. As shown in Fig.  3 and 
Table 2, differences in regional plantar pressure features 
were primarily found on the hallux and heel, correspond-
ing to sensor numbers 1 and 7–8, respectively. The abso-
lute values of these features (f_L1PPP, f_L1MAXPG, 
f_R1MAXPG, f_R1MAXPG_std, f_L1MINPG, f_
L1MINPG_std, f_L7MINPG, f_L8PPP_std, f_L8MINPG, 
f_L8MINPG_std) were lower in patients with ROA than 
in those without ROA. This finding agrees with Sito et al. 
[13], who reported that people with KOA had signifi-
cantly lower plantar pressures on the hallux and heel as a 
percentage of body weight.

Four features (age, f_L8PPP_std, f_Rpeak2_std, 
f_RYcopstd_std) mostly associated with ROA were 
included in the classification models. The optimal plan-
tar pressure features (f_L8PPP_std, f_Rpeak2_std, 

Table 1 Comparisons of participants’ characteristics

n number of participants, non-ROA non-radiological knee OA, ROA radiological knee OA, BMI body mass index

Characteristics Total (n = 92) Non-ROA (n = 49) ROA (n = 43) p

Gender (n, %) 0.977

 Male 17 18.5%) 9 (9.8%) 8 (8.7%) –

 Female 75 (81.5%) 40 (43.5%) 35 (38.0%) –

Side of involvement (n, %) 0.067

 Left 50 (54.3%) 31 (33.7%) 19 (20.7%) –

 Right 42(45.7%) 18 (19.6%) 24 (26.1%) –

Age (years, mean ± SD) 62.95 ± 8.40 59.76 ± 7.93 66.58 ± 7.45 < 0.001

Height (cm, mean ± SD) 158.08 ± 7.85 159.31 ± 7.14 156.67 ± 8.45 0.113

Weight (kg, mean ± SD) 61.33 ± 10.47 60.17 ± 9.14 62.65 ± 11.78 0.26

BMI (kg/m2, mean ± SD) 24.51 ± 3.43 23.72 ± 3.08 25.40 ± 3.63 0.018

Table 2 Significantly different features between groups

BMI body mass index, R right, L left, PPP peak plantar pressure, MINPG minimum 
pressure gradient, MAXPG maximum pressure gradient, cop the center of 
pressure, SI symmetry index, std standard deviation, peak2 the second pressure 
peak, unloadr unloading rate
a Optimal features included in model training

Number Features Mann–Whitney U p value

1 f_Runloadr_std 721 < 0.001

2 Agea 1567.5 0.009

3 f_L8PPP_stda 784 0.011

4 f_Rpeak2_stda 759 0.013

5 f_RYcopstd_stda 1318 0.017

6 BMI 1341 0.02

7 f_L1PPP 781 0.021

8 f_L1MAXPG 755 0.025

9 f_L1MINPG 1329 0.029

10 f_L7MINPG 1306 0.03

11 f_L8MINPG 1371 0.031

12 f_R1MAXPG 748 0.032

13 f_RYcopmean 1380 0.033

14 SI_Xcopmean 1314 0.035

15 f_L1MINPG_std 775 0.039

16 f_L8MINPG_std 774 0.04

17 f_Lpeak2_std 791 0.042

18 f_R1MAXPG_std 779 0.049
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f_RYcopstd_std) are correlated with the standard devia-
tion, indicating that decreased gait stability is a promi-
nent feature of ROA. As a commonly used variable to 
express foot load, the PPP represents the maximum load 

on the foot region [36]. The PPP can be used to deter-
mine foot regions of high pressure and provides reference 
for the formulation of orthopedic shoes [37]. Foot orthot-
ics are a potential simple treatment method for KOA by 

Fig. 3 Violin diagram of the 18 features significantly differed between groups

Fig. 4 Performance of different models in the training set
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reducing the knee adduction moment (KAM), a mechan-
ical biomarker of KOA progression [16]. The knee joint 
of individuals with ROA exhibits distinct structural 
changes which involve varying degrees of damage to the 
articular cartilage, surrounding ligaments, bursae, ten-
dons, and muscles. Compensation of the aforementioned 
changes in the knee joint may occur through ankle–foot 

complex during walking since the lower limb functions as 
a kinetic chain. The f_RYcopstd_std indicates the amount 
of COP variation in the A/P position [38]. ROA was a key 
factor for unstable postural control [39]. Increased COP 
variability is an important predictive indicators for falls 
in older adults [40]. Previous study had reported that 
the A/P variation of COP was greater in patients with 

Fig. 5 Confusion Matrices on testing set

Fig. 6 Performance of different models in the testing set
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moderate KOA than that in healthy individuals [41]. An 
important reason of the increased A/P variation of COP 
in ROA group may due to the impaired knee proprio-
ception [41]. Impaired knee proprioception will affect 
the motion and position sense of the lower limbs during 
walking, consequently reducing the balance control abil-
ity and gait stability [42]. In addition, quadriceps muscle 
strength shows a negative correlation with the K–L grade 
[43], which will in turn impact gait patterns [44]. Aging 
accelerating the progression of KOA due to biological 
alterations of knee and the cumulative effects of other 
risk factors is a consensus view. However, the ROA group 
was older than non-ROA group in this study. Therefore, 
findings of this study should be generalized cautiously.

Combining wearable in-shoe plantar pressure measure-
ment devices with machine learning enables continuous 
and dynamic monitoring of KOA. In this way, dynamic 
plantar pressure can be more easily measured without 
being limited to test environmental conditions. Dynamic 
plantar pressure combined with radiography can be used 
to determine the KOA severity and therefore guide treat-
ment options.

This study has several limitations that should be 
addressed. First, our methodology should be externally 
validated in a larger population to avoid potential overfit-
ting. Moreover, the optimal plantar pressure features may 
be different in individuals with different affected side, 
but this study did not conduct a  subgroup analysis on 
the participants based on their affected sides. Lastly, two 
classification grades (ROA and non-ROA) but not four-
level classification (K–L grade = 1–4) were used to reflect 
the severity of KOA due to insufficient sample sizes.

Conclusions
In summary, this study demonstrates that changes in 
dynamic plantar pressure can serve as effective mechani-
cal biomarkers that distinguish between non-ROA and 
ROA employing machine learning in conjunction with an 
intelligent in-shoe system. Subsequent research endeav-
ors should contemplate broader population cohorts, 
more classification levels, and encompass diverse func-
tional activities to further explore the clinical potential of 
plantar pressure as a way to monitor the progression of 
KOA.
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