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Abstract 

Background Freezing of gait (FOG) is an episodic and highly disabling symptom of Parkinson’s Disease (PD). 
Traditionally, FOG assessment relies on time‑consuming visual inspection of camera footage. Therefore, previous 
studies have proposed portable and automated solutions to annotate FOG. However, automated FOG assessment 
is challenging due to gait variability caused by medication effects and varying FOG‑provoking tasks. Moreover, 
whether automated approaches can differentiate FOG from typical everyday movements, such as volitional stops, 
remains to be determined. To address these questions, we evaluated an automated FOG assessment model with deep 
learning (DL) based on inertial measurement units (IMUs). We assessed its performance trained on all standardized 
FOG‑provoking tasks and medication states, as well as on specific tasks and medication states. Furthermore, we exam‑
ined the effect of adding stopping periods on FOG detection performance.

Methods Twelve PD patients with self‑reported FOG (mean age 69.33 ± 6.02 years) completed a FOG‑provoking 
protocol, including timed‑up‑and‑go and 360‑degree turning‑in‑place tasks in On/Off dopaminergic medication 
states with/without volitional stopping. IMUs were attached to the pelvis and both sides of the tibia and talus. A tem‑
poral convolutional network (TCN) was used to detect FOG episodes. FOG severity was quantified by the percentage 
of time frozen (%TF) and the number of freezing episodes (#FOG). The agreement between the model‑generated out‑
comes and the gold standard experts’ video annotation was assessed by the intra‑class correlation coefficient (ICC).

Results For FOG assessment in trials without stopping, the agreement of our model was strong (ICC (%TF) = 0.92 
[0.68, 0.98]; ICC(#FOG) = 0.95 [0.72, 0.99]). Models trained on a specific FOG‑provoking task could not generalize 
to unseen tasks, while models trained on a specific medication state could generalize to unseen states. For assess‑
ment in trials with stopping, the agreement of our model was moderately strong (ICC (%TF) = 0.95 [0.73, 0.99]; ICC 
(#FOG) = 0.79 [0.46, 0.94]), but only when stopping was included in the training data.

Conclusion A TCN trained on IMU signals allows valid FOG assessment in trials with/without stops containing differ‑
ent medication states and FOG‑provoking tasks. These results are encouraging and enable future work investigating 
automated FOG assessment during everyday life.
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Background
Parkinson’s disease (PD) is a neurodegenerative disorder 
that affects over six million people worldwide  [1]. One 
of the most debilitating symptoms associated with PD is 
freezing of gait (FOG), which develops in approximately 
70% of PD patients over the course of their disease [2, 3]. 
Clinically, FOG is defined as a “brief, episodic absence 
or marked reduction of forward progression of the feet 
despite the intention to walk” and is often divided into 
three manifestations based on leg movement: (1) trem-
bling: tremulous oscillations in the legs of 8–13  Hz; (2) 
shuffling: very short steps with poor clearance of the 
feet; and (3) complete akinesia: no visible movement in 
the lower limbs [1, 4]. While one patient can experience 
different FOG manifestations, the distribution of mani-
festations can vary widely among individuals, in which 
trembling and shuffling are more common than akinetic 
freezing  [5]. The unpredictable nature of FOG poses 
a significant risk of falls and injuries for PD patients  [6, 
7, 8], and it can also affect their mental health and self-
esteem, leading to a lower quality of life [9]. To relieve the 
symptoms, dopaminergic medication such as Levodopa 
is mainly used  [10]. During Off-medication states, FOG 
more commonly occurs [11], while in contrast, FOG epi-
sodes are milder in On-medication states but may mani-
fest differently with more trembling [12].

To qualitatively assess FOG severity in PD patients and 
guide appropriate treatment, subjective questionnaires, 
such as the Freezing of Gait Questionnaire (FOGQ) and 
the New Freezing of Gait Questionnaire (NFOGQ), are 
commonly used  [13, 14]. Although these questionnaires 
may be sufficient to identify the presence of FOG, they 
are insufficient to objectively describe patients’ FOG 
severity, and capture treatment effects, as they suffer 
from recall bias [15], in which the patients may not have 
been completely aware of their freezing severity, fre-
quency, or impact on daily life. These questionnaires are 
also poor for intervention studies due to the large test-
retest variability resulting in extremely minimal detecta-
ble change values [15]. To objectively assess FOG severity, 
PD patients are asked to perform brief and standard-
ized FOG-provoking tasks in clinical centers. Com-
mon tasks include timed-up-and-go  (TUG)  [16], 180 or 
360 degrees turning while walking  [17], and 360-degree 
turning-in-place (360Turn)  [18]. The TUG is commonly 
used in clinical practice since the task includes typical 
everyday motor tasks such as standing, walking, turning, 
and sitting. In combination with a cognitive dual-task, it 
has proven to provoke FOG reliably  [19]. Recently, the 
360Turn with a cognitive dual-task was also shown to be 
practical and reliable to provoke FOG for investigating 
therapeutic effects on FOG [20]. Adding a cognitive dual-
task to both the TUG and 360Turn test can increase the 

cognitive load on individuals, which can result in more 
FOG events, making these tests more sensitive and per-
haps relevant measures of FOG severity in real-life situa-
tion [17, 19, 20].

The current gold standard to assess FOG severity dur-
ing the standardized FOG-provoking tasks is via a post-
hoc visual analysis of video footage  [17, 21, 22]. This 
protocol requires experts to label FOG episodes and the 
corresponding FOG manifestations frame by frame [22]. 
Based on the frame-by-frame annotations, semi-objec-
tive FOG severity outcomes can be computed, such as 
the number of FOG episodes (#FOG) and the percentage 
time spent frozen (%TF), defined as the cumulative dura-
tion of all FOG episodes divided by the total duration 
of the walking task  [23]. However, this procedure relies 
on time-consuming and labor-intensive manual annota-
tion by trained clinical experts. Moreover, the inter-rater 
agreement between experts was not always strong  [23], 
and the annotated #FOG between raters could also 
contain significant differences due to multiple short 
FOG episodes being inconsistently pooled into longer 
episodes [20].

As a result, there is an interest in automated and objec-
tive approaches to assess FOG   [5, 24–27]. Tradition-
ally, automatic approaches detect FOG segments based 
on a predefined threshold for high-frequency spectra 
of the leg acceleration  [28]. These techniques, however, 
are not fully designed explicitly for FOG as they also 
provide a positive value to PD patients without FOG 
and even healthy controls  [29]. Additionally, since these 
techniques rely on rapid leg movements, they may not 
detect episodes of akinetic FOG. As gait in PD is highly 
variable, there is increasing interest in deep learning 
(DL) techniques to model FOG [24, 27, 30–32]. Owing 
to their large parametric space, DL techniques can infer 
relevant features directly from the raw input data. As 
such, our group recently developed a new DL based algo-
rithm using marker-based 3D motion capture (MoCap) 
data  [27]. However, marker-based MoCap is cumber-
some to set up and is constrained to lab environments. 
As a result, inertial measurement units (IMU), due to the 
better portability, were often used to capture motion sig-
nals both in a lab and at home [33, 34] and were widely 
used for the traditional sensor-based assessment of 
FOG  [24, 31, 35, 36]. The multi-stage temporal convo-
lutional neural network (MS-TCN) stands as one of the 
current state-of-the-art DL models, initially designed for 
frame-by-frame sequence mapping in computer vision 
tasks  [37]. The MS-TCN architecture initially generates 
an initial prediction using multiple temporal convolu-
tion layers and subsequently refines this prediction over 
multiple stages. In a recent study, a multi-stage graph 
convolutional neural network was developed specifically 
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for 3D MoCap-based FOG detection. This research dem-
onstrated that the refinement stages within the model 
effectively mitigate over-segmentation errors encoun-
tered in FOG detection tasks  [27]. These errors manifest 
as long FOG episodes being predicted as multiple short 
FOG episodes, impacting FOG detection performance 
of DL models. Acknowledging the necessity of mitigat-
ing such errors, approaches like the post-processing step 
employed in [24] also smooth and merged short FOG 
episodes in the predicted FOG annotations generated by 
DL models. Consequently, implementing a post-process-
ing step in FOG annotation from DL models emerges as 
an essential aspect.

Previous studies proposed automatic FOG detection 
models for FOG assessment in clinical settings by train-
ing and evaluating DL models on datasets that include 
multiple standardized FOG-provoking tasks measured 
during both On- and Off-medication states  [24, 27, 31, 
38]. However, seeing the widespread clinical use of the 
360Turn task for FOG detection, it is still uninvestigated 
if DL models can adequately detect FOG in this task, 
which forms the first research gap. Additionally, whether 
training task-specific and medication-specific mod-
els enables a better FOG detection performance than a 
model trained on multiple tasks and both medication 
states was not discussed in the literature, which forms the 
second gap.

Moreover, gait patterns and FOG severity can vary sub-
stantially among different FOG-provoking tasks [39] and 
medication states [40, 41]. Prior studies have delved into 
the impact of medication states on FOG. For instance, 
researchers in [42] trained a model using a combined 
dataset of Off and On medication trials and then assessed 
the model’s performance on each medication state inde-
pendently. This evaluation aimed to understand how the 
automatic detection of FOG outcomes derived from the 
model would respond to medication conditions known 
to influence FOG severity. Similarly, in [43], investiga-
tions were made to determine whether dopaminergic 
therapy affected the system’s ability to detect FOG. How-
ever, these studies have yet to explore the performance 
of DL models in detecting FOG in an unseen medica-
tion state compared to a model trained specifically on 
data collected from these medication states, which forms 
the third research gap. Here, “unseen” refers to condi-
tions not included in the model’s training, such as train-
ing a model for 360Turn and evaluating its performance 
on TUG, or training exclusively on On medication data 
and testing on Off medication data. This gap is critical 
in evaluating the generalizability of DL models, probing 
whether their learned features can be robustly applied 
to new and unseen conditions, ultimately addressing the 
model’s adaptability beyond its original training context.

Additionally, although these standardized FOG-pro-
voking tasks include walking and turning movements, 
similar to movements in real-life conditions, they do 
not include sudden volitional stops, which frequently 
occur during daily activities at home. Hence, it becomes 
crucial to be able to distinguish between FOG and voli-
tional stops when transitioning toward at-home FOG 
assessment. These volitional stops usually do not include 
any lower limb movements and are often considered 
challenging to distinguish from akinetic freezing  [44]. 
Although a previous study proposed using physiologi-
cal signals, such as electrocardiography, to detect dis-
criminative features for classifying FOG from voluntary 
stops  [45], methods using motor signals to distinguish 
FOG from stops were seldom investigated. To the best 
of our knowledge, only limited studies proposed FOG 
detection or prediction on trials with stops using IMU 
signals  [31, 46]. However, while these studies developed 
models to detect FOG from data that contains voluntary 
stopping, they did not address the effect of including or 
excluding stopping instances during the model train-
ing phase on FOG detection performance, forming the 
fourth research gap.

To address the aforementioned gaps, this paper first 
introduced a FOG detection model to enable automatic 
FOG assessment on two standardized FOG-provoking 
tasks (i.e. the TUG task and the 360Turn task) based on 
IMUs. The model comprises an initial prediction block to 
generate preliminary FOG annotations and a subsequent 
prediction refinement block, designed to mitigate over-
segmentation errors. Next, we evaluated whether a DL 
model trained for a specific task (TUG or 360Turn) or a 
specific medication state (Off or On) could better detect 
FOG than a DL model trained on all data. In essence, 
our aim was to ascertain whether DL models necessi-
tate training on task-specific or medication state-specific 
data. Subsequently, we evaluated the FOG detection per-
formance of DL models when applied to tasks or medi-
cation states that were not included during the model 
training phase. This analysis aims to assess the generaliz-
ability of DL models across unseen tasks or medication 
states. Finally, we investigated the effect of including or 
excluding stopping periods on detecting FOG by intro-
ducing self-generated and researcher-imposed stopping 
during standardized FOG-provoking tests. Both self-gen-
erated and researcher-imposed stops are hereinafter sim-
ply referred to as “stopping”. To this end, the contribution 
of the present manuscript is fourfold: 

1. We proposed a FOG detection model for fine-
grained FOG detection on IMU data, demonstrating 
its ability to effectively generalize across two distinct 
tasks and accommodate both medication states.
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2. We show, for the first time, that FOG can be auto-
matically assessed during the 360Turn task.

3. We show that the DL model cannot generalize to 
an unseen FOG-provoking task, thereby highlight-
ing the importance of expressive training data in the 
development of FOG assessment models.

4. We show that the DL model can assess FOG severity 
with a strong agreement with experts across FOG-
provoking tasks and medication states, even in the 
presence of stopping.

The study primarily focuses on evaluating the perfor-
mance of a state-of-the-art model under different con-
ditions, including different tasks, medication states, and 
stopping conditions, rather than introducing a novel 
FOG detection model. A comparison of various FOG 
detection models is provided in Appendix.

Methods
Dataset
We recruited 12 PD patients in this study. Subjects were 
included if they subjectively reported on the NFOGQ 
having at least one FOG episode per day with a minimum 
duration of 5 s. The inclusion criterion was chosen to 
maximize the chance of capturing FOG in the lab-based 
assessment procedure. All subjects completed the Mon-
treal Cognitive Assessment (MoCA) [47], Unified Parkin-
son’s Disease Rating Scale (UPDRS)  [48], and Hoehn & 
Yahr (H&Y) Scale [49] for clinical assessments.

All subjects performed TUG with 180 degrees turning 
to both directions and a 1-min alternating 360Turn test 
during the assessments. In the TUG, participants were 
instructed to stand up from a chair, walk towards a mark 
placed 2.5 ms from the chair, turn around the mark, walk 
back to the chair, and sit down. In the 360Turn, partici-
pants had to perform rapid alternating 360-degree turns 
in place for 1 min [20]. While measuring the standardized 
FOG-provoking tasks, we included a dual task to provoke 
more FOG episodes  [19, 20]. The dual task consisted of 
the auditory Stroop task  [20, 50], in which the words 
“high” and “low” were played from a computer with both 
a high and low pitch voice. Participants were instructed 
to name the pitch they heard and not repeat the word. 
As a result, the TUGs and 360Turn tests were grouped 
into one block  (two TUG trials and one 360Turn trial). 
Each block of tests was measured with and without a 
dual task (6 trials). We also included measurements con-
taining a self-generated or researcher-imposed stopping 
period to collect data for further training. Each block 
also consisted of stopping trials, in which TUGs were 
performed four times, twice with a stop in the straight 
walking part and twice with a stop in the turning part of 
the TUG; while 360Turn was performed one time. The 

block was repeated with self-generated and researcher-
imposed stopping  (10 trials). All pre-mentioned assess-
ments were done first in the clinical Off-medication state 
(approximately 12 h after the last PD medication intake) 
and repeated in the same order during the On-medica-
tion state (at least 1 h after medication intake), resulting 
in 32 trials for each subject. The blocks at each session 
were performed in randomized order to counter poten-
tial fatiguing or motor learning to more or fewer FOGs in 
the last tests.

All participants were equipped with five Shimmer3 
IMU sensors attached to the pelvis and both sides of 
the tibia and talus. All IMUs recorded at a sampling fre-
quency of 64 Hz during the measurements. RGB videos 
were captured with an Azure Kinect camera at 30 frames 
per second for offline FOG annotation purposes. For syn-
chronization purposes, triggered signals were sent at reg-
ular intervals of 1 s from the camera to an extra IMU that 
was connected with a cable to the laptop and synced with 
the other five IMUs. FOG events were visually annotated 
at a frame-based resolution by a clinical expert, after 
which all FOG events were verified by another clinical 
expert using Elan annotation software  [22]. Annotators 
used the definition of FOG as a brief episode with the 
inability to produce effective steps [1]. Specifically, a FOG 
episode started only when the foot of the participant is 
suddenly no longer producing an effective step forward 
and is displaying FOG-related features [22]. The episode 
ended only when it is followed by at least two effective 
steps (these two steps are not part of the episode) [22]. 
Unlike previous studies that considered shuffling as 
one of the FOG manifestations  [1, 5], this study adopts 
a stricter definition of FOG that distinguishes non-par-
oxysmal shuffling and festination as non-FOG events, 
although they are probably related to FOG due to the 
presence of increased cadence with small steps during 
walking. During model training and testing, these FOG-
related events were considered non-FOG events.

FOG detection model architecture
The FOG detection model presented in this study con-
sists of two components, as depicted in Fig.  1: (1) an 
initial prediction block responsible for generating FOG 
annotations from IMU signals, and (2) a prediction 
refinement block focused on reducing over-segmenta-
tion errors. We conducted comparisons among five FOG 
detection models for the initial prediction block. Two DL 
models, namely Long Short Term Memory (LSTM) [51] 
and Temporal Convolutional Neural Network (TCN) 
[52], along with three traditional machine learning mod-
els, i.e., Support Vector Machine, K Nearest Neighbor, 
and eXtreme Gradient Boosting (XGBoost), were evalu-
ated. The DL models were trained using raw IMU signals 
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of all five IMUs as input data, while the ML models were 
trained on 65 features [32] generated from the IMU sig-
nals of the talus IMU of both lower limbs. Ultimately, the 
TCN model outperformed others and was chosen as the 
initial prediction block. The model comparison results 
are available in Appendix Table 9.

Similarly, we compared a pre-defined post-processing 
method [24] with a trained DL model [37] for prediction 
refinement. The pre-defined post-processing method 
aimed to merge FOG episodes that were 21 samples apart 
into a single FOG episode and relabel FOG episodes 
shorter than 21 samples as non-FOG episodes. The selec-
tion of 21 samples was based on the observation that 95% 
of the FOG episodes in our dataset lasted longer than 
0.33 s (21 samples). The trained DL model outperformed 
the pre-defined post-processing method in performance. 
Consequently, the trained DL model from [37] was cho-
sen for prediction refinement. A comprehensive com-
parison between the pre-defined and learned refinement 
models, as well as the comparison between the inclu-
sion and exclusion of a refinement model, is available in 
Appendix Table 10.

Based on the conclusion drawn from the comparison 
presented in Appendix, our proposed FOG detection 
model employs the TCN from [52] as the initial predic-
tion block and the multi-stage TCN from [37] as the 

prediction refinement block. A comprehensive visuali-
zation of the detailed model architecture is provided in 
Appendix Fig.  6. Furthermore, specific hyperparameter 
settings for the two blocks can be found in Appendix 
Table 11.

Evaluation
To evaluate the performance of the model, datasets 
were partitioned using a leave-one-subject-out (LOSO) 
cross-validation approach. The LOSO cross-validation 
approach iteratively splits the data according to the num-
ber of subjects in the dataset. One subject is evaluated, 
while the others are used to train the model. This pro-
cedure was repeated until all subjects had been used for 
evaluation. This approach mirrored the clinically relevant 
scenario of FOG assessment in newly recruited sub-
jects [53], where the model assesses FOG in unseen sub-
jects. The result for all models shown in this study were 
averaged over all unseen subjects using the LOSO cross-
validation approach.

Experimental settings
Clinical setting To support FOG assessment in clinical 
settings, which typically do not include stopping, this 
study first investigated the overall and relative perfor-
mance of a generic model trained across standardized 
FOG-provoking tasks that do not include stopping. Next, 
we assessed generalization across FOG-provoking tasks 
and medication states by studying the effect of including 
or excluding training data from a specific task or medica-
tion state on detecting FOG.

Towards the home setting To move towards FOG 
assessment in daily life where stopping frequently occurs, 
we trained and evaluated the performance of a generic 
model trained across trials with stopping. Next, we 
assessed the effect of including or excluding stopping 
periods on detecting FOG.

Naming convention The naming convention of all the 
DL models that were evaluated in this study with their 
corresponding training data is shown in Table  1. The 
generic model trained for clinical measurements (i.e., 
excluding stopping) was termed “Model_Clinical”. Mod-
els trained with less data variety were termed (i.e., trained 
for a specific task or medication state):  “Model_TUG”, 
“Model_360Turn”, “Model_Off”, and “Model_On”. The 
generic model trained to work towards FOG assessment 
in daily life (i.e., including stopping) was termed “Model_
Stop”. To compare the effect of stopping, we evaluated 
Model_Clinical and Model_Stop. In order to maintain 
a similar amount of FOG duration in the training data, 
Model_Stop was only trained on trials that included 
stopping.

Fig. 1 Overview of the proposed FOG detection model architecture. 
Our proposed FOG detection model comprises two essential 
blocks: an initial prediction block and a prediction refinement 
block. The initial prediction block takes the six‑dimensional signal 
of T samples from each of the five IMUs and generates initial 
predictions with the probabilities of positive (FOG) and negative 
(non‑FOG) classifications for each sample within the input 
sequence. Consequently, the output sequence is structured as T × 2 
representing the probabilities of the two classes. The prediction 
refinement block aims to refine the initial predictions. This block 
takes the initially predicted probabilities of the two classes as input 
and applies a smoothing process, removing over‑segmentations 
and enhancing the overall prediction quality. The output of this 
refinement block is a refined prediction, also structured as T × 2 
representing the probabilities of the two classes
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Metrics
From a clinical perspective, FOG severity is typically 
assessed in terms of percentage time-frozen (%TF), and 
the number of detected FOG episodes (#FOG) [23]. This 
paper used %TF as the primary outcome and #FOG as a 
secondary outcome based on previous studies  [20, 24]. 
To assess the agreement between the model predictions 
and the expert annotations for each of the two clinical 
metrics, we calculated the intra-class correlation coef-
ficient (ICC) with a two-way random effects analysis 
(random trials, random raters) (ICC (2,1)), in which both 
the raters and the subjects are treated as random effects, 
meaning that they are assumed to be a random sample 
from a larger population  [54]. The ICCs between the 
model and experts were calculated subject-based, with 
one %TF and #FOG per subject. In other words, the %TF 
and #FOG were calculated over all trials for each subject. 
The strength of the agreement was classified according 
to [55]: ≥ 0.80 : strong, 0.6–0.79: moderately strong, 0.3–
0.59: fair, and < 0.3: poor.

From a technical perspective, the sample-wise F1 score 
(Sample-F1) is a metric commonly used in classification 
problems to evaluate the quality of a model’s predictions 
at the individual sample level. It provides a balanced 
measure of a model’s ability to identify positive and nega-
tive classes, especially in FOG detection scenarios where 
the proportion of FOG samples is lower than that of non-
FOG samples. When contrasted with metrics such as 
accuracy, specificity, and sensitivity, the F1 score emerges 
as a more balanced measure for comparing models’ per-
formances  [56]. In binary classification, Sample-F1 is 
computed by comparing the predicted and true labels. 
Each sample is classified as true positive (TP), false posi-
tive (FP), or false negative (FN) by a sample-wise com-
parison between the experts’ annotation and model 
predictions. Sample-F1 is calculated under the formula:

Additionally, the segment-wise F1-score at k (Segment-
F1@k) proposed by Lea et al. [57] is a metric that penal-
izes over and under-segmentation errors. It allows only 
minor temporal shifts for the predicted segment, result-
ing in a much stricter evaluation metric than sam-
ple-wise metrics such as Sample-F1  [27]. To compute 
Segment-F1@k, action segments are classified as TP, FP, 
or FN by comparing the intersection over union (IoU) 
to a pre-defined threshold k. The IoU is calculated as 
the intersection length of the predicted segment and the 
ground-truth segment divided by the union between the 
two segments. If the corresponding IoU of a predicted 
segment is large than k, the predicted segment is TP; 
otherwise, it is FP. All unpaired ground-truth segments 
are considered FN. Based on previous studies  [27, 58], 
we set the threshold k for IoU as 50% (Segment-F1@50). 
Additionally, an example to compare %TF, #FOG, and 
Segment-F1@50 is shown in Fig. 2. The %TF and #FOG 
for both annotations are 40% and 2 for trial 1, 10% and 
1 for trial 2, resulting in a high ICC value of 1. However, 
the Segment-F1@50 is 0.67 for trial  1 and 0 for trial  2, 
resulting in an averaged Segment-F1@50 of 0.335. This 
example shows that although ICC is widely used in pre-
vious studies when comparing the inter-rater agreement 
of %TF and #FOG, it contains the disadvantages of not 
penalizing shifted annotations, a problem that Segment-
F1@50 overcomes. This study calculated one Sample-
F1 and Segment-F1@50 for each subject by taking the 
averaged Sample-F1 and averaged Segment-F1@50 over 
all trials of that subject. The overall Sample-F1 and Seg-
ment-F1@50 under the LOSO cross-validation approach 
were calculated by averaging the metrics over all subjects.

Based on the above discussion, when comparing the 
performance between different models, i.e., Model_TUG 

F1 =
TP

TP +
1
2
(FP + FN )

Table 1 Naming convention of the deep learning models evaluated in this study with their corresponding training data

Models trained for specific tasks or medication states for standardized measurements were termed “Model_TUG”, “Model_360Turn”, “Model_Off”, and “Model_On”. A 
DL model trained for FOG assessment in the clinical centers, trained on standardized tasks excluding stops, was termed “Model_Clinical”. A DL model trained to work 
towards FOG assessment in daily life, trained on standardized tasks including stops, was termed “Model_Stop”

Usage Model name FOG-provoking task Medication state Stopping

TUG 360Turn Off On Exclude Include

FOG detection 
in clinical practice

Model_TUG v v v v

Model_360Turn v v v v

Model_Off v v v v

Model_On v v v v

Model_Clinical v v v v v

Towards FOG detec‑
tion in daily life

Model_Stop v v v v v
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vs. Model_360Turn, Model_Off vs. Model_On, and 
Model_Clinical and _Model_Stop, only Sample-F1 and 
Segment-F1@50 were used. Whereas when showing 
the agreement between the two generic models and the 
experts in terms of FOG severity outcomes, the ICC val-
ues for %TF and #FOG were reported.

Statistical analysis
The Bland-Altman plot [59] was applied to investigate the 
systematic bias of the %TF and #FOG between the pre-
diction of Model_Clinical and the experts’ annotation. 
To investigate whether the difference in Sample-F1 and 
Segment-F1@50 for each subject between two DL mod-
els, i.e., Model_TUG vs. Model_360Turn, Model_On vs. 
Model_Off, and Model_Clinical vs. Model_Stop, was 
statistically significant, the paired Student’s t-test  [60] 
was applied, with the number of pairs equal to the num-
ber of subjects evaluated with LOSO. The homogeneity 
of variances was verified in all metrics across subjects 
with Levene’s tests  [61]. The Shapiro-Wilk test  [62] was 
used to determine whether the variables were normally 
distributed across subjects. The significance level for all 
tests was set at 0.05. All analyses were performed using 

SciPy  1.7.11, bioinfokit  2.1.0, statsmodels  0.13.2, and 
pingouin 0.3.12, written in Python version 3.7.11.

Results
This section first describes the dataset characteristics. 
Next, we discuss the result of automatic FOG assess-
ments at two levels: (1) FOG detection for clinical meas-
urements with a discussion on the generalization of the 
FOG detection model and the effect of FOG-provoking 
tasks and medication states, and (2)  FOG detection for 
moving towards daily life with a discussion on the effect 
of stopping.

Dataset characteristics
Table 2 shows the clinical characteristics of the twelve 
PD patients. Participants varied in their age and disease 
duration. According to Table 3, a total of 346 trials were 
collected. Freezing occurred in 38.43% of trials (133 
out of 346 trials), with average %TF of 14.62% and total 
#FOG of 530 observed. The dataset’s mean duration 
of FOG episodes was 3.01 s, with the shortest episode 
lasting 0.05  s and the longest episode lasting 63.62  s. 
Based on the dataset measurement protocol, 32 tri-
als were collected for each subject. Subjects with more 

Fig. 2 An example for comparing ICC and segment‑wise F1 score. This toy example shows the annotations on two trials with the ground‑truth 
annotation as gray and the predicted annotation as yellow. The x‑axis represents the timeline for the annotations. When calculating the agreement 
between the ground‑truth and prediction, the %TF and #FOG are both 40% and 2 for the first trial and 10% and 1 for the second trial, resulting 
in an ICC value of 1. On the other hand, for the segment‑wise F1@50 of the first trial, since FP = 1 (the first FOG segment has an IoU less than 50%), 
TP = 1 (the second FOG segment has an IoU over 50%), and FN = 0, resulting in a segment‑F1@50 with 0.67. For the second trial, FP = 1, TP = 0, 
and FN = 0 resulted in a segment‑F1@50 with 0. Thus, the mean Segment‑F1@50 equals 0.335. This example shows the disadvantage of using 
the ICC value of %TF and #FOG to measure the alignment between two annotations
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than 32 trials was due to repeated measurements, and 
subjects with less than 32 trials was due to technical 
difficulties.

The 346 trials in the dataset included 133 trials 
(81.11 min) collected within the clinical setting, i.e., tri-
als without stopping, and 213 trials (100.60  min) with 
stopping included. According to Table  4, all 133 tri-
als without stopping were used to train Model_Clini-
cal, while all 213 trials with stopping were used to train 
Model_Stop. Within the 133 trials without stopping, 89 
TUG trials (35.99 min) were used to train Model_TUG, 
and 44 360Turn trials (45.11  min) were used to train 
Model_360Turn. Similarly, 67 Off-medication trials 
(45.75  min) were used to train Model_Off, and 66 On-
medication trials (35.36 min) were used to train Model_
On. These models were evaluated and discussed in the 
following sections.

Table 2 Subject characteristics

Overview of the age, PD duration, and questionnaire results. The MoCA and MDS-UPDRS total were reported with the median and quartile. The H&Y was reported 
with the actual numbers in each category, while the data for S3 was missing. All characteristics were measured during the On-phase of the medication cycle

Average ± SD

Age 69.33 ± 6.02

PD duration 12.33 ± 5.99

Median [Quartile 1 to 3]

MoCA [47] 26.5 [24.25, 26.5, 28]

MDS‑UPDRS total [48] 93 [65, 93, 108]

H&Y I/II/III/IV [49] 0/6/3/2

Table 3 Dataset characteristics

Overview of the data collected for each subject, including the total duration in minutes, the number of IMU trials (#Trials), the number of FOG trials (#FOG-trials), the 
percentage of time frozen (%TF), the number of FOG episodes (#FOG), and the mean, min, and max duration of the FOG episodes

Subject Total duration 
(min)

#Trials #FOG-trials #FOG %TF FOG episode duration (s)

Mean Min Max

S1 17.11 29 16 35 19.56 5.73 0.73 32.89

S2 13.90 29 9 34 12.64 3.10 0.05 15.53

S3 13.22 31 6 37 7.11 1.52 0.27 5.20

S4 10.48 27 12 30 7.98 1.67 0.23 7.27

S5 6.88 16 4 22 9.8 1.84 0.31 7.31

S6 12.84 32 1 1 0.1 0.73 0.73 0.73

S7 17.65 32 22 106 14.10 1.41 0.23 12.30

S8 13.48 33 0 0 0.00 N.A. N.A. N.A.

S9 14.52 31 15 61 4.49 0.64 0.22 2.62

S10 25.59 21 21 111 52.86 7.31 0.22 63.62

S11 15.62 31 17 74 12.28 1.55 0.09 6.47

S12 20.41 34 10 19 2.07 1.34 0.36 3.64

Sum 181.70 346 133 530 Average 14.62 3.01 0.05 63.62

Table 4 Overview of the number of trials, total duration 
(minutes), and FOG outcome of the training data for all models 
evaluated in this study

A total of 133 trials were measured with standardized FOG-provoking tests 
excluding stops, which were used to train Model_Clinical, and 213 trials were 
measured with self-generated and researcher-imposed stops, which were used 
to train Model_Stop. Within the 133 trials, 89 trials of TUG tasks were used to 
train Model_TUG, and 44 were used to train Model_360Turn. Similarly, 67 trials 
Off medication were used to train Model_Off, and 66 trials were used to train 
Model_On. Trial durations are shown in minutes. FOG severity is quantified by 
means of the %TF and #FOG

Model name #Trials Total duration 
(min)

%TF #FOG

Model_TUG 89 35.99 19.88 103

Model_360Turn 44 45.11 21.71 179

Model_Off 67 45.75 27.37 205

Model_On 66 35.36 12.53 77

Model_Clinical 133 81.11 20.90 282

Model_Stop 213 100.60 9.57 248
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Clinical setting: FOG detection
This study first trained and evaluated the proposed 
model trained for FOG detection in standardized clini-
cal setting (i.e., trials without stopping). The #FOG 
that Model_Clinical detected per subject varied from 
3 to 80, amounting to 335 FOG episodes, while the 
%TF varied from 0.52 to 70.49%. When compar-
ing with experts’ annotations, the model had a strong 
agreement in terms of %TF, (ICC = 0.92, CI = [0.68, 
0.98]), and #FOG (ICC = 0.95, CI = [0.72, 0.99]). The 
Bland–Altman plots shown in Fig.  3 revealed a system-
atic error across FOG severity from the model, with a 
mean bias of −4.06  (CI = [−7.41,−0.72 ]) for %TF and 
−4.41  (CI = [−7.66,−1.17 ]) for #FOG. For %TF, the lim-
its of agreement  (LOA) fall within the range of −14.40

%  (CI = −20.19,−8.59 ) to 6.26%  (CI = [−0.45, 12.05

]), showing that it was confident that the differences 
between the model and the experts would lie in the 
range of −14.40 % to 6.26%. For #FOG, the LOA fall 
within the range of −14.43  (CI = [−20.04,−8.80 ]) to 
5.59  (CI = [−0.02, 11.21]), showing that the differences 
between the model and the experts will lie in the range of 
−14.43 to 5.59.

Additionally, when evaluating all standardized trials 
(i.e., without stopping) within the dataset, results showed 

that 56.70% of the FP samples were annotated as FOG-
related segments, i.e., shuffling and festination, meaning 
that the model tended to annotate FOG-related sam-
ples as FOG. According to the qualitative example of the 
model and experts’ annotations in Fig. 4, the model gen-
erally predicted broader FOG segments compared to the 
experts’ annotations, resulting in a seeming overestima-
tion of %TF. Also, the model tends to split some experts’ 
annotated FOG segments into two different FOG seg-
ments, resulting in seemingly overestimating #FOG.

Next, we assessed the relative performance of the 
generic model in detecting FOG for trials with a spe-
cific FOG-provoking task, medication state, or with and 
without stopping. As shown in Table  5, Model_Clini-
cal had a strong agreement with the experts in terms of 
%TF (all ICCs > 0.92) and #FOG (all ICCs > 0.84). Results 
showed that it was more difficult for the model to detect 
FOG in 360Turn tests than TUG in terms of the average 
Segment-F1@50 (360Turn: 0.45; TUG: 0.67) and Sample-
F1 (360Turn: 0.58; TUG: 0.72). Similarly, it was more dif-
ficult for the model to detect FOG in Off trials than On 
trials (Segment-F1@50: 0.55 vs. 0.64; Sample-F1: 0.65 vs. 
0.69). However, these results were not reflected in the 
ICC values for %TF and #FOG, which also shows the 
inadequate ability of such metrics when comparing dif-
ferent models.

Fig. 3 Bland–Altman plot for the clinical metrics from Model_Clinical and the experts. The dots represent the difference in scores per patient 
on the y‑axis (i.e., model’s %TF or #FOG subtracted from experts’ %TF or #FOG), plotted against the mean score per patient from the model 
and the experts on the x‑axis. The orange shaded area represents the 95% CI for the mean bias, and the gray shaded area represents the 95% 
CI for the upper and lower limits of agreement. A negative mean error indicates that the model overestimates with %TF and #FOG compared 
with the experts’ annotation
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Generalization of the FOG detection model
We proceeded to evaluate how Model_Clinical per-
formed in comparison to models specifically designed 
for various FOG-provoking tasks and medication 
conditions, including Model_TUG, Model_360Turn, 
Model_Off, and Model_On. As shown in Table 6, when 
testing on TUG trials, there was no difference between 
Model_Clinical and Model_TUG in terms of Segment-
F1@50 and Sample-F1. When testing on 360Turn tri-
als, there was no difference between Model_Clinical 
and Model_360Turn in terms of Segment-F1@50 and 
Sample-F1. Similarly, When testing on Off-medication 

trials, there was no difference between Model_Clinical 
and Model_Off in terms of Segment-F1@50 and Sam-
ple-F1. When testing on On-medication trials, there 
was no difference between Model_Clinical and Model_
On in terms of Segment-F1@50 and Sample-F1. While 
no significant differences emerged between Model_
Clinical and the models specifically trained for distinct 
conditions, tasks, and medication statuses, it’s worth 
noting that the task-specific models exhibited higher 
F1 scores compared to the model trained on data with 
more variability.

Fig. 4 Overview of the annotations for four typical IMU trials from two patients. Four typical trials include annotations for IMU trials measured 
during four settings: a TUG in Off‑medication (S3), b TUG in On‑medication (S1), c 360Turn in Off‑medication (S3), d 360Turn in On‑medication 
(S1). The figures visualize the difference between the manual FOG segmentation by the clinician and the automated FOG segmentation by the DL 
model. The x‑axis denotes the time of the trial in seconds. The gray region indicates the experts’ annotated FOG, and the yellow region indicates 
the model‑annotated FOG. The color gradient visualizes the overlap or discrepancy between the model and experts’ annotations. The figure shows 
that the model generally annotated broader FOG events compared to experts’ annotation, resulting in a systematic error in %TF shown in Fig. 3
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Effect of FOG‑provoking tasks and medication states
Next, we investigated the effect of including or exclud-
ing data from specific tasks or medication states. 
As shown in Table  7, when testing on TUG trials, 
Model_TUG resulted in a statistically higher Segment-
F1@50 (p < 0.005) and Sample-F1 (p < 0.005) than 
Model_360Turn. Similarly, when testing on 360Turn 
trials, Model_360Turn resulted in a higher Segment-
F1@50 and Sample-F1 than Model_TUG, though 
the differences were not statistically significant. On 
the other hand, when testing on Off-medication tri-
als, no difference was found between Model_Off and 
Model_On in terms of Segment-F1@50 (p = 0.952) and 

Sample-F1 (p = 0.957). Similarly, when testing on On-
medication trials, no difference was found between 
Model_Off and Model_On in terms of Segment-F1@50 
(p = 0.579) and Sample-F1 (p = 0.307). The results 
showed that DL models trained only on TUG tri-
als could still detect FOG in 360Turn trials, while DL 
models trained only on 360Turn could not detect FOG 
in TUG trials. In contrast, DL models trained without 
trials for specific medication states could detect FOG 
on trials measured during unseen medication states. In 
other words, the data variance between different FOG-
provoking tasks was more challenging to model than 
between different medication states.

Table 5 Overview of the performance of Model_Clinical and Model_Stop

We investigated the overall performance of the generic model trained for clinical settings (i.e., excluding stopping) with standardized measurements: Model_Clinical 
and the generic model trained to work towards FOG detection in daily life (i.e., including stopping): Model_Stop. Results show that Model_Clinical has a strong 
agreement with the experts in terms of %TF (ICC = 0.92) and #FOG (ICC = 0.95). Also, Model_Stop has a strong agreement with the experts in terms of %TF (ICC = 0.95) 
and a moderately strong agreement in terms of #FOG (ICC = 0.79). We also showed the relative performance of the two models for each of the four conditions with 
less data variety: (1) TUG trials, (2) 360Turn trials, (3) Off-medication trials, and (4) On-medication trials. For the four conditions, Model_Clinical was evaluated on trials 
that excluded stopping, while Model_Stop was evaluated on trials that included stopping

Model Test data ICC (%TF) ICC (#FOG) Segment-F1@50 Sample-F1

Model clinical TUG 0.95, CI = [0.86, 0.99] 0.97, CI = [0.89, 0.99] 0.67 0.72

360Turn 0.94, CI = [0.78, 0.98] 0.84, CI = [0.57, 0.95] 0.45 0.58

Off‑state 0.94, CI = [0.74, 0.99] 0.94, CI = [0.76, 0.99] 0.55 0.65

On‑state 0.92, CI = [0.76, 0.98] 0.90, CI = [0.70, 0.97] 0.64 0.69

All trials 0.92, CI = [0.68, 0.98] 0.95, CI = [0.72, 0.99] 0.60 0.67

Model stop TUG 0.78, CI = [0.42, 0.93] 0.77, CI = [0.41, 0.93] 0.65 0.67

360Turn 0.98, CI = [0.90, 1.00] 0.65, CI = [0.16, 0.89] 0.33 0.47

Off‑state 0.89, CI = [0.52, 0.97] 0.83, CI = [0.53, 0.95] 0.55 0.62

On‑state 0.98, CI = [0.96, 1.00] 0.69, CI = [0.22, 0.91] 0.62 0.64

All trials 0.95, CI = [0.73, 0.99] 0.79, CI = [0.46, 0.94] 0.59 0.63

Table 6 Model comparison results in terms of training on different FOG‑provoking task or medication state

We investigated the performance of Model_Clinical trained on the two tasks and both medication states with task-specific and medication-specific models. The third 
and fourth column depicts Segment-F1@50 averaged over all subjects and the paired t-test result. The fifth and sixth columns depict the Sample-F1 averaged over all 
subjects and the paired t-test result. The number of subjects (pairs) was 12 for TUG, 360Turn, and Off-state, while only 11 subjects were considered for On-state due to 
technical problems for subject 5 during On-medication state measurements

Model Test data Segment-F1@50 Sample-F1

Mean t-test (#pair) Mean t-test (#pair)

Model_TUG TUG 0.70 t(12) = 0.38, p = 0.710 0.75 t(12) = 0.52, p = 0.612

Model_Clinical TUG 0.67 0.72

Model_360Turn 360Turn 0.53 t(12) = 1.24, p = 0.237 0.62 t(12) = 0.86, p = 0.403

Model_Clinical 360Turn 0.45 0.58

Model_Off Off 0.52 t(12) = 0.02, p = 0.986 0.66 t(12) = 0.02, p = 0.984

Model_Clinical Off 0.55 0.65

Model_On On 0.68 t(11) = 0.32, p = 0.755 0.76 t(11) = 0.39, p = 0.703

Model_Clinical On 0.64 0.69
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Towards the home setting: FOG detection with stopping 
versus clinical ratings
To move towards FOG detection in daily life, we trained 
and evaluated the DL model, Model_Stop, on trials col-
lected with stopping. As shown in Table 5, when compar-
ing with experts’ annotations, Model_Stop had a strong 
agreement in terms of %TF, (ICC = 0.95, CI = [0.73, 0.99]), 
and a moderately stong agreement in terms of #FOG 
(ICC = 0.79, CI = [0.46, 0.94]). Similar to FOG detection 
in clinical settings, results show that it was also more dif-
ficult for the model to detect FOG in 360Turn tests than 
TUG in terms of the average Segment-F1@50 (360Turn: 
0.33; TUG: 0.65) and Sample-F1  (360Turn: 0.47; TUG: 
0.67). Also, it was more difficult for the model to detect 
FOG in Off trials than On trials  (Segment-F1@50: 0.55 
vs. 0.62; Sample-F1: 0.62 vs. 0.64).

Effect of stopping periods versus no stopping periods
Next, we investigated the effect of stopping periods 
on FOG detection by comparing the performance 
of DL models trained on trials with and without 

self-generated and researcher-imposed stopping, i.e., 
Model_Clinical and Model_Stop. According to the 
results shown in Table  8, when evaluating trials col-
lected during standardized measurements, i.e., tri-
als without stopping, there was no difference found 
between Model_Clinical and Model_Stop in terms of 
Segment-F1@50 (p = 0.550) and Sample-F1 (p = 0.326).

When evaluating trials collected with stopping peri-
ods, the Segment-F1@50 for Model_Stop (mean = 0.60) 
was significantly higher than Model_Clinical 
(mean = 0.39; p = 0.005). Similarly, the Sample-F1@50 
for Model_Stop (mean = 0.65) was significantly higher 
than Model_Clinical (mean = 0.44; p < 0.005). Addition-
ally, among the 210 observed stops within the dataset, 
only 16 (7.61%) were mislabeled as FOG from Model_
Stop, while 74 (35.23%) were annotated as FOG from 
Model_Clinical. The results indicated that the model 
trained with trials that include stopping could learn to 
differentiate stopping from FOG, resulting in a statis-
tically higher Segment-F1@50 and Sample-F1 than the 
model trained without stopping.

Table 7 Model comparison results in terms of training on different FOG‑provoking task or medication state

We investigated the generalization of task-specific models to unseen tasks and the generalization of medication-specific models to unseen medication states. The 
third and fourth column depicts Segment-F1@50 averaged over all subjects and the paired t-test result. The fifth and sixth columns depict the Sample-F1 averaged 
over all subjects and the paired t-test result. The number of subjects (pairs) was 12 for TUG, 360Turn, and Off-state, while only 11 subjects were considered for On-state 
due to technical problems for subject 5 during On-medication state measurements

Model Test data Segment-F1@50 Sample-F1

Mean t-test (#pair) Mean t-test (#pair)

Model_TUG TUG 0.70 t(12) = 6.19, p < 0.005 0.75 t(12) = 6.07, p < 0.005

Model_360Turn TUG 0.10 0.15

Model_360Turn 360Turn 0.53 t(12) = 2.14, p = 0.055 0.62 t(12) = 6.07, p < 0.005

Model_TUG 360Turn 0.44 0.56

Model_Off Off 0.52 t(12) = − 0.06, p = 0.952 0.66 t(12) = 0.05, p = 0.957

Model_On Off 0.53 0.65

Model_On On 0.68 t(11) = 0.57, p = 0.579 0.76 t(11) = 1.07, p = 0.307

Model_Off On 0.65 0.71

Table 8 Model comparison results in terms of training with/without trials containing stops

We investigated the effect of including or excluding stopping periods in FOG detection by comparing models trained with (i.e., Model_Stop) and without stopping 
trials (i.e., Model_Clinical). The third and fourth column depicts Segment-F1@50 averaged over all 12 subjects and the paired t-test result. The fifth and sixth columns 
depict the Sample-F1 averaged over all 12 subjects and the paired t-test result. The seventh column depicts the number of stops detected as FOG with respect to the 
total number of stops (#FP-Stop). N.A. was shown for #FP-Stop when testing on trials without stopping as it would not be possible to detect stopping as FOG

Model Test data Segment-F1@50 Sample-F1

Mean t-test (#pair) Mean t-test (#pair) #FP-Stop

Model_Clinical Non‑stop 0.60 t(12) = 0.16, p = 0.874 0.67 t(12) = 0.02, p = 0.979 N.A.

Model_Stop Non‑stop 0.59 0.67 N.A.

Model_Clinical Stopping 0.40 t(12) =− 5.31, p < 0.005 0.46 t(12) = − 4.39, p < 0.005 74/210

Model_Stop Stopping 0.59 0.63 16/210



Page 13 of 22Yang et al. Journal of NeuroEngineering and Rehabilitation           (2024) 21:24  

Discussion
This is the first study to show that a DL model using 
only five lower limb IMUs can automatically annotate 
FOG episodes frame by frame that matches how clinical 
experts annotate videos. Additionally, this study is the 
first to assess the FOG detection performance of a DL 
model during the dual-task 360Turn task, recently pro-
posed as one of the most effective FOG-provoking tasks 
[20]. Two clinical measures were computed to evalu-
ate the FOG severity predicted by the DL model trained 
for the clinical setting (Model_Clinical), the %TF and 
#FOG  [23]. Model_Clinical showed a strong agreement 
with the experts’ observations for %TF (ICC = 0.92) and 
#FOG (ICC = 0.95). In previous studies, the ICC between 
independent raters on the TUG task was reported to be 
0.87 [63] and 0.73 [23] for %TF and 0.63 [23] for #FOG, 
while for 360Turn, the ICC between raters was reported 
to be 0.99 for %TF and 0.86 for #FOG [20]. While the ICC 
value in previous studies varied depending on the specific 
tool and population being studied  [64], in comparison, 
our proposed model achieved similar levels of agreement. 
This holds significant promise for future AI-assisted 
FOG annotation work, whereby the DL model annotates 
FOG episodes initially, and the clinical expert verifies/
adjusts only where required. Despite the high agreement 
with the experts, results showed that the model statisti-
cally overestimated FOG severity with a higher %TF and 
#FOG than the experts when evaluating all trials. The 
overestimation of %TF and #FOG was partly due to FP 
when predicting FOG-related movement, such as shuf-
fling and festination, as FOG segments. The systematic 
overestimation resulted in relatively low F1 scores while 
maintaining a high ICC. Given that these FOG-related 
movements often lie on the boundary between freezing 
and non-freezing [45], it can be challenging for the model 
to accurately annotate and categorize them in a manner 
consistent with nearby FOG episodes.

This study aimed to assess the generalization capa-
bilities of DL models across various tasks and medica-
tion states by comparing models trained on all tasks and 
medication states (referred to as Model_Clinical) against 
task-specific and medication-specific models (Model_
TUG, Model_360Turn, Model_Off, and Model_On). Our 
results showed that task- and medication-specific models 
performed better than the general model, though these 
effects were not statistically significant. Moreover, when 
comparing the performance of the general model on dif-
ferent tasks and medication states, our result showed 
that it was more difficult for the model to detect FOG 
in 360Turn tests than TUG in terms of the average Seg-
ment-F1@50 and Sample-F1. Also, our result showed that 
it was more difficult for the model to detect FOG in Off-
medication tests than in On-medication tests. Despite 

evaluating Model_Clinical on both tasks and medica-
tion states, our model exhibited relatively lower F1 scores 
compared to those reported in FOG detection literature 
[32, 51, 65]. This discrepancy in our study’s F1 scores 
can be attributed to the challenging nature of our data-
set, notably containing a higher proportion of short FOG 
episodes, with 41.84% lasting less than 1 s. In compari-
son, the CuPiD dataset [66] has a proportion of 5.06%, 
while the dataset from [24] reports 0% of such short epi-
sodes. When comparing our FOG detection models with 
those proposed in the literature, detailed in Appendix, we 
observed that these models struggled to properly detect 
FOG in our dataset, exhibiting lower Sample F1 scores 
compared to our model. This disparity suggests that our 
dataset poses greater difficulty for annotations, possibly 
due to the prevalence of numerous short episodes.

Our next evaluation focused on determining the extent 
to which a DL model trained exclusively on a single 
FOG-provoking task or medication state could general-
ize to unseen FOG-provoking tasks or medication states. 
Results showed that the model trained on one FOG-pro-
voking task (i.e., TUG or 360Turn) could better detect 
FOG in such a task than the model without training on 
such tasks. Additionally, although previous studies have 
shown that gait patterns are altered post anti-Parkinso-
nian medication [40, 41], our results also showed that the 
model trained on one medication state could still detect 
FOG in the other medication state. As a result, we rec-
ommend caution when applying DL-based FOG assess-
ment models on FOG-provoking tasks that were not 
explicitly trained on, while applying models trained on 
different medication states does not show such discrep-
ancies. This also has implications for future work toward 
daily-life FOG detection. Training data needs to be diver-
sified for all activities encountered during daily. On the 
other hand, diversifying training data towards the medi-
cation states is unnecessary, making data collection more 
feasible as data can be collected in the On-medication 
regimens in the future.

While existing approaches utilized DL models to 
detect FOG on standardized FOG-provoking tasks with 
IMUs  [24, 31], the model’s ability to distinguish FOG 
from stopping remains undetermined, which is criti-
cal for free-living assessment  [45]. Therefore, voluntary 
and instructed stops were introduced in the standard-
ized FOG-provoking tasks. When evaluating trials with-
out stops, results showed no difference between the 
model trained without stops and the model trained with 
stops, showing that adding stopping periods in the train-
ing data does not affect the DL model to detect FOG. 
Additionally, when evaluating trials with stops, results 
showed that compared with the model trained with-
out stops, the model trained with stops produced less 
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FP of stopping  (16 compared to 74). While it was con-
sidered that stops are difficult to distinguish from FOG 
with movement-related signals, especially for akinetic 
FOG [67], our model could still detect FOG in the pres-
ence of stops. Moreover, our result highlights the impor-
tance of including stopping in the training data.

Although this study has provided valuable insights, 
there are some limitations to acknowledge. The first lim-
itation is that the videos in our dataset were annotated 
sequentially by two clinical experts. The first annotator’s 
work was verified and, if needed, corrected by the second 
annotator. As a result, we could not calculate the inter-
rater agreement in our study to compare our models’ 
annotation against. However, the literature shows that 
inter-rater agreement is 0.39–0.99 [20, 23, 24, 27, 35, 63] 
and that these differences between experts were some-
times due to minor differences between FOG and FOG-
related movements. Our DL model’s agreement with 
the clinical experts exceeded those previously published 
inter-rater agreements, and just as between experts, 
most of our model’s mispredicted FOG segments were 
marked as FOG-related segments by the experts. Future 
work could investigate the development of DL models 
that can better differentiate between FOG and FOG-
related events. On the other hand, whether such dif-
ferentiation is truly needed depends on the research or 
clinical question. The second limitation is that this study 
simulated free-living situations by asking patients to stop 
when performing standardized FOG-provoking tasks. 
Yet, free-living movement will contain substantially more 
variance (e.g., daily activities) than captured during our 
standardized tasks. Moreover, FOG severity during our 
tasks does not necessarily represent FOG severity in daily 
life  [44, 68]. Therefore, future work should establish the 
reliability of our approach to data measured in free-living 
situations. The third limitation is that this study showed 
that training DL models with trials that include stopping 
resulted in better performance in detecting FOG in tri-
als that include stopping. However, whether DL models 
are able to distinguish between FOG and stopping for all 
manifestations of FOG (e.g., akinetic FOG) remains to be 
investigated. The fourth limitation is our choice of utiliz-
ing the complete sensor configuration, which includes all 
five IMUs in this study. Previous research has compared 
various IMU positions and recommended an optimal 
technical setup comprising only three IMUs (specifically, 
lumbar and both ankles) [24]. We included the perfor-
mance results of models trained with the 3-IMU config-
uration in Appendix. The result demonstrate that there 
is no significant difference between the performance of 
models trained with five IMUs and three IMUs. However, 
additional research is required to definitively establish 
the ideal sensor configuration for effective FOG detection 

in home environments. The fifth limitation is the small 
number of participants compared to the other use cases 
in DL literature. As this study evaluated the model with 
the LOSO cross-validation approach, the results still 
showed that the model could generalize learned features 
to unseen subjects. Moreover, despite the small number 
of subjects, the number of samples and FOG events in 
the dataset used in this study is comparable with the lit-
erature [27, 31]. Future studies could evaluate automatic 
FOG assessment on larger datasets or across datasets. 
The sixth limitation is that the recruited PD patients 
subjectively reported having at least one FOG episode 
per day with a minimum duration of 5 s. While the pro-
posed model works for these severe freezers, it still has 
to be verified whether the model also generalizes to mild 
freezers.

Conclusion
This paper introduced a DL model comprising an initial 
prediction block and a prediction refinement block for 
IMU-based FOG assessment trained across two FOG-
provoking tasks in both On- and Off-medication states 
and trials containing stopping. We established that the 
proposed DL model resulted in strong agreement with 
experts’ annotations on the percentage of time frozen 
and the number of FOG episodes. This highlights that a 
single DL model can be trained to generalize over FOG-
provoking tasks and medication states for FOG assess-
ment in a clinical setting. Additionally, our investigation 
revealed that while there was no significant difference 
observed between the model trained on all-encom-
passing data and task- and medication-specific models. 
Moreover, we established that DL models should include 
specific FOG-provoking tasks in the training data in 
order to be able to detect FOG in such a task, while this is 
not necessary for different medication states. Finally, we 
established that the proposed model can still detect FOG 
in trials that contain stopping. Though, only when stop-
ping is included in the training data. These findings are 
encouraging and enable future work to investigate FOG 
assessment during everyday life.

Appendix
FOG detection model design
IMU-based FOG detection models typically adopt win-
dow-based methodologies, dividing an IMU trial into 
predefined windows to train models for FOG detection. 
Given a window, FOG detection models aims to classify 
the window into non-FOG or FOG. The need for predict-
ing FOG annotations frame by frame, similar to experts’ 
annotations, demands a sliding mechanism with a one-
sample step size during evaluation. However, this sliding 
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operation sometimes leads to over-segmentation of FOG 
annotations  [27, 58]. To mitigate these errors, research-
ers have proposed post-processing methods  [24]. These 
methods aim to refine initial annotations and eliminate 
short FOG episodes that are shorter than the smallest 
FOG episode in the dataset. On the other hand, employ-
ing a refinement model  [27, 58] presents a more flexible 
approach, bypassing the need for extensive knowledge 
about dataset characteristics.

We propose a FOG detection model comprising an 
initial prediction block to generate initial FOG annota-
tions and a prediction refinement block to smooth and 
refine these initial predictions. We initially compare five 
FOG detection models for the initial prediction block 
and then compare two approaches for refining the initial 
predictions.

Problem definition
An IMU trial can be represented as X ∈ R

T×Cin , where 
T is the number of samples and Cin is the input feature 
dimension ( Cin = 30 for 5 IMUs with 3 dimensional 
acceleration and gyroscope). Each IMU trial X is associ-
ated with a ground truth label vector Y ∈ R

T×L , where L 
is the number of output classes, i.e., 2 for non-FOG and 
FOG. To generate predictions for each sample, the model 
learns a function f : X → Ŷ  that transforms a given 
input sequence X = x0, . . . , xT−1 , where xi ∈ R

1×Cin , into 
an output sequence Ŷ = ŷ0, . . . , ŷT−1 , where yi ∈ R

L that 
closely resembles the manual annotations Y.

Initial prediction block
Our primary objective is to determine the state-of-the-
art method for initial FOG prediction. FOG detection 
models are typically categorized into two main types: 
Feature-based models, which extract predefined features 
from IMU data within the window, and Signal-based 
models, which directly use raw data for FOG detection. 
Consequently, we selected two distinct signal-based 
models extensively employed in FOG detection literature: 
LSTM [51] and TCN [27]. These models were trained on 
raw IMU signals. Additionally, we evaluated three estab-
lished traditional machine learning models commonly 
utilized for FOG detection as feature-based models: Sup-
port Vector Machine (SVM) with a radial basis function 
kernel, K Nearest Neighbors (KNN), and XGBoost. These 
models were trained on 65 pre-defined features used for 
FOG detections, as outlined in [32].

The comparisons were conducted on our dataset with 
12 subjects, with the partition that excludes instances 
of stopping. This partition aimed to assess the FOG 
detection models specifically for clinical detection pur-
poses. For both model training and testing, each IMU 
trial underwent segmentation into windows of length Q, 

generated with a step size of 1 sample. Every window was 
assigned a ground truth label represented by the middle 
sample of the ground truth annotation within that par-
ticular window. All window pairs generated from the 
dataset were utilized in training the models. During the 
inference phase, we segmented each trial into T fixed-
length sequences, each sequence having a length of Q. 
Subsequently, these sequences were processed by the 
model to generate T predictions for each trial across the 
two classes L. In inference scenarios, the predicted out-
put is formalized as a 2D matrix Ŷ ∈ R

T×L . An example 
illustrates the utilization of windows extracted from dif-
ferent IMU trials in both model training and inference 
stages is shown in Fig. 5.

Neural network model design: signal‑based models
For the DL models, we adopted typical architectures doc-
umented in the literature. The LSTM network configura-
tion consisted of passing the input sequence through two 
bidirectional LSTM layers, each comprising 32 cells. This 
LSTM network transformed the input sequence of shape 
Q × Cin into an internal representation of shape Q × 32 . 
Subsequently, an average pooling layer was employed for 
temporal pooling, resulting in an output of shape 1× 32 . 
The output was passed through a linear layer followed 
by a softmax layer, generating probabilities for the two 
classes 1× L , where L = 2.

Regarding the TCN network, we used the architecture 
from [52]. The TCN architecture has a single TCN block 
comprising five temporal convolution layers. Employing 
a kernel size of 3, dimensionality of 32, and dilation rates 
designed to cover the sequence length Q, this TCN uti-
lized valid convolutions, directly transforming the input 
sequence of shape Q × Cin into an output of shape 1× 32 . 
The output was passed through a linear layer with a soft-
max activation function, generating probabilities for the 
two classes. The detailed model architecture, specifically 
elucidating how valid convolutions are executed within 
the TCN model, can be found in the original study [52] 
(Fig. 6).

For both DL models, the experiments utilized the 
Amsgrad optimizer  [69] with a learning rate of 0.0005, 
decayed with a factor of 0.95 for each epoch. The beta1 
and beta2 parameters in Amsgrad were set to 0.9 and 
0.999, respectively. For consistency, the window size (Q) 
for both DL models was set to 256, corresponding to a 
4-s window. All DL models were trained for 50 epochs. 
A class-weighted categorical cross-entropy loss func-
tion was applied. Before training and testing the mod-
els, all six channels of the IMU signals for each trial were 
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Fig. 5 An example for comparing window generation during model training and inferencing. This example illustrates the utilization of windows 
extracted from various IMU trials in both model training and inference stages. During model training, windows generated from different trials 
were randomly chosen to train the DL model. The actual label assigned to each window corresponded to the experts’ annotation of the middle 
sample within that window. During the inference phase, windows were generated from the same IMU trial, employing a step size of 1 sample. 
Subsequently, all generated windows were input into the DL model to conduct sample‑wise predictions

Fig. 6 Detailed model architecture of the FOG detection model. Our proposed FOG detection model comprises two essential blocks: an initial 
prediction block and a prediction refinement block. The initial prediction block utilizes the TCN proposed by Pavllo et al. [52], featuring five 
temporal convolution layers with valid convolutions. This TCN transforms the input sequence (padded with 121 samples on both sides) of shape 
(T + 242)× 30 into an output of shape T × 2 . The prediction refinement block, leveraging a multi‑stage TCN architecture proposed by Farha 
and Gall [37], aims to refine the initial predictions. The multi‑stage TCN comprises four stages of ResNet‑style TCN, each containing eight temporal 
convolution layers with the same convolutions. The output of this refinement block is a refined prediction, also structured as T × 2 , representing 
the probabilities of the two classes
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centralized by subtracting the mean value of each signal 
to remove the constant bias.

Machine learning model design: feature‑based models
To compare the performance of signal-based models with 
traditional FOG detection models utilizing pre-defined 
features, we selected three widely used ML models as 
representatives. All IMU trials underwent segmentation 
into windows of length Q with a step size of 1. Here, Q 
equaled 64, 128, or 256 samples, corresponding to win-
dow sizes of 1, 2, and 4 s, respectively. Each IMU window 
served as the basis for computing 65 features, following 
the methodology proposed in [32]. These features were 
derived from IMU data captured on both lower limbs, 
resulting in a total of 130 features for analysis. It’s impor-
tant to note that features generated from magnetometers 
were excluded from our study due to the absence of this 
sensor modality in our dataset.

The SVM was evaluated for adjusting the cost param-
eter (0.1, 1, 10, 100, 1000), gamma (1, 0.1, 0.01, 0.001, 
0.0001), and window size Q (64, 128, 256). In the case 
of KNN, tuning encompassed variations in the number 
of neighbors (ranging from 1 to 50), different distance 
metrics (manhattan distance and euclidean distance), 
and window size Q (64, 128, 256). For XGBoost, the tun-
ing process involved optimizing the max depth (ranging 
from 2 to 10), number of estimators (ranging from 60 to 
220 with a step of 40), learning rate (1, 0.1, 0.01, 0.001, 
0.0001), and window size Q (64, 128, 256). The reported 
results only encompass the performance of the ML mod-
els that exhibited the best hyperparameter configuration.

Evaluation
For evaluating and comparing model performance, we 
primarily reported the sample F1 score. Notably, the Seg-
ment-F1@50 metric was omitted from the comparison of 
initial prediction models due to extensive over-segmen-
tation observed in the predictions made by these models. 
Consequently, all models displayed uniformly low Seg-
ment-F1@50 scores, rendering comparative analysis inef-
fective. The evaluation process for all models employed 
the LOSO cross-validation approach.

To assess the models’ performance based on the sam-
ple F1 score, we conducted paired sample t-tests. These 
tests compared the best model against each of the other 
models, with the number of pairs equating to the num-
ber of subjects evaluated using LOSO. To avoid type-I 
errors, p-values were adjusted for multiple comparisons, 
as defined in Li [70]. The significance level for all tests 
was set at 0.05 to determine statistically significant differ-
ences in performance across models.

Results
The results showcased in Table  9 demonstrate that 
the TCN model achieves the highest F1 score. Upon 
conducting statistical tests, it was observed that the 
F1 score for the TCN was significantly better than all 
feature-based ML models. However, no statistically sig-
nificant difference was found between the TCN and the 
LSTM model. The hyperparameter settings of the cho-
sen model, namely TCN [52], are detailed in Table 11.

Prediction refinement block
Previous studies have revealed that employing ML 
models for fine-grained FOG detections might result in 
splitting long freezing episodes into numerous smaller 
ones [27, 35], consequently causing over-segmentation. 
Subsequent to identifying the optimal initial prediction 
model, we proceeded to compare the efficacy of two 
different approaches aimed at mitigating this over-seg-
mentation issue: (1) A pre-defined smoothing approach 
outlined in [24], which doesn’t involve training a model, 
and (2) Utilization of a DL model trained without pre-
defined information, as proposed in [27].

For our evaluation process, we chose the TCN model 
outlined in [52] as the initial prediction model.

Pre‑defined post‑processing method
We implemented the pre-defined post-processing 
method introduced in [24]. This method involves com-
bining model-identified FOG periods separated by a 
single example into a singular FOG event. Addition-
ally, short FOG periods lasting only one example were 
reclassified as non-FOG instances. In our dataset analy-
sis, it was observed that 95% of FOG episodes persisted 
for durations longer than 0.33 s (21 samples). To retain 
at least 95% of these FOG episodes after post-process-
ing, the method combined FOG episodes in the initial 
prediction that were 21 samples apart into a single FOG 
episode. Concurrently, FOG episodes shorter than 21 
samples were relabeled as non-FOG instances.

Table 9 Initial prediction model comparison results

Model Sample-F1

Mean t-test

SVM 0.28 p = 0.008

KNN 0.16 p = 0.001

XGBoost 0.27 p = 0.001

LSTM 0.40 p = 0.497

TCN 0.50 N.A.
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Deep learning refinement method
The DL refinement method employed in this study 
aimed to train a DL model for prediction refinement. 
We applied the refinement model derived from the MS-
TCN architecture initially proposed in [37]. This model’s 
design involved the input sequence undergoing process-
ing through four ResNet-style TCN blocks, each consist-
ing of eight layers. These layers employed a kernel size of 
3, with a dimensionality of 32 and dilation rates set at fac-
tors of 2 (1, 2, 4, 8, 16, 32, 64, 128).

The training of the DL refinement model utilized the 
Amsgrad optimizer  [69] with a learning rate of 0.0005 
and decayed with a factor of 0.95 for each epoch. The 
beta1 and beta2 parameters in Amsgrad were set to 0.9 
and 0.999, respectively. The DL models were trained for 
50 epochs, employing a combination of class-weighted 
categorical cross-entropy loss function and smoothing 

loss [37]. For the smoothing loss, parameters τ and � were 
set to 4 and 0.15, respectively.

Evaluation
Model performance evaluation was conducted based on 
reported sample F1 scores and Segment-F1@50. To com-
pare the models, paired sample t-tests were conducted, 
with the significance level set at 0.05. These tests aimed 
to assess statistical differences between the performance 
of the two models based on both F1 scores.

Results
The results obtained are summarized in Table 10. Nota-
bly, the comparison emphasizes that the trained DL 
model achieves a statistically higher Segment-F1@50 
score compared to the pre-defined post-processing 

Table 10 Prediction refinement method comparison results

Model Segment-F1@50 Sample-F1

Mean t-test Mean t-test

Initial prediction block + Pre‑defined approach 0.54 p = 0.020 0.64 p = 0.192

Initial prediction block + DL refinement approach 0.60 0.67

Initial prediction block 0.32 p < 0.005 0.50 p = 0.008

Initial prediction block + DL refinement approach 0.60 0.67

Table 11 Hyperpamareter settings for the selected initial prediction and prediction refinement models

Model Type Parameter

Initial prediction (TCN ) Model architecture #Hidden features 32

#TCN layers 5

Dilation for each TCN layer 1, 3, 9, 27, 81

Training procedure #Epochs 50

Batch size 1024

Optimizer Amsgrad (beta = (0.9, 0.999))

Learning rate 0.0005

Learning rate decay (per epoch) 0.95

Loss function Weighted cross‑entropy loss

Prediction refinement (multi‑stage 
TCN )

Model architecture #Hidden features 32

#Stages 4

#TCN layers 8

Dilation for each TCN layer 1, 2, 4, 8, 16, 32, 64, 128

Training procedure #Epochs 50

Batch size 1

Optimizer Amsgrad (beta = (0.9, 0.999))

Learning rate 0.0005

Learning rate decay (per epoch) 0.95

Loss functions Weighted cross‑entropy loss 
+ smoothing
loss ( τ = 4, � = 0.15)
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method. While the Sample-F1 score for the trained DL 
model was also higher than the pre-defined post-process-
ing method, the difference did not reach statistical signif-
icance. Moreover, a comparison was conducted between 
the model predictions with and without the addition of 
a DL refinement approach as a prediction refinement 
block. As depicted in Table 10, incorporating a prediction 
refinement block resulted in statistically higher Segment-
F1@50 and Sample-F1 scores. These findings strongly 
indicate that the strategy of training a refinement model 
significantly improves the smoothness of the initial pre-
diction. This improvement signifies better generalization 
compared to relying on a pre-defined post-processing 
approach. Particularly, the pre-defined approach neces-
sitates knowledge of the shortest FOG episode duration 
within a dataset to avoid overly smoothing and merg-
ing of predicted short episodes. Consequently, based on 
these findings, this study opted for utilizing the trained 
DL model for post-processing instead of relying on a pre-
defined approach. The hyperparameter settings of the 
chosen model are detailed in Table 11.

Comparison of models trained with different IMU sensor 
positions
While a prior study [24] had proposed an optimal tech-
nical setup utilizing three IMUs (specifically, lumbar and 
both ankles) following an extensive comparison of vari-
ous IMU, we compared our full 5-IMU sensor configu-
ration with the previously recommended best technical 
3-IMU setup (lumbar and both ankles) detailed in [24] 
for FOG detection training on trials without stopping. 
Our comparative study employed a model that integrated 
the best-performing initial prediction model, the TCN 
from [52], along with the refinement model from [37].

As shown in Table 12, the model trained with 5 IMUs 
has a higher Segment-F1@50 and Sample-F1 compared 
to the model trained with 3 IMUs. However, no statisti-
cally significant differences were observed in terms of 
both F1 scores.
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Table 12 Model comparison results in terms of training with 
different number of IMUs
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