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Abstract 

In 2023, the National Science Foundation (NSF) and the National Institute of Health (NIH) brought together engineers, 
scientists, and clinicians by sponsoring a conference on computational modelling in neurorehabiilitation. To facili‑
tate multidisciplinary collaborations and improve patient care, in this perspective piece we identify where and how 
computational modelling can support neurorehabilitation. To address the where, we developed a patient‑in‑the‑loop 
framework that uses multiple and/or continual measurements to update diagnostic and treatment model param‑
eters, treatment type, and treatment prescription, with the goal of maximizing clinically‑relevant functional outcomes. 
This patient‑in‑the‑loop framework has several key features: (i) it includes diagnostic and treatment models, (ii) it 
is clinically‑grounded with the International Classification of Functioning, Disability and Health (ICF) and patient 
involvement, (iii) it uses multiple or continual data measurements over time, and (iv) it is applicable to a range 
of neurological and neurodevelopmental conditions. To address the how, we identify state‑of‑the‑art and highlight 
promising avenues of future research across the realms of sensorimotor adaptation, neuroplasticity, musculoskeletal, 
and sensory & pain computational modelling. We also discuss both the importance of and how to perform model 
validation, as well as challenges to overcome when implementing computational models within a clinical setting. The 
patient‑in‑the‑loop approach offers a unifying framework to guide multidisciplinary collaboration between computa‑
tional and clinical stakeholders in the field of neurorehabilitation.
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Introduction
Neurorehabilitation exemplifies how multiple dis-
ciplines—physical therapy, biomedical engineering, 
medicine, neuroscience, kinesiology, and others—come 
together with the common purpose of improving the 
lives of those with a neurological condition [1–5]. Yet 
major challenges for multidisciplinary research are differ-
ences in theory, approach, and terminology between dis-
ciplines [6, 7], all of which may hinder both collaboration 
and the development of improved neurorehabilitation. In 
this perspective piece, we propose a general, operational 
framework to promote synergistic collaboration among 
computational modellers, clinicians, and patients to 
improve functionality and quality of life.

Our proposed framework is built upon the Interna-
tional Classification of Functioning, Disability and Health 
(ICF) [8], a recent framework for precision rehabilitation 
[9], patient involvement in health care decision mak-
ing [10], and works where computational models have 
been used to improve health care [11–14]. The ICF is the 
world health organization (WHO) framework to measure 
both disability and health of a patient, and is commonly 
utilized for rehabilitation management in clinical prac-
tice [8, 15–21]. Of particular interest here is the use of 
the ICF to identify a patient’s body structure and func-
tion, which can all be targeted during therapy to pro-
mote recovery or habilitation to a condition state [8]. 
Recently, a precision rehabilitation framework has been 
proposed that incorporates the IFC and high-fidelity data 
to, critically, continuously monitor a patient’s condition 
over time [9]. This precision rehabilitation framework 
also considers clinically important factors such as clini-
cal phenotype, treatment type, and prescription. Further, 
patient involvement in clinical care has been shown to 
improve patient satisfaction and health, productivity of 
the service provider, and treatment outcome [22–28]. It 
is important to consider the aforementioned clinically 
grounded work when identifying where along a clinical 
pipeline that computational modelling can provide sup-
port to neurorehabilitation.

Computational modelling has proven particularly 
effective for drug delivery [11–14]. One well-known 
success story is the use of feedback control theory to 
deliver insulin in diabetics [11]. Continual monitor-
ing of glucose levels and a computational model of both 
glucose and insulin dynamics are used to optimize insu-
lin delivery through a pump. Critical to this approach is 
that the patient is directly within the control loop, where 
continual monitoring of glucose to determine optimal 
insulin delivery has been shown more effective than con-
ventional treatment and leads to less diabetic complica-
tions [12]. This ‘patient-in-the-loop’ approach has also 
been proposed for anesthesia and HIV medicine [13, 14]. 

To improve mobility and functionality, there have been 
recent advances using a patient-in-the-loop approach in 
the areas of deep brain stimulation (DBS) for Parkinson’s 
disease [29, 30] and prosthetics for amputees [31, 32]. 
Our framework differs from these works and others [29–
33], since our framework also jointly considers the ICF, 
diagnostic models, and patient involvement. Here we will 
consider how various sensorimotor adaptation, neuro-
plasticity, musculoskeletal, and sensory & pain models 
can be used within a patient-in-the-loop framework to 
facilitate neurorehabilitation.

We propose a comprehensive patient-in-the-loop 
framework that incorporates computational modelling, 
the ICF, continually monitoring a patient’s condition [9], 
and patient involvement to support neurorehabilitation. 
In particular, we will focus on where and how sensori-
motor adaptation, neuroplasticity, musculoskeletal, and 
sensory computational models could be used to diag-
nose and optimize treatment for patients to improve 
their functionality and quality of life. Objectives of this 
perspective piece are (i) to create a patient-in-the-loop 
framework that identifies where along a clinical pipe-
line that computational modelling can support neu-
rorehabilitation for a broad range of neurological and 
neurodevelopmental conditions, (ii) to identify current 
state-of-the-art and future directions in computational 
modelling that can support neurorehabilitation, and (iii) 
highlight the importance of model validation.

In the following sections, we will first address the 
patient-in-the-loop framework (ICF: patient body struc-
ture & function, data, diagnostic models & clinical deci-
sion-making by practitioner, intervention type, treatment 
models and prescription, recovery and habilitation, and 
patient involvement). We will then address types of mod-
els (data-driven and fundamental models), models for 
neurorehabilitation (sensorimotor adaptation & learning 
models, neuroplasticity models, musculoskeletal models, 
sensory and pain models), and model validation. Finally, 
we will discuss future challenges and provide a summary 
of this perspective piece.

Patient‑in‑the‑loop framework
Our goal was to develop a patient-in-the-loop frame-
work to identify where and how computational model-
ling can be implemented within clinical care to further 
support neurorehabilitation (Fig.  1). This framework 
considers the ICF, the use of multiple or continuous 
data measurements over time as in a recent precision 
rehabilitation framework [9], patient involvement, and 
computational models to support diagnostics and treat-
ment prescription while continually assessing and opti-
mizing the recovery and habilitation of a patient’s body 
structure and function. Our framework is intentionally 
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general, in a similar vein to the ICF, so that it can be 
applied to a range of neurological and neurodevelop-
mental conditions (Figs.  2, 3,  4). Within this paper, 
we refer to computational models very generally as 
equation(s) that can be used to simulate some sys-
tem or describe some phenomena, such as a dynami-
cal system, control policy, adaptive process, a mapping 
between inputs and outputs, etc. We define diagnostic 
models and treatment models as any computational 
model that can be used to aid in the diagnosis or treat-
ment prescription of a patient, respectively. Note that 
in some cases that the same computational model, 
such as one that describes the musculoskeletal system, 
may be used either as a diagnostic model or treatment 
model depending on the particular context that it is 
used. Directly below we expand on each component of 
this patient-in-the-loop framework.

ICF: patient body structure and function
We begin the patient-in-the-loop framework with 
the ICF [8, 34]. The ICF is a well-known framework to 
guide therapy across a variety of domains [8, 15–21, 
34], including neurorehabilitation for neural injury (e.g., 
Stroke [35]), movement conditions (e.g., Parkinson’s dis-
ease [36]), or neurodivergence (e.g., autism [37]). Here we 
focus on a patient’s body structure and function within 
the ICF, which are important to consider for computa-
tional modelling. While we apply the ICF in our patient-
in-the-loop framework, we do not provide an exhaustive 
description of the ICF and would refer the reader to [34].

Data
Our patient-in-the-loop framework promotes the use 
of monitoring patient data that relates to their body 
structure or function. These data can be collected 
continuously or at multiple time-points to support 

neurorehabilitation [9]. Such data can include kin-
ematic and kinetic measurements of eye and body 
movement, electromyography (EMG) and electroen-
cephalography (EEG) to respectively measure muscle 
and brain activity, medical imaging with ultrasound, 
X-ray, and magnetic resonance imaging (MRI), and 
clinical measures of functionality (e.g., Fugl-Meyer 
[38] and MDS-UPDRS [39]). Moreover, it is becoming 
increasingly possible to collect much of this data not 
only in laboratory settings, but also in the clinic and 
at home due to exponential improvements in wear-
able and portable sensors [40–44] and markerless 
video-based technologies [45, 46] in the past decade. 
Further, the low-cost and widespread use of wearable 
technologies may also enable collecting baseline data of 
an individual’s health and behaviour prior to the onset 
of a neurological condition. We envision that these 
advancements will enable researchers and clinicians 
to monitor patient condition in both controlled and 
naturalistic environments, as well as comparing data 
following the onset of a neurological condition to both 
normative measures across the lifespan and an individ-
ual’s own baseline.

Diagnostic models and clinical decision‑making 
by practitioner
Once patient data has been collected, computational 
models can assist a clinical practitioner with an ini-
tial or revised diagnosis of the patient condition. For 
example, a computational model may indicate the like-
lihood that a patient has a particular neurological con-
dition based on kinematics [47] or neuroimaging [48]. 
It has been suggested that early disease onset detection 
can improve patient outcomes, such as in Parkinson’s 
disease [48]. Further, such models may also provide 

Fig. 1 Patient‑in‑the‑Loop Framework. This general framework promotes the use of the ICF, multiple or continuous data measurements 
over time, patient involvement, and computational models to aid clinicians in diagnosing and prescribing treatment. Specifically, within this 
‘patient‑in‑the‑loop’ framework, continual monitoring of a patient’s body structure and function allows for updates to diagnostic and treatment 
models that inform new and revised prescription by a practitioner to maximize recovery and habilitation. Both fundamental (e.g., motor adaptation, 
neuroplasticity, musculoskeletal, and sensory) and data‑driven (e.g., machine learning) diagnostic and treatment models, which must be properly 
validated, can be utilized to better inform and facilitate more effective neurorehabilitation for a range of neurological and neurodevelopmental 
conditions
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information as to whether it might be beneficial to try 
a different neurorehabilitation strategy. Below in "Mod-
els for neurorehabilitation", we discuss the use and 
potential of several computational models (sensorimo-
tor adaptation, neuroplasticity, musculoskeletal, and 
sensory & pain) to aid in diagnosing a condition. An 
important consideration is ensuring that these models 
are properly validated, which we address in more detail 
below (see "Model validation"). Importantly, within the 
framework a trained medical practitioner (e.g., physical 
therapist, medical doctor, etc.) makes a diagnosis that is 
informed by a computational model.

Intervention type
Once a medical practitioner has made a diagnosis 
informed by a diagnostic model, they are responsible 
for selecting the type of intervention used to treat the 
patient. Traditional therapy guided by a physical therapist 
or occupational therapist, often with drug management 
(e.g., L-Dopa for Parkinson’s disease [49]), remain the 
standard of care for neurological conditions. In addition 
to traditional approaches, technological advancements 
have and will continue to offer new alternatives that may 
further improve patient outcomes. Some common exam-
ples of different intervention types include robot-guided 
therapy [50–53], treadmill training [54–56], exoskeleton 
[57–59], orthotics [60–64], and brain-machine inter-
faces [65–68]. Whether receiving traditional therapy or 
interacting with a device, it is important to consider how 
a patient will adapt and respond to their particular pre-
scribed treatment.

Treatment models and prescription
Computational models can play an important role in 
the process of prescribing and monitoring outcomes of 
treatment for neurological conditions. For the purposes 
of this perspective piece, we will focus on sensorimotor 
adaptation, neuroplasticity, musculoskeletal, and sensory 
computational models. As an example, sensorimotor 
adaptation models describe how human motor behaviour 
changes over time in response to an environmental stim-
uli (e.g., external loads), and can be used to specify treat-
ment duration that maximizes the retention of relearned, 
functional motor skills [69]. Further below, we expand 
on several different model types (i.e., machine learning, 
sensorimotor adaptation, neuroplasticity, musculoskel-
etal, and sensory & pain) and how they can be used to 
aid in treatment prescription. This manuscript primarily 
focuses on fundamental models that, in contrast to data-
driven machine learning models, often generalize better 
since they attempt to understand and capture underly-
ing mechanisms (see "Fundamental models"). It might 

be possible to use model simulations to generate syn-
thetic data to make comparisons between the patient and 
outcomes at multiple point across the framework (e.g., 
diagnostic model outputs). Further, another potential 
approach would be comparing different treatment mod-
els at the stage of selecting the type of intervention [9]. 
That is, using models to simulate different intervention 
types may help guide the selection of intervention type.

A critical component of the proposed patient-in-the-
loop framework, is the use of computational model-
ling for helping the medical practitioner in prescribing 
appropriate treatment. The FITT (frequency, intensity, 
time, and type) principle can be applied in this context 
[70]. Frequency is how often the treatment is performed, 
such as once per day. Intensity is the difficulty of a par-
ticular activity, such as maintaining some target level of 
heart-rate, walking speed, or load. Time is how long the 
treatment is performed, such as 30 min. Treatment type 
we have previously described above, which can include 
traditional therapy to interacting with some passive or 
powered device. Moreover, behavioural support for neu-
rodivergent individuals can also fall under the FITT prin-
ciple [71]. Computational modelling has the potential to 
provide insights into which type of treatment should be 
utilized, while optimizing the optimal frequency, inten-
sity, and time to to maximize the recovery and habilita-
tion of the patient’s body structure and function.

Recovery (restitution) and habilitation (compensation)
Our patient-in-the-loop framework aims to prescribe 
treatment that promotes recovery or habilitation to 
patient body structure or body function (represented by 
the multiplication symbol in Fig. 1). As in Levin and col-
leagues, here we use the term recovery as improvements 
that result from restitution of biological structure and 
function [72]. The word habilitation represents a com-
pensation to neurodivergence (e.g., autism) or a neuro-
logical condition (e.g., stroke). Habilitation is the use of 
different biological structures or function one would 
typically use, or the use of a passive or powered device, 
to carry out some desired activity. Habilitation as a term 
also encapsulates neurodivergent individuals, such as 
those with autism, where the goal is to improve outcomes 
since it is not possible to recover from a condition that 
someone is born with [73, 74]. However, it is important 
to consider that individuals will likely respond differently 
to the same treatment or may appear to have a different 
capacity to improve [75]. Moreover, computational mod-
els that prescribe treatment are unlikely to yield a perfect 
prediction of how a patient will respond to treatment 
prescription.

To address individual differences and imperfect model 
predictions, the proposed framework promotes the use 
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of continual or multiple data measurements of body 
structure and function. Crucially, continual or multiple 
data measurements over time allows for updates to treat-
ment models parameters—thereby placing the ‘patient-
in-the-loop’—so that treatment models can better predict 
and inform prescription that aims to maximize the recov-
ery and habilitation of the patient’s body structure and 
function.

Patient involvement
The primary goal of the patient-in-the-loop framework 
is to utilize computational models to maximize recov-
ery and habilitation of a patient’s body structure and 
function. This should ideally include continuous patient 
involvement throughout the processes of providing 
data, selecting intervention type, goals and constraints 
of models, and prescription. Patient involvement has 
been shown to improve treatment outcome, patient sat-
isfaction, and health [22–28]. In line with the National 
Institutes of Health (NIH) recommendations [10], we 
encourage patient involvement with their care in deci-
sion-making at each step in their care trajectory, from 
first concern to intervention. As one would expect, the 
patient or their caregiver is responsible for consenting 
to and providing data to help make a diagnosis (dashed 
arrow from patient involvement to data; Fig. 1). The col-
lected data and the interpretation of those data should 
also be shared with the patient (dashed arrow from data 
to patient involvement), so that they can be involved 
with subsequent clinical care decision-making. Once a 
patient is well-informed, they should be involved with 
both selecting the intervention type and the prescrip-
tion. For example, the patient may have a preference for 
a particular treatment based on comfort levels, cost or 
time constraints, or several other personal factors. Fur-
ther, it is possible to incorporate some of these personal 
constraints into computational modelling. For example, 
a patient’s constraints on the amount of time and fre-
quency with which they can engage in physical therapy 
can be factored into sensorimotor adaptation models. 
Likewise, the patient may have their own personal goals 
on their desired outcomes and functionality, which may 
influence the intensity or type of the prescribed treat-
ment. Patients can also inform the process of model 
development and feature selection, for example by 
reporting on their own experiences and internal states. 
This information adds value to development of diagnostic 
models by grounding them in patients’ lived experiences. 
Finally, the patient can continue to provide feedback on 
the treatment type and prescription in followup appoint-
ments, and be involved in decisions as to whether the 
care should continue as planned or if there should be 
changes to the treatment.

Types of models
Data‑driven models
Data-driven computational modelling approaches are 
often used to identify patterns or relationships from 
data in an effort to drive neurorehabilitation efforts. In 
this paper and the sections below, we focus primarily on 
mechanistic models that aim to understand or capture 
the physiological processes underlying these relationships 
(see "Fundamental models"). However, purely data-driven 
models also hold significant potential to aid treatment 
prescription to estimate recovery and habilitation [76]. 
In contrast to mechanistic models, data-driven modelling 
approaches look for features in the recorded data (clini-
cal, biomechanical, physiological, etc.) that are associ-
ated with and/or predictive of some meaningful outcome 
measure (e.g., functional impairment level, community 
participation, etc.) without modelling the underlying pro-
cesses that produce those relationships. While there are 
some additional examples in the "Models for neuroreha-
bilitation", here we provide a very brief overview of data-
driven modelling efforts for neurorehabilitation.

Data-driven models for neurorehabilitation can gen-
erally be classified in two categories: (1) regression 
and classification approaches, and (2) deep learning 
approaches. The first step to regression and classifica-
tion approaches is typically a data reduction process, in 
which high-dimensional data is transformed into a lower-
dimensional representation via manual feature selection 
or algorithms such as principal component analysis [77–
83]. This step helps to make the variability in complex 
continuous and/or multi-modal data amenable to inter-
pretation and further analysis. The identified variables 
can then be used as input to regression, Bayesian, and 
classification models. For example, a recent study using 
regression approaches identified that younger ”brain age”, 
as measured from whole-brain structural neural imaging, 
was associated with better functional outcomes after a 
stroke [84]. Such a result points towards the importance 
of including brain age as a covariate in models predict-
ing the response to neurorehabilitation. Classification 
models (e.g., support-vector machines, cluster analy-
sis, etc.) that group data points based on their similarity 
have enabled the subdivision of stroke patients based on 
their underlying impairments [85–89], identifying poten-
tial targets for neurorehabilitation. However, relying on 
a lower-dimensional representation may limit the abil-
ity to capture subtle but important individual-specific 
patterns within the data underlying impaired function 
and/or improvements with rehabilitation. Deep learning 
approaches, on the other hand, that use the entire dataset 
instead of relying on a reduced representation, may bet-
ter capture the diverse array of variables associated with 
biological processes that vary individually and change 
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over time [90]. Such approaches have shown promise in 
making diagnoses, predicting treatment outcomes, pro-
viding real-time feedback, and guiding clinical decision-
making [90–95]. Moreover, causal deep reinforcement 
learning to find an optimal dynamic treatment regime [9, 
96] could be used to optimally select the best treatment 
type and prescription according to an optimal reinforce-
ment learning control policy, which can be refined over 
time using continual data measurements.

Not only may data-driven models be useful for pre-
dicting individual-level treatment responses and provide 
insights intervention targets, they may also influence 
mechanistic, fundamental modelling efforts by serving 
as input to mechanistic, fundamental models. Moreo-
ver, relationships between data and outcome measures 
revealed via data-driven models may serve as motivation 
for developing novel mechanistic models to elucidate the 
physiological mechanisms underlying these relationships.

Fundamental models
The role of fundamental modelling research 
in a patient‑centered treatment paradigm
models are being developed not just as tools for clini-
cians, but as tools for building fundamental understand-
ing of human motor control, adaptation, development, 
and impairment. While not always directly translational 
to a model-based treatment pipeline, this work is none-
theless essential for improving clinical outcomes. By 
improving our understanding of underlying mecha-
nisms that cause neurological or behavioural changes, we 
improve the foundation for new treatments to be devel-
oped, whether or not the treatment directly involves a 
computational model. Conversely, without rigorous test-
ing of our understanding of mechanisms that treatments 
exploit, we risk developing inaccurate models and inef-
fective, or worse, harmful treatment plans.

Mechanistic and phenomenological models
Mechanistic models explicitly describe the fundamental 
mechanisms that drive the relationship between observ-
able inputs and outputs from first principles. Conversely, 
phenomenological models attempt to describe this rela-
tionship with a direct mapping from input to output (i.e., 
describing the “behaviour” of a system rather than lower-
level contributions of its component parts).

Mechanistic models are capable of representing specific 
theoretical frameworks for a given mechanism. If a mech-
anism is theorized from first principles and is able to 
accurately and robustly describe the empirically observed 
relationship between input and output, it can be used to 
predict the response of the mechanism to novel interven-
tions and new inputs. However, it is not practical or cur-
rently possible to derive every relationship between two 

phenomena down to the interaction between individual 
atoms, therefore mechanistic models are built with phe-
nomenological components. Additionally, for describing 
processes within humans, while mechanistic models offer 
concrete theories that can be tested, it is often not pos-
sible to design experiments that can isolate the effect of 
a particular mechanism in humans. Therefore there is no 
guarantee that a mechanistic model can be confidently 
falsified even if it is incorrect. Despite these limitations, 
mechanistic models are important for neurorehabilita-
tion because our understanding remains limited in many 
critical areas.

Phenomenological models are in many ways more 
practical when the question is not, “how does this system 
work?” but instead “what will the outcome be?”. Yet phe-
nomenological models may not be as robust to novel cir-
cumstances as mechanistic models. That is, novel inputs 
may interact with internal mechanisms that did not sig-
nificantly contribute to previously observed outputs. 
Nevertheless, phenomenological models are essential for 
model-based research with applications in neurorehabili-
tation. A well-characterized phenomenological model for 
a specific mechanism is often more useful in a practical 
sense than a mechanistic model of the same mechanism, 
because it allows for direct computation of the output in 
question. Rigorously validated phenomenological mod-
els are more likely to be directly translatable as practical 
tools for clinicians.

Using models to create new knowledge
In many situations, a model can be thought of as a formal 
representation of theory [97]. Such a model can be used 
to help design an experiment and test whether a priori 
model predictions are observed in the data [98, 99], or 
to investigate novel circumstances that have not been or 
cannot be experimentally tested [100]. Models can also 
be used to challenge prevailing interpretations of experi-
mental work by demonstrating mechanistic validity of 
alternative interpretations [101]. If a model captures the 
mechanism of a particular neurological condition then 
it should be able to predict how an individual responds 
to treatment. If a model can reliably predict behaviour 
then it can also be used to optimize a treatment plan to 
promote recovery and habilitation. Next, we highlight 
how models of sensorimotor adaptation & learning, neu-
roplasticity, musculoskeletal, and sensory & pain can be 
used to support diagnostics and treatment.

Models for neurorehabilitation
Sensorimotor adaptation and learning models
In the interest of identifying unifying principles across 
the field of neurorehabilitation, we propose that adapta-
tion is a universally-relevant treatment goal across a wide 
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range of post-injury, neurodegenerative, and neurode-
velopmental conditions. The ability of the sensorimotor 
system to adapt depends on the involved neural circuits 
and is critical to neurorehabilitation, where one must 
(re)learn functional motor skills to access a desired level 
of mobility and quality of life [2, 102]. In this section, 
we primarily focus on models of sensorimotor adapta-
tion that characterize the biological process responsible 
for changes in motor behaviour over time. These mod-
els have been successfully applied to study common 
and functional motor skills, including reaching and gait. 
Adaptation models have been critical to understanding 
the learning principles of the sensorimotor system [103–
106]. Understanding learning principles can be leveraged 
to determine the expected behavioural outcomes due to 
a neurological condition and aid in diagnosis, as well as 
predicting the behavioural response to treatment.

Sensorimotor adaptation and learning models to improve 
diagnosis
Studies that examine sensorimotor adaptation in indi-
viduals with a neurological condition may be useful for 
identifying disease biomarkers (e.g., kinematics, neural 
signals) and developing models that aid a medical practi-
tioner to make a diagnosis. Reaching and gait paradigms 
have been used to study neurological conditions, includ-
ing cerebellar ataxia, Parkinson’s disease, and Stroke. For 
example, during force-field reaching tasks [107], visuo-
motor rotation reaching tasks [108], and split-belt gait 
tasks [109] it has been shown that individuals with cer-
ebellar ataxia have less ability to adapt their movement 
behaviour. Using the kinematic or kinetic data from simi-
lar adaptation paradigms could be used by a statistical or 
machine learning model, potentially in combination with 
other data (e.g., MRI, eye-tracking), to further inform a 
diagnosis. Some studies have fit a model separately to 
neurologically-atypical and neurologically-typical groups 
[104, 110], and in some instances accounting for medi-
cation status [111]. There are limited studies that have 
used adaptation models to explain a neurological condi-
tion [104], which is a very promising direction for future 
research.

Sensorimotor adaptation and learning models to improve 
treatment
An attractive feature of adaptation models is that they are 
dynamic and capture changes in sensorimotor behaviour 
over time [103–106], which could be leveraged by a med-
ical practitioner to prescribe treatment. Predicting treat-
ment outcomes represents an exciting opportunity for 
research. An important aspect of the patient-in-the-loop 
framework is the use of the FITT (frequency, intensity, 
time, and type) principle to prescribe treatment. Given 

some type of treatment, adaptation models could theo-
retically be used to find the optimal frequency, intensity, 
and time of some therapy to maximize patient outcomes. 
In terms of movement, these patient outcomes could 
range from generating straighter reaches [112–114] to 
producing more symmetric and energetically efficient 
gait [115–117]. Constraints, such as available time or 
physical effort, could also be factored into these optimi-
zation. Iterative collection of data over time in a patient-
in-the-loop framework is necessary to continuously 
update and personalize model parameters to improve 
treatment predictions. Better treatment predictions may 
lead to more informed and effective treatment prescrip-
tions that bolster recovery and habilitation.

State‑of‑the‑art in sensorimotor adaptation and learning 
modelling
Sensorimotor adaptation can occur through several 
different mechanisms and their associated neural cir-
cuitry, including error-based, reinforcement, and use-
dependent learning. Error-based adaptation has implicit 
and explicit components that reflect cerebellar pro-
cesses [109, 118–122] and cognitive strategy [123–127], 
respectively. Error augmentation applies principles of 
error-based adaptation and has been shown as an effec-
tive approach to promote neurorehabilitation for those 
with stroke [112–114, 128, 129]. Error augmentation 
magnifies visual and or haptic error signals, the differ-
ence between sensory feedback and an expected sensory 
target, which has been shown to improve both reaching 
behaviour and clinical measures of functionality for indi-
viduals post-stroke [114]. In Fig. 2, we provide a worked 
example of the patient-in-the-loop framework that uses 
error augmentation as an intervention type and a model 
of sensorimotor adaptation to aid in prescribing treat-
ment, with the goal of improving reaching accuracy for 
an individual post-stroke. Reinforcement-based pro-
cesses promotes adaptation and neuroplasticity [98, 99, 
106, 130–134], Reinforcement processes are linked to the 
dopaminergic system and basal ganglia, which become 
impaired with Parkinson’s disease [110, 135, 136]. Inter-
estingly, reinforcement feedback can be used to promote 
sensorimotor adaptation for individuals with cerebellar 
ataxia, suggesting that intact reinforcement-based neural 
circuits can be exploited when there is damage to error-
based neural circuits [104]. Use-dependent adaptation 
refers to the idea that the repetition of movements alone 
causes a change to the motor system [137, 138], perhaps 
through Hebbian-like processes (see "Neuroplasticity 
models" section below). Past research has focussed on 
isolating these different forms of adaptation [98, 139]. 
Understanding how these different adaptation processes 
interact [140], including when specific neural circuits 
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are impacted by a neurological condition, will likely be a 
fruitful direction moving forward.

Future directions in sensorimotor adaptation and learning 
modelling to support neurorehabilitation
There are several promising future avenues where com-
putational approaches may facilitate neurorehabilita-
tion. Many of the aforementioned adaptation models 
have provided strong insights into learning principles and 
their respective neural circuitry [103, 104, 106, 133]. The 
majority of these models focus on short-term adaptation 
and retention, which is thought to reflect the refinement 
of an already existing motor controller [141]. However, 
neurorehabilitation occurs over long timescales where 
it is important to retain (re)learned behaviour over days, 
months, and even years. Motor learning and retention 
over these long timescales may align more with de novo 

learning, where there is thought to be a formation of a new 
motor controller [141–144]. An example of de novo learn-
ing is a child learning (and never forgetting) how to ride a 
bike (see [145]). More experiments and models are needed 
to better understand the principles that underlie de novo 
learning and its potential role in neurorehabilitation [145].

Another exciting opportunity for future research is to 
better understand how humans co-adapt with a device 
that aids mobility [146–149]. Wearable robotics that 
adapt to the human can lead to more energetically effi-
cient gait [150, 151]. Yet further improvements to human-
device interaction may be achievable by modelling the 
co-adaptation between a human and a device [152–154]. 
An important consideration for devices that (co)adapt is 
not to provide too much compensation and consequently 
limit the potential of true recovery by the patient. Rather 
in some instances it may be better for devices to utilize 

Fig. 2 Computational models can be used within a patient‑in‑the‑loop framework to improve post‑stroke reaching. This example uses machine 
learning to assist with phenotype classification, error augmentation as the intervention type, and a sensorimotor learning model to better inform 
treatment prescription with the goal of improving reach accuracy during the recovery & habilitation process. Error augmentation magnifies 
visual and or haptic error signals, the difference between sensory feedback and an expected sensory target, which has been shown to improve 
both reaching behaviour and clinical measures of functionality for individuals post‑stroke [114]. Patient involvement at several points within this 
loop is used to support model personalization, adherence, and tailoring of intervention plans to functional goals

Table 1 Sensorimotor adaptation and learning: state‑of‑the‑art and future directions

State‑of‑the‑art a. Separate models for different adaptation processes: error, reinforcement,

and use‑dependency.

b. Neural conditions and neural circuits associated with separate learning processes.

c. Experiments and models that focus on short‑term (i.e., single day) adaptation

and retention.

Future directions a. Studies and models that focus on the interaction of multiple learning processes,

and exploiting these interacting and or redundant processes for neurorehabilitation.

b. Research paradigms that focus on how motor controllers are constructed from

scratch (de novo) to better understand long‑term learning and retention to

provide more effective and long‑lasting patient outcomes.

c. Develop models / devices that co‑adapt and incorporate how humans learn,

while optimizing assistance and resistance to maximize patient recovery.
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error augmentation techniques that amplify visual errors 
or haptic resistance, which has improved recovery for 
individuals post-stroke [114]. Several open questions 
remain on how two co-adapting agents interact, whether 
it be a human-device or therapist-patient, and how this 
knowledge can be used to support neurorehabilitation 
(Table 1).

Neuroplasticity models
One of the underlying mechanisms of sensorimotor 
adaptation and learning is neuroplasticity. Broadly, the 
term applies to processes by which the nervous system 
changes, especially in response to experience [155]. Neu-
roplasticity is related to but not synonymous with the 
term ‘critical period’. A critical period specifically refers 
to times of heightened neuroplasticity during develop-
ment or shortly following a neural injury. An example of 
a critical period following a neural injury is evident fol-
lowing a stroke. Even within the first few days following 
stroke there is heightened neuroplasticity, highlighting 
the importance of early neurorehabilitation [156].

Neuroplasticity models to improve diagnosis
Observations of neuroplasticity at the microscale, mes-
oscale, or behavioural level could be used to track dis-
ease state and update diagnoses. In an animal model of 
stroke, squirrel monkeys were given subtotal infarcts in 
hand representation of primary motor cortex [157]. Fol-
lowing subtotal infarcts, there were cortical map changes 
that were quantified by applying a microelectrode at suc-
cessive sites in motor cortical area and measuring evoked 
movements in the upper extremity. These cortical map 
changes included relative expansion of motor areas sub-
serving proximal forelimb into areas subserving distal 
forelimb. Although studies of this nature are commonly 
accepted as proof of neuroplasticity, there are limitations. 
Rigorous experiments and models must account for pre- 
and post-operative training and accurately represent 
human factors, such as relative lesion size and mapping 
conditions (e.g., during anesthesia vs. during movement).

Neuroplasticity models to improve treatment
Understanding the neuroplastic mechanisms is particu-
larly important to identify precise intervention targets 
and monitor treatment response [158]. Noninvasive brain 
stimulation and human-device interaction are promising 
areas of investigation that tap into neuroplasticity with 
the goal of improving function after stroke [159].

The literature on efficacy of transcranial magnetic stim-
ulation (TMS) has historically been mixed [160]. Smaller 
trials have shown efficacy [161, 162], while some large 
clinical trials have not shown efficacy [163]. It is possible 

that stimulation models would benefit from parameter 
optimization [164] to achieve a balance between general-
izability and personalization. Excitatory TMS most likely 
potentiates residual circuitry to make concomitant train-
ing more effective [165] and represents a worthwhile ave-
nue of future investigation.

Brain-machine interfaces and brain-computer inter-
faces have offered a promising approach for studying 
brain-behaviour relationships across scales in the con-
text of neuroplasticity [166, 167]. The use of brain-
machine interfaces and their corresponding algorithms 
to restore sensorimotor function has gained popularity 
in recent years for therapeutic purposes. Many prom-
ising results have been reported in neurorehabilita-
tion, such as decoding communication for paralyzed 
people with tetraplegia and anarthria [168] as well as 
spinal cord injury [169]. These experimental outcomes 
primarily focus on restoring behavioural and motor 
functions at a behavioural level. Brain-machine inter-
faces also offer new avenues to understand neuroplas-
ticity mechanisms that change brain connections at 
the neuron levels, making them particularly promising 
for rehabilitative purposes since the neurons involved 
in these interfaces are causally linked to behaviour. 
Prior studies have shown positive results, indicating 
that long-term brain-computer interface training could 
lead to stable neurocortical mapping [170] and enhance 
long-term cortical network connectivity [171].

State‑of‑the‑art in neuroplasticity modelling
Neuroplasticity can be observed at multiple spatial 
scales: synaptic (i.e., microscale), mesoscale, and behav-
ioural [172–174]. Perhaps, the most well-known type of 
plasticity is Hebbian plasticity, referring to the synaptic 
principle that “neurons that fire together, wire together” 
[175]. Hebbian plasticity has been extensively modelled 
and shown to be regulated by coordinated firing of pre- 
and post- synaptic neurons at millisecond time inter-
vals, a phenomenon known as spike-time dependence 
and long-term potentiation [176]. Related concepts are 
homeostatic plasticity and long-term depression [177]. 
At the mesoscale, intracortical mapping studies and 
functional magnetic resonance show reliable changes in 
cortical areas in response to experience [157, 178–180] 
as observed with expert musicians [181–185]. Behav-
iourally, changes in measured behavioural variables are 
taken to represent changes in nervous system structure 
and function at the micro- and meso-scale [186]. Addi-
tionally, it is important to consider principles of neu-
roplasticity when developing or utilizing brain-machine 
interface algorithms that link different spatial scales.
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Future directions in neuroplasticity to support 
neurorehabilitation
Here we identify several potential fruitful areas where 
neuroplasticity can facilitate neurorehabilitation. First, 
an attractive idea is for neuroplasticity models to aid in 
treatment planning. Ideally, one would develop a compu-
tational model of neuroplasticity that takes as input the 
intervention type and frequency of a prescribed treat-
ment to predict functional outcomes. Before this can 
happen, mathematical equations of neuroplasticity need 
to be further developed. It will be important to define 
the specific scales at which these equations are operat-
ing, including synaptic, mesoscale, or phenotypic. Syn-
aptic models of plasticity, such as spike-time dependent 
plasticity, have not been shown to generalize across more 
than one synapse or to the mesoscale or phenotype/
behavioural outcome scales. As such, there is a need 
for computational models that characterize neuroplas-
tic mechanisms across multiple spatial scales. Second, 
in addition to spatial scales, new models of neuroplas-
ticity should also account for time scales and how they 
vary phenotypically within and between populations. The 
interaction among motor processes also likely changes 
over time and varies by phenotype. In upper extremity 
hemiparesis and recovery after stroke, there are multiple 
motor processes engaged, including reinforcement-based 
or error-based learning mechanisms [187]. While these 
processes are dissociable [98], their interaction across 
the time-course of recovery and habilitation has yet to 
be characterized. Third, brain-computer interfaces could 
aid in chronic stroke recovery by inducing neuroplasti-
city that changes brain connectivity [188]. However, a 
comprehensive understanding of how to engineer neuro-
plasticity through the design of brain-machine interfaces 
is still lacking. Exploring the potential to shape neu-
roplasticity through the design or adaptation of brain-
machine interfaces represents a promising direction for 
future research [189]. Fourth, few studies have sought to 
understand the effects of movement itself on structural 

and functional neuroplasticity. Given that movement is 
a mainstay of treatment in neurorehabilitation (e.g., in 
the context of physical or occupational therapy), this is 
a promising avenue for investigation with high transla-
tional potential. Moving forward it will be important to 
link spatial and temporal neuroplastic changes to behav-
iour, and then target these neuroplastic-behavioural rela-
tionships with treatment to improve functional outcomes 
for those with neurological conditions (Table 2).

Musculoskeletal models
Musculoskeletal models are computational representa-
tions of the biological musculoskeletal system, designed 
to simulate and analyze biological movements. By lev-
eraging patients’ physical data (e.g., height, weight, age, 
strength, MRI, etc.) and movement data (e.g., kinematics 
and force/moments), customized models can be built to 
analyze recorded movements and estimate muscle acti-
vations and states (”tracking approach”) [190]. Addition-
ally, musculoskeletal models, or neuromechanical models 
that also encompass neural control models in addition 
to musculoskeletal components, can be used to produce 
new motions in response to changes in the musculoskel-
etal system and environment, known as the ”predictive 
approach” [191, 192]. By using musculoskeletal models 
to track and predict movements, critical insights can be 
gained, providing timely diagnosis, personalized treat-
ment for movement condition, and advanced under-
standing of biomechanics.

Musculoskeletal models to improve diagnosis
Musculoskeletal models are crucial for dissecting the 
root causes of neuromusculoskeletal conditions, quanti-
fying their features, and communicating the nuances of 
these conditions to clinicians and patients. One promis-
ing application is to help identify underlying causes of 
impairments [116, 193, 194]. Once a model incorporat-
ing all potential neuromechanical factors of a patient is 
developed (e.g., muscle atrophy and sensorimotor noise), 

Table 2 Neuroplasticity: state‑of‑the‑art and future directions

State‑of‑the‑art a. Hebbian learning models: spike‑time dependence, long‑term potentiation,

homeostatic plasticity, and long‑term depression

b. Models at distinct spatial scales: microscale, mesoscale, phenotypic / behaviour.

c. Brain‑machine interface algorithms that relate neuronal activity to behaviour.

Future directions a. Experiments and models that link the multiple spatial and temporal scales of

neuroplasticity that can be used to developed informed and optimized treatment.

b. Improving brain machine interface (BMI) design and developing brain machine

interface algorithms that enhance neuroplasticity.

c. More fundamental studies that examine understand the influence of movement

on structural and functional neuroplasticity.
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an ablation study can be performed (e.g., simulate with 
the potential factors one-by-one) to identify the most 
critical factors that most likely contributed to the impair-
ment. Treatment plans can then be tailored more pre-
cisely, potentially leading to more effective interventions. 
Another potential use of musculoskeletal and neurome-
chanical models is to provide clinicians with a compre-
hensive quantification and visualization of a patient’s 
neuromechanics of movement, offering a detailed depic-
tion of aspects such as joint movement [195], muscle 
length and force [196], muscle activations [197] and syn-
ergies [198, 199], and energy consumption [200]. Using 
these enhanced analyses on a patient’s movement could 
improve both clinicians’ and patients’ understanding 
of the impairments, clarifying the rationale behind pre-
scribed treatments. These models can also be used to 
quantify the severity of movement abnormalities, com-
plementing clinical metrics that are often subjective (e.g., 
Fugl-Meyer score [38]).

Musculoskeletal models to improve treatment
Musculoskeletal and neuromechanical models can also 
be used in the design, outcome prediction, and monitor-
ing of various treatment modalities for movement condi-
tions. For example, potential effects of physical therapy 
and exercise interventions can be simulated with these 
models [201, 202], leading to more precise implementa-
tion of targeted interventions that promote neuroplasti-
city and adaptation. Musculoskeletal simulations can also 
help surgeons to predict the potential impact of different 
surgical strategies on musculoskeletal outcomes [203, 
204]. Furthermore, assistive device design (e.g., exoskel-
etons, prostheses, braces) can benefit from musculo-
skeletal models by analyzing and predicting interactions 

between the devices and the human body [205–207]. 
Musculoskeletal models can estimate patient body states 
in real-time, providing a basis for the control of assis-
tive devices [208–210]. Musculoskeletal models can also 
facilitate the monitoring of rehabilitation progress, ena-
bling clinicians to objectively assess the effectiveness of 
interventions and track patient improvement over time.

State‑of‑the‑art in musculoskeletal modelling
Over the last two decades, musculoskeletal and neuro-
mechanical modelling has advanced significantly. Initially 
focused on tracking approaches to estimate joint dynam-
ics and muscle activations [190, 211], the field is now 
embracing predictive methodologies to study motion var-
iations under different musculoskeletal and environmen-
tal conditions [191, 192]. These models have enriched 
understanding of human movement and musculoskel-
etal conditions, shedding light on injury mechanisms like 
ACL ruptures [212] and ankle sprains [213], and aiding 
clinical decisions in osteoarthritis cases by assessing joint 
load [214, 215]. They have been used in evaluating surgi-
cal outcomes, such as hamstring lengthening surgery for 
children with crouch gait [216], and have helped charac-
terize the impacts of musculoskeletal changes on move-
ment patterns in aging [193], muscle atrophy [194, 217], 
and hemiparetic gait [116]. Moreover, these models are 
being applied in developing exoskeletons and prostheses 
[206, 218–220], and integrated into real-time controllers 
for assistive devices [209, 218, 221, 222].

Future directions in musculoskeletal modelling to support 
neurorehabilitation
While primarily used to study and evaluate musculoskel-
etal conditions today, musculoskeletal models are poised 

Fig. 3 Here we use a worked example of multiple sclerosis within the patient‑in‑the‑loop framework to improve mobility. Here musculoskeletal 
models of gait efficiency and symmetry are used to aid diagnosis, a device is used for intervention, and a musculoskeletal model of human‑device 
interaction is used to predict several gait metrics when using the device. Patient involvement occurs at several points within the loop
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for substantial progress that could dramatically enhance 
their precision and clinical relevance in neurorehabilita-
tion. As shown in the worked example of the patient-in-
the-loop framework in Figure 3, musculoskeletal models 
could be employed to customize physical therapy pro-
grams and the design or prescription of assistive devices. 
This customization would be specifically tailored to an 
individual patient’s mobility level, clinical phenotype, and 
rehabilitation goals, thus underlining the pivotal role of 
these models in future neurorehabilitation strategies.

Model customization is necessary to capture patient-
specific musculoskeletal features for diagnosis and treat-
ment, possibly through the use of MRI, ultrasound, 
dynamometry, and motion data. Despite the importance 
of developing neuromechanical control and learning 
models that can predict human behaviour, it remains 
an immense challenge largely due to our limited under-
standing of the nervous system. Here we highlight poten-
tially valuable directions. First, it will be important to 
refine objective functions to generate more reliable and 
accurate predictions. Current research predominantly 
utilizes optimality principles based on metabolic energy 
and muscle activation to produce predictions. However, 
it will be valuable to explore other physiologically-plau-
sible objectives, such as stability [223, 224], fatigue [225], 
and comfort [226]. Second, more advanced physiologi-
cally-plausible control models [227–230] are necessary, 
extending beyond the current focus on locomotion to 
include a broader range of movements. The integration 
of advanced machine learning techniques, such as deep 
reinforcement learning, could be critical in training con-
trollers to produce this more diverse range of movements 
[192]. Third, the inclusion of further neurological details, 
such as sensory dynamics, activation dynamics, and the 
properties of neural activation, could make our neurome-
chanical models more congruent with actual neural activ-
ity recordings [231], thereby enhancing their realism and 

applicability. Fourth, incorporating sensorimotor adapta-
tion and learning models into neuromechanical simula-
tions holds potential for advancing neurorehabilitation 
modelling. Such incorporations could show how mus-
culoskeletal alterations, assistive devices, or interven-
tions may induce movement adaptations. Fifth, adapting 
these control models to accommodate neural pathologies 
represents both a significant challenge and an indispen-
sable step towards enhancing their relevance in neurore-
habilitation  (Table  3). Collectively, these advancements 
could be complemented by rigorous experimental vali-
dation involving human experiments [232]. Importantly, 
collaboration with clinicians is necessary to ensure that 
any advanced models tools are developed and utilized 
to meet the requirements of clinical practice and patient 
care.

Sensory and pain models
Mathematical and computational techniques can be used 
to simulate processes underlying sensory perception and 
pain sensation. These models aim to capture the com-
plex interactions between various physiological, neural, 
and cognitive factors across a wide range of conditions 
including neuropathic pain, migraine, autism, and Par-
kinsonism. Sensory models can inform the development 
of better diagnostic tools and treatment approaches, 
including advanced neuroprosthetic devices. Compu-
tational modelling offers a less-invasive means of gen-
erating new knowledge on human sensation and pain 
compared to in  vivo experimental paradigms. Yet, such 
models have been based on neurotypical function and 
development, neglecting to characterize atypical acquisi-
tion, processing, integration, and use of sensory informa-
tion. This has limited their application in clinical research 
and in diagnosis and management of conditions with 
known sensory processing differences.

Table 3 Musculoskeletal: state‑of‑the‑art and future directions

State‑of‑the‑art a. Predictive models of motion under different musculoskeletal and environmental

conditions, ranging from changes due to age and walking over uneven terrains.

b. Modelling musculoskeletal conditions and injury, such as osteoarthritis.

c. Evaluating surgical outcomes, such as hamstring lengthening for crouch gait.

d. Modelling human‑assistive device interactions with integrated real‑time control.

Future directions a. Consider plausible objectives in cost functions that relate to patient goals,

including stability, fatigue, and comfort.

b. Inclusion of neurological details that become impacted with neurological

conditions, such as sensory feedback and other neural dynamics.

c. Incorporating learning and neuroplasticity principles, which are important

when recovering from a neural condition or interacting with an assistive device.

d. Advancing models to accommodate various neural condition and injury.
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Sensory models to improve diagnosis
Current diagnostic practice for atypical sensory function 
in neurodevelopmental and neurodegenerative condi-
tions relies heavily on clinician observation (e.g., Romb-
erg’s Test [233]), patient self-report (e.g., Adolescent/
Adult Sensory Profile [234]) or standardized assessments 
with binary or ternary scoring systems (e.g., Mini-BEST 
[235]). We have yet to comprehensively model the com-
plexities of atypical sensory processing and their manifes-
tation within or between clinical populations, and across 
development. For example, a clinician may observe simi-
lar postural instability and sensitivity to auditory stimuli 
in a patient diagnosed with superior canal dehiscence 
syndrome and a patient diagnosed with autism, but the 
two have very different neurobiology and require differ-
ent management of their sensory experiences.

Visuomotor integration is a promising target for com-
putational modelling to characterize the link between 
behaviour and neural mechanisms. Sensory weighting for 
postural control and movement is heavily reliant on vis-
ual input in early and middle childhood, and more adapt-
able in adolescence [236–238]. [239]. Neurotypical adults 
maintain the ability to reweigh sensory information 
based on its integrity or availability but return to visual 
over-dependence with aging, which increases their risk of 
falls [240]. However, neurodevelopmental conditions like 
developmental coordination condition and autism may 
not exhibit typical sensory reweighing in some contexts 
[241–244]. Condition-specific models could offer precise 
diagnostic tools for distinguishing typical from atypical 
development and differentiating between neurodevelop-
mental conditions.

Recent advances in human-device interaction also 
support precise diagnosis of atypical sensory function. 
For example, to assess proprioceptive integrity follow-
ing stroke or in response to perturbation [52, 245–248]. 
To optimize diagnostic and treatment applications of 
computational modelling, we must address questions of 
model sensitivity and specificity. Both condition-specific 
and general models must characterize the functional and 
temporal interplay between sensory systems [249], given 
the known importance of multisensory processing.

Sensory models to improve treatment
Visuo-proprioceptive recalibration represents a prom-
ising intervention type to improve sensory function, as 
evidenced in the reaching literature [250–253]. Com-
putational modelling has been used recently to explain 
this sensorimotor adaptation process [254]. Visuo-
proprioceptive feedback training shows promise for 
fall prevention in healthy aging [255] and improvement 
of bradykinesia in Parkinsonism [256]. Recent work 
suggests that proprioceptive, but perhaps not visual, 

recalibration is retained after remapping [257]. Com-
putational modelling can be used to determine whether 
sensory recalibration potential differs between or within 
populations, enabling clinicians to predict who may ben-
efit most from this approach.

Computational models personalized to patient-specific 
factors can predict the success of adaptation to neuro-
prosthetics, as seen in cochlear implant development 
[258]. As users adapt to implants, sensory remapping 
improves speech perception [5]. This process takes time 
and can lead to frustration or disuse. Acoustic models 
that drive cochlear implants are constrained by the num-
ber and tuning of channels, temporal resolution, and 
topographical discrepancy between the frequency infor-
mation provided by the electrode and the natural tuning 
of the cochlea. Interactive genetic algorithms and evolu-
tionary algorithms can support optimization of acous-
tic models at a more efficient rate of convergence than 
natural adaptation [259, 260]. Models simulating listener 
errors can also be used to inform development of such 
algorithms [258]. Demonstrating the utility of integrat-
ing models into a patient-in-the-loop framework, self-
selected acoustic models for cochlear implants tuned to 
individual parameters via method-of-adjustment out-
perform high-dimensional models [261]. This approach 
highlights the need for a balance between efficient, gen-
eralizable models, and those personalized to account for 
individual features to optimize the efficiency and quality 
of rehabilitation.

State‑of‑the‑art in sensory modelling
In the recent past, researchers focused on mimicking 
the natural coding of touch and integrating them into 
bionic devices in form of so-called biomimetic paradigms 
[262, 263]. To replicate the reality, receptor and affer-
ent responses are simulated to estimate how mechanical 
input will be transformed into afferent spike trains and 
transmitted to higher-order somatosensory areas [264, 
265]. These models offer a better understanding of touch 
afferent activation, as well as overcoming a major limita-
tion of direct electrophysiological measurements which 
require stationary conditions, enabling analysis of activ-
ity in  situations like walking or jogging. Similar models 
are also used to mimic the response of proprioceptors 
[266, 267], providing a novel guideline for controlling 
sensory restoration. Improvement of these models 
depends on the availability of large human and animal 
datasets containing electrophysiological recordings of 
afferent responses across a variety of different types of 
stimulation.

Mathematical representations of pain can guide devel-
opment of hypotheses about underlying intervention 
targets. Most established computational models of pain 
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focus primarily on binary prediction of pain perception 
using machine learning algorithms [268, 269]. These 
approaches typically fail to account for the specific fea-
tures driving pain perception [270]. Computational mod-
els can also be used to understand and predict the pain 
perception-action cycle [271]. These models describe 
the dynamic interaction between the sensory experience 
of pain and the behavioural response [272, 273]. Most 
established models of pain are data-driven and based on 
neural networks [274–278]. By contrast, to our knowl-
edge, there are relatively few hypothesis-driven, mecha-
nistic models of pain.

Future directions in sensory modelling to support 
neurorehabilitation
The field of neurorehabilitation is faced with several 
remaining challenges in pursuit of robust, comprehen-
sive sensory models. Models of motor control based on 
neurotypical development may not capture critical vari-
ability in sensory information acquisition. For example, 
atypical oculomotor control is a feature of many condi-
tions (e.g., autism, schizophrenia, Parkinsonism) that 
poses challenges for the development of robust eye 
movement models. Atypical postural control is also a 
feature of many conditions that poses challenges for the 
development of generalizable models of body movement. 
Comprehensive multisensory models are essential for 
advancing technologies used in research and clinical con-
texts to quantify sensory processing in more naturalistic, 
less-invasive contexts.

Sensory experiences are highly subjective and influ-
enced by psychological factors such as expectation 
[279], catastrophizing [280], optimization to the envi-
ronment and task [281], and co-occurring conditions 
[282]. Pain experiences are also subject to the influence 
of contextual, social, psychological, and cultural fac-
tors [283]. These factors are often neglected or poorly 

operationalized in physiological studies. Mixed-meth-
ods approaches can be used to characterize the human 
sensory-perceptual experience, as qualitative responses 
can help to contextualize physiological and behavioural 
data [284]. Models that account for the full complex-
ity of sensation and pain perception are needed to 
support development of comprehensive pain manage-
ment strategies that address all relevant dimensions in 
concert (Table 4).

The proposed patient-in-the-loop framework is a 
means of ensuring that lived experiences and psycho-
logical/perceptual influences on sensory and pain pro-
cesses are not lost in assessment and management. 
Fig. 4 offers a worked example of applying this frame-
work to specific visuomotor neurohabilitation goals in 
autism, though certainly it has many other habilitation 
and rehabilitation applications. As in other domains of 
modelling, it is crucial to achieve a balance between 
data-driven and hypothesis-driven approaches to 
ensure that resulting knowledge is theoretically-pro-
ductive and interpretable. Focus should be directed 
to development of models that offer new information 
about the relative importance of specific features used 
to predict or explain clinically-relevant outcomes [285], 
while factoring patient goals and constraints.

Model validation
Modelling across all domains depends on rigorous vali-
dation to render models reliable as diagnostic, treatment, 
or research tools. Unification of validation processes 
across the field of neurorehabilitation is crucial to maxi-
mize the validity and translational potential of computa-
tional modelling. Best practice guidelines proposed for 
musculoskeletal model validation [286] could be adapted 
and extended to also accommodate models of adaptation, 
neuroplasticity, and sensation/perception.

Table 4 Sensory and pain: state‑of‑the‑art and future directions

State‑of‑the‑art a. Separate models for typical development and for specific neurodevelopmental

and neurodegenerative conditions.

b. Experimental paradigms and models that constrain dimensionality.

Future directions a. Multisensory models that consider feedforward and feedback mechanisms.

b. Sensitive and specific diagnostic models that account for general population

variability and phenotypic heterogeneity within conditions.

c. High‑dimensional diagnostic and treatment models that account for interplay

between physiological, cognitive, emotional, and behavioral factors to support

optimization and personalization.
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Validation targets
Determining the validity of a model entails evaluat-
ing: 1. Is the model feasible (e.g., does the fundamental 
model appropriately represent the hypothesis it aims 
to capture)?, and 2. Is the model accurate (i.e., does the 
model correctly reproduce the input–output relationship 
observed in the real world)? Feasibility must be satisfied 
before any meaningful interpretation of model behaviour 
can be made. Otherwise, model outputs do not reflect 
the hypothesized relationship, regardless of how well 
they may fit experimental data. Model accuracy must be 
evaluated against experimental observations. Models can 
be adjusted or reconceptualized to reduce model error 
(the difference between model-generated outputs and 
experimentally observed outputs), or discarded if experi-
ments indicate no relationship between the hypothesis 
represented by the model and the observed behaviour.

The use of robust statistics and obtaining confidence 
intervals of parameter values are useful for model fit-
ting. An absolute loss function, specifically the absolute 
difference between model-generated outputs and experi-
mentally observed outputs, is known to be more robust 
than squared error since it is less sensitive to outliers [98, 
287–289]. Once a loss function is selected, it is useful to 
find the confidence intervals of each model parameter. 
Bootstrapping is a resampling technique that can pro-
vide a nonparametric confidence interval for each model 
parameter [290]. Another benefit of bootstrapping is that 
statistical inference can be performed between differ-
ent models since the confidence intervals are known [99, 
106]. For example, one can calculate the probability that a 

neurotypical group will have significantly different model 
parameters than those with a neurological condition.

Goodness of fit versus overfitting
It is also important to consider, however, that perfectly 
matching a set of observed behaviours is not the only 
purpose of a model. Instead, a useful model captures the 
critical dynamics between phenomena that drive most of 
the change in output given some change in input. Identi-
fying the model parameters that dominate input–output 
dynamics is possible through sensitivity and uncertainty 
analyses [291], which generally involve perturbing model 
inputs in sequence and measuring the output response.

To find the simplest model that best explains the data 
and prevent overfitting an over-parameterized model to 
noise [292], tools such as AIC (Akaike Information Cri-
terion) and BIC (Bayesian Information Criterion) con-
sider the quality of the fit while penalizing the number of 
free parameters. Further, BIC and AIC can also provide 
insight into which of several theories, each represented 
by a model, is more likely to be true [99, 292, 293]. Cross 
validation is another useful approach to prevent overfit-
ting and to test model accuracy. Cross validation uses 
multiple different subsets of the original data to fit the 
data, and then tests the resulting model accuracy on the 
remaining subsets of the data [294, 295]. This approach 
is particularly popular for machine learning and is useful 
for testing how accurate a model is when applied to new 
data sets. Utilizing models that are not overfit and gener-
alize to new data sets will be particularly important when 
attempting to diagnose or prescribe treatment.

Fig. 4 Computational models of multisensory integration and the oculomotor system can be applied to habilitation in autism. Patient involvement 
at each point in the loop can inform selection of data inputs, diagnostic and treatment model development and implementation, and selection 
of intervention type based on potential barriers to adherence, sensory needs, and personal functional goals. Treatment prescription can be 
informed via model predictions of visual‑proprioceptive recalibration that account for developmental changes across the lifespan, with the goal 
of improving static and postural control to aid mobility, lower fall risk, and improve fitness
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Future factors to consider for model validation
Adherence to rigorous model validation is a critical step 
for ensuring that the development of a model-assisted 
neurorehabilitation paradigm will be appropriately 
robust. Ensuring that experiments are sufficiently pow-
ered is an important factor not only for reproducibility, 
but also for testing theories and model validation [296–
300]. Model validation efforts should be supported by 
standardized criteria that are valid across the spectrum 
of proposed model scope, from population-level mod-
els to fully individualized “digital twins”. Clinical accept-
ance of computational models in a clinical rehabilitation 
framework will likely be greatly aided by such an effort 
to reliably demonstrate that these models are trustwor-
thy. It is the responsibility of computational modellers 
to ensure that models do not impede the ability of clini-
cians or patients to make informed decisions, but rather 
strengthen it.

Challenges
In addition to the model-specific challenges already dis-
cussed, there also exist challenges related to the data 
which serve as the input to all models described above. 
The access to high-dimensional, multi-modal data col-
lected from ecologically-valid situations represents a 
potential paradigm shift in neurorehabilitation. How-
ever, there are several open challenges that must first 
be addressed to use this data effectively within compu-
tational modelling for neurorehabilitation. First, it is 
critical to identify what data is needed for each model. 
This involves identifying primary outcome measure(s) 
of interest (e.g., walking speed, community participa-
tion, etc.) and the physiological, biomechanical, and 
or clinical variables that are most relevant to that out-
come measure. This step can require large samples of 
diverse patients to overcome the heterogeneity within a 
population (e.g., stroke, Parkinson’s disease, etc.), often 
necessitating multi-site collaboration. Thus, the second 
challenge is to overcome the potential inconsistency in 
data quality or availability across locations, people, days, 
etc. For example, MRI imaging quality can vary depend-
ing on scanner type, strength, pulse sequences, etc. A 
model that overcomes this variability will have the most 
potential for impact on neurorehabilitation [301]. In a 
similar vein, wearable sensor data to monitor movement 
can be sensitive to sensor placement and orientation 
[302–304]. Thus, models that rely on wearable sensor 
data must account for such variability to achieve optimal 
performance. Third, it is critical to carefully assess the 
performance of group-level statistics versus individual-
ized data for model predictions. Or in other words, how 
much model personalization is necessary. In some cases, 
group-level statistics may be sufficient. For example, 

many studies have successfully grouped stroke patients 
based on their similarity in clinical, biomechanical, and/
or physiological impairments [85, 86, 88, 89]. Do patients 
within each of these groups respond similarly to rehabili-
tation? If so, then models based on group-level statistics 
may be sufficient. In other cases, however, personaliza-
tion may be critical. For example, personalized neural 
control models are able to better predict the immediate 
response to surgery in children with cerebral palsy [305] 
and stroke gait under novel conditions [306] than group-
level and generic models. Determining the optimal level 
of personalization for any model will require careful 
assessment and evaluation of the extent to which addi-
tional and meaningful predictive capabilities are gained 
with increasing personalization. Lastly, developing mod-
els that rely on multiple time-point and/or continuous 
monitoring of multi-modal data in real-world settings 
require careful processing and advanced modelling 
techniques to analyze the large data sets that are gener-
ated. Deep learning methods that use the entire dataset 
instead of a reduced representation show promise in 
capturing subtle but important individual-specific pat-
terns, which can guide clinical decision making via purely 
data-driven modelling approaches or serve as input into 
mechanistic, fundamental models. However, there is still 
substantial work to be done to guarantee the accuracy 
of these models in capturing the heterogeneity present 
across individuals and their utility in predicting response 
to neurorehabilitation.

We believe that implementing computational model-
ling within the clinical setting is a fruitful goal to strive 
towards. Yet there are several potential challenges, some 
of which we briefly mention here. There will likely have to 
be agreement on some of the tasks used to collect patient 
data [307], so that there is consistent and a sufficient 
amount of data to properly validate models. As men-
tioned above, it is imperative to ensure models are prop-
erly validated and viable before implementing to inform 
diagnostics and treatment. From a modelling perspective, 
many of the computation models have been designed 
and validated for very specific scenarios (e.g., walking in 
a straight line at a steady velocity, or reaching towards 
a target while moving the arm only in the horizontal 
plane). It will be important to develop models that gen-
eralize and capture more naturalistic movements that are 
relevant to the functionality of a patient. As mentioned 
in the introduction, a major challenge is getting research-
ers from multiple disciplines (engineerings, clinicians, 
etc.) to productively work together towards a common 
goal, despite often very different approaches and skill-
sets [6, 7]. To facilitate these collaborations, educational 
and technical workshops aimed at both clinicians and 
computational modellers would be beneficial to better 
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understand one another’s theory, approach, and termi-
nology. Increased federal funding towards (i) providing 
educational and technical workshops for modellers and 
clinicians, (ii) conferences that focus on computational 
modelling in neurorehabiliation that is attended by both 
clinicians and modellers, and (iii) grants that support col-
laboration between clinicians and computational model-
lers with the goal of improving neurorehabilitation would 
help to overcome many of these challenges.

Summary and moving forward
We have proposed where and how computational model-
ling can be used to aid clinical diagnosis and treatment 
within our proposed patient-in-the-loop framework. In 
this perspective piece, we identified current state-of-the-
art and highlighted potentially fruitful avenues of compu-
tational modelling across sensorimotor adaptation (e.g., 
co-adaptation with a device), neuroplasticity (e.g., linking 
spatial scales of neurons), musculoskeletal (e.g., stabil-
ity), sensory (e.g., pain perception), and machine learn-
ing (e.g., optimal dynamic treatment regime [9, 96]) that 
can be used to support neurorehabilitation. It is impera-
tive to validate these models before using them to help 
inform diagnosis and treatment. We believe that it will 
be equally important to take both mechanistic or patient-
centered approaches that respectively consider underly-
ing processes and functional outcomes, to eventually 
provide causal links along the continuum between neu-
rons and behaviour.

Our patient-in-the-loop framework provides a guide to 
facilitate multidisciplinary research to improve patient 
recovery and habilitation. Our framework is intentionally 
general, in a similar vein to the ICF that it incorporates, 
so that it can be applied to a broad range of neurologi-
cal diseases (e.g., Stroke, multiple sclerosis, etc.) and neu-
rodevelopment conditions (e.g., autism). It incorporates 
the idea of multiple and or continuous data measure-
ments of a patient’s condition over time, as described in 
a recent precision rehabilitation framework [9]. Further, 
this framework includes patient involvement through-
out the process, from data collection to prescribed treat-
ment, which has shown to improve patient satisfaction, 
treatment outcome, and health [22–28]. Importantly, 
this patient-in-the-loop framework identifies where and 
how computational modelling can support neurore-
habilitation within a clinical pipeline. We encourage 
clinicians and modellers to utilize or adapt this patient-
in-the-loop framework to develop informed and effective 
neurorehabilitation.
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