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Abstract 

Background Tremors are involuntary rhythmic movements commonly present in neurological diseases such 
as Parkinson’s disease, essential tremor, and multiple sclerosis. Intention tremor is a subtype associated with lesions 
in the cerebellum and its connected pathways, and it is a common symptom in diseases associated with cerebellar 
pathology. While clinicians traditionally use tests to identify tremor type and severity, recent advancements in wear‑
able technology have provided quantifiable ways to measure movement and tremor using motion capture systems, 
app‑based tasks and tools, and physiology‑based measurements. However, quantifying intention tremor remains 
challenging due to its changing nature.

Methodology & Results This review examines the current state of upper limb tremor assessment technology 
and discusses potential directions to further develop new and existing algorithms and sensors to better quantify 
tremor, specifically intention tremor. A comprehensive search using PubMed and Scopus was performed using 
keywords related to technologies for tremor assessment. Afterward, screened results were filtered for relevance 
and eligibility and further classified into technology type. A total of 243 publications were selected for this review 
and classified according to their type: body function level: movement‑based, activity level: task and tool‑based, 
and physiology‑based. Furthermore, each publication’s methods, purpose, and technology are summarized 
in the appendix table.

Conclusions Our survey suggests a need for more targeted tasks to evaluate intention tremors, including digitized 
tasks related to intentional movements, neurological and physiological measurements targeting the cerebellum 
and its pathways, and signal processing techniques that differentiate voluntary from involuntary movement in motion 
capture systems.

Keywords Tremor assessment, Intention tremor, Multiple sclerosis, Ataxia, Wearable sensors

Background
Introduction
Tremor is characterized as an involuntary, rhythmic, 
oscillatory movement of a body part [1], and it can 
manifest as a symptom of various neurological diseases, 
including essential tremor (ET), Parkinson’s disease (PD), 
and multiple sclerosis (MS). The categorization of trem-
ors is based on clinical factors such as anatomical dis-
tribution, activation conditions, amplitude, frequency, 

*Correspondence:
Natalia Paredes‑Acuna
natalia.paredes@tum.de
1 Institute for Cognitive Systems, Technical University of Munich, 
Arcisstraße 21, 80333 Munich, Germany
2 Department of Neurology, School of Medicine, Technical University 
of Munich, Munich, Germany
3 Department of Biomedical Engineering, Johns Hopkins School 
of Medicine, Baltimore, MD, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12984-023-01302-9&domain=pdf
http://orcid.org/0000-0002-8139-6179
http://orcid.org/0000-0003-0809-0242
http://orcid.org/0000-0002-0680-673X
http://orcid.org/0000-0002-9981-9395
http://orcid.org/0000-0003-0770-8717


Page 2 of 17Paredes‑Acuna et al. Journal of NeuroEngineering and Rehabilitation            (2024) 21:8 

and underlying etiology. Within the scope of this review, 
tremors will be classified according to their activation 
condition and corresponding neurological symptoms and 
diseases.

Tremor can be classified into two main categories: rest 
tremor [2], characterized by nonvoluntary activation 
that occurs when the individual is attempting to rest and 
is commonly observed in people with PD. In contrast, 
action tremor [1] involves voluntary movement. Action 
tremor can be further classified into two subtypes: pos-
tural tremor, which occurs when the subject maintains 
a position against gravity, and kinetic tremor, which is 
associated with any voluntary movement that can be 
constant (simple kinetic), specific to a particular activ-
ity, such as writing (task-specific), or that increases as the 
individual approaches a goal or visual target (intention 
tremor). Intention tremor refers to a rise in the amplitude 
of tremors when visually guided movements are made 
toward a target, especially when nearing it. This type of 
tremor can also be coupled with task-specific tremor as 
the individual performs targeted movements, for exam-
ple, during drawing (Archimedes Spiral tests). Intention 
tremor is believed to be correlated with cerebellar pathol-
ogy, its connected pathways, or both, and it is a common 
symptom in people with, for example, MS [3]. It is esti-
mated that 25–60% of people with MS experience pos-
tural and intention tremor [4], which typically occurs in 
the upper limbs at a frequency of 3–4 Hz [3]. However, 
other types of tremors, such as rest, simple kinetic, and 
task-specific tremors, are not frequently observed in MS 
[5].

Assessing tremors in patients with neurological dis-
eases is crucial for determining disease progression and 
the effectiveness of medical treatments. Traditionally, cli-
nicians use various clinical tests to identify tremor type 
and severity in patients. However, with the advancement 
of wearable technologies, such as smartphones, smart-
watches, and sophisticated muscle sensors, there are 
now quantifiable ways to measure movement and tremor. 

Although wearable technology is a promising approach 
for quantifying tremors, identifying relevant features for 
each type of tremor is necessary for practical use. Recent 
research has shown that analyzing tremor amplitude and 
frequency makes it possible to differentiate between dif-
ferent movement disorders such as ET and PD versus 
healthy controls, classify tremor severity, and correlate 
it with traditional qualitative-scored neurological tests 
[6]. However, the changing nature of intention tremors, 
whose amplitude depends on the movement intention 
of the patient, makes it difficult to quantify this type of 
tremor and extract valuable features using the current 
approaches.

Identifying and analyzing intention tremors can greatly 
aid disease progression monitoring and intervention effi-
cacy assessment. This review examines the advancement 
of upper limb tremor assessment technology, methodol-
ogy, and future directions for algorithm and sensor devel-
opment to improve quantification of tremor in general 
and intention tremor specifically.

Neurological tests for tremor assessment correlation 
and comparison
Researchers evaluate tremor assessment technologies 
by performing specific tasks that amplify the targeted 
tremor type. These tasks are based on tests used in clini-
cal practice to assess upper limb impairments. Table  1 
displays the most common clinical tests used to correlate 
or as a reference for evaluating assessment technologies. 
The Fahn-Tolosa-Marin Tremor Scale (FTMRS) [7] and 
the Essential Tremor Rating Assessment Scale (TETRAS) 
[8] are frequently used to quantify rest, postural, and 
kinetic tremor, including tremor during activities of daily 
living (ADLs). When the technology is tailored for a sin-
gle population, e.g., people with PD, a more disease-spe-
cific test such as the Movement Disorder Society Unified 
Parkinson’s Disease Rating Scale, Part III Motor Exami-
nation (UPDRS-III) [9] is used for correlation purposes.

Table 1 Common neurological tests and tasks used in clinical practice to assess tremor

FTMRS Fahn‑Tolosa‑Marin Tremor Scale, TETRAS Essential Tremor Rating Assessment Scale, UPDRS-III Movement Disorder Society Unified Parkinson’s Disease Rating 
Scale, Part III Motor Examination, SARA  Scale for the Assessment and Rating of Ataxia, FT Finger Tapping, FTN Finger To Nose test, ADLs Activities of Daily Living

Name Tremor type/function Tasks

Rest Posture 
against 
gravity

Write Archimedes 
spiral

FT FTN Finger chase ADLs Other

FTMRS [7] Rest, postural, kinetic X X X X X

TETRAS [8] Postural, kinetic X X X X X X

UPDRS‑III [9] Rest, postural, kinetic X X X X

SARA [10] Postural, kinetic, ataxia X X X X
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Another example of a disease-specific test is the Scale 
for the Assessment and Rating of Ataxia (SARA) test 
[10], which focuses on cerebellar ataxia. SARA includes 
the finger to nose test (FTN) and the finger chase test, 
which specifically evaluates intention tremor.

In summary, clinical tests include different tasks assess-
ing tremor severity depending on their type (see Fig. 1):

• Rest tremor: Sitting with fully supported arms against 
gravity.

• Postural tremor: Maintaining a specific posture 
against gravity, for example, stretching arms to the 
front so that the subject maintains their elbows 
stretched against gravity; or shoulder abduction with 
elbows flexed and hands held in a pronated position 
resembling a ’wing-beating’ posture.

• Kinetic tremor: Simple kinetic and task-specific trem-
ors are evaluated using tasks such as handwriting, 
Archimedes spirals drawings, and finger tapping 
(FT), as well as ADLs involving whole-body move-
ment, such as pouring drinks, eating, and dressing. 
Intention tremor severity can be measured using 
the finger to nose test (FTN). In this test, the subject 
touches their nose and then the examiner’s finger, 
with the tremor amplitude expected to increase as 
the hand approaches the finger. Intention tremor can 
also be assessed using the finger chase test, where the 
examiner performs sudden fast pointing movements 
in a frontal plane. At the same time, the subject fol-
lows with their finger as quickly and accurately as 
possible.

Literature search and data extraction
This review was primarily conducted using the Pre-
ferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) scoping review checklist 

(see Additional file  2). In this review, we were inter-
ested in finding studies examining quantifiable upper 
limb tremor assessment strategies accessible to clini-
cians and patients without highly specialized equip-
ment. To determine the criteria for inclusion and 
exclusion, we conducted a comprehensive search on 
PubMed and Scopus with the following title/abstract 
terms ("tremor") AND ("assessment" OR "measure-
ment" OR "evaluation" OR "detection" OR "quantifica-
tion" OR "monitoring" OR "correlation" OR "estimation" 
or "discrimination" OR "analysis" OR "differentiation" 
OR "classification") AND ("technology" OR "sensor" 
OR "device" OR "quantification") (last search date: 10 
July 2023) (see Additional file 5 for the detailed search 
strings). Further publications were identified from the 
list of references of relevant papers and relevant review 
papers found in our search [6, 11, 12]. After screening 
the articles for relevance and eligibility, we excluded 
studies that (1) did not focus on upper limb impair-
ment, (2) focused on upper limb symptoms that explic-
itly excluded tremor, (3) only used clinical tests and 
clinician evaluation without any sensor or any auto-
mated tool, (4) the type of technology is not portable 
or usable outside of specialized rooms (e.g., functional 
magnetic resonance (fMRI) or magnetoencephalogra-
phy (MEG)) or are invasive, (5) only evaluated healthy 
subjects, (6) interventional studies using damping 
tools, such as exoskeletons or functional electrical 
stimulation (FES), (7) preprints, prospective studies, 
and not peer-reviewed, and (8) not written in English. 
The remaining studies, 243 publications (see the details 
on data extraction in Additional file  3), were analyzed 
to identify common themes and establish criteria based 
on the type of sensors, number of subjects, technol-
ogy, methodology, purpose, and year of publication. 
According to our screened papers, tremor assessment 
technologies can be classified into three distinct types, 

Fig. 1 Rest tremors are evaluated using supported positions, postural tremors with no support, kinetic tremors through tasks such as writing, finger 
tapping (FT), and Activities of Daily Living (ADLs), and intention tremors using tasks such as finger to nose test (FTN) and finger chase (FC) tests
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as depicted in Fig. 2 and classified in the table of Addi-
tional file 1 and the database found in Additional file 4:

 i. Activity level:  Based on tools and digitized tasks, 
using smartphones or tablets, assessment is made 
through manipulanda or touch-based games.

 ii. Based on physiological sensors, physiological meas-
urements are used to detect and differentiate 
tremors using surface electromyography (EMG) 
sensors, muscle activation following motor unit 
recruitment, and electroencephalogram (EEG) 
measuring the brain’s electrical activity from the 
scalp.

 iii. Body function level: Movement  based on motion 
capture systems, the tremor and the posture of the 
subject’s upper limbs are captured using acceler-
ometers, gyroscopes, inertial measurement units 
(IMUs), electromagnetic tracking, or camera sys-
tems, with or without markers.

Technologies for tremor assessment
The following sections will discuss the different assess-
ment technologies and algorithms to quantify tremors. 
The studies in this section have been classified in detail 

according to sensor type, patient population, and tremor 
type in Additional files 1 and 4. We encourage the readers 
to consider this chapter together with those additional 
files. Table 2 presents an overview of the tools discussed 
in this chapter and the main type of tremor assessed with 
them.

Signal processing to quantify and analyze tremors
Tremor assessment technologies measure physical 
parameters and transform them into electronic signals. 
For instance, accelerometers placed on the subject’s hand 
analyze the frequency components of arm acceleration 
to detect tremors. Signal processing techniques are nec-
essary to remove noise and measure various movement 
features. The publications in our review employ differ-
ent algorithms and feature extraction methods based on 
signal processing techniques for tremor detection. To 
detect tremors, measurements are typically transformed 
from the time domain to the frequency domain, focus-
ing on tremor frequencies (2–10 Hz) compared to regu-
lar movement. Fast Fourier transform (FFT) and power 
spectral distribution (PSD) analysis are commonly used. 
The FFT provides information about the amplitude and 
phase of individual frequency components in a signal, 
while the PSD offers insights into the power distribution 
across different frequency bands. The PSD is especially 

Fig. 2 Types of tremor assessment technologies include activity level tasks and tools such as tablets and smartphones for drawing, physiological 
technologies such as surface electromyography (EMG) and electroencephalogram (EEG), and body function level movement‑based technologies 
such as inertial measurement units (IMUs) and camera systems for measuring upper limb pose and movement. Figures adapted from [13, 14] used 
under CC BY 4.0 and from [15] used under granted copyright by CCC RightsLink
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suitable for comparing signals of varying lengths because 
it focuses on the frequency distribution regardless of the 
signal length. In contrast, the FFT is dependent on the 
signal length.

In addition to the FFT and PSD, decomposing elec-
tronic signals in both time and frequency is advanta-
geous, particularly for analyzing changes in frequency 
strength over time. The discrete wavelet transform 
(DWT) and Hilbert-Huang transform (HHT) [16] can 
be helpful for this. The DWT decomposes a signal into 
wavelets of different frequencies, scales, and orienta-
tions, making it more efficient to simultaneously analyze 
both frequency and time information, more robust to 
noise, and computationally efficient. On the other hand, 
the HHT decomposes a signal into its intrinsic mode 
functions (IMFs) using empirical mode decomposition 
(EMD) [17] and is better suited for analyzing nonstation-
ary signals with precise time–frequency information. 
However, it may require more processing power. Thus, 
DWT and EMD are valuable tools to decompose volun-
tary and involuntary movement.

Manipulanda and technical tools to quantify tremors
One approach for assessing tremors involves using tools 
with embedded sensors that can measure the direction, 
speed, and force of movement [18–24]. Researchers 
have utilized tools such as pens [25–30] with embedded 
IMUs and load cells to quantify tremor amplitude while 
users hold it, attach it to their hands, or write with it. 
An advantage of embedded sensor tools is their ability 
to identify different features in virtual tasks [31–33]. For 
example, the Virtual Peg Insertion Test (VPIT), based on 
the 9HPT [34] test, employs a manipulandum with force 
sensors in a virtual game environment and serves as a 
digital health metric for predicting the response to neu-
rorehabilitation interventions in neurological disorders.

Kanzler et  al. [13, 35] identified several features and 
studied their correlation to clinical tests. They found a 

high correlation between the SARA test and velocity 
and path length features in relation to intention tremor. 
Manipulanda have also been used to elicit intention 
tremor during goal-directed movements; for example, 
Feys et  al. [36, 37] conducted studies involving peo-
ple with MS (pwMS) and intention tremors, where they 
observed more significant target overshoot and unsteady 
eye fixation during goal-directed movement tasks.

Overall, pens with embedded IMUs have shown prom-
ise in measuring different types of tremors, particularly 
during task-specific movements such as writing or draw-
ing [28]. However, wearable sensors may be more suitable 
and sensitive for measuring steady tremors than tools. 
On the other hand, analyzing digital features in addition 
to traditional completion time in tests such as the 9HPT 
could provide further insight into the characteristics of 
intention tremor. However, focused symptom testing is 
necessary to determine the effectiveness of these digi-
tal features in measuring intention tremor. Therefore, 
studies that specifically focus on it, using manipulanda 
in tasks similar to the finger chase test [36–38], would 
be advantageous; however, a quantification of intensity 
and its test correlation would still be required for future 
studies.

From measuring the duration of completion to quantifying 
the drawn lines
Digitized drawing tests, such as writing or drawing 
shapes on tablets or smartphones, offer advantages 
over traditional methods of assessing tremors. These 
tests allow for the quantification of drawn lines in 
terms of time and extraction of different features. The 
assessment of digitized drawings often involves calcu-
lating the power spectral density (PSD) of the drawing 
position, velocity, or acceleration to determine the fre-
quency ranges of the movement. This can help distin-
guish subjects with tremors, who are expected to have 
distinguishable spectra at higher frequencies (> 2  Hz), 

Table 2 Summary of type of technology and main targeted tremor discussed in Chapter 2

EMG electromyography, MMG mechanomyography, PD Parkinson’s disease, ET essential tremor, IMUs inertial measurement units

Section Type Main targeted tremor

2.1 Algorithms Fourier transform (FFT), power spectral analysis (PSD), wavelet decomposition (DWT), 
and Hilbert‑Huang transform (HHT)

All types

2.2 Tool based Smart pens and manipulanda with embedded IMUs and force sensors Task‑specific tremor

2.3 Task based Digitized drawings such as Archimedes Spirals, and different types of shapes. Smartphone 
games where the subject maintain objects in equilibrium

Task‑specific and intention tremor

2.4 Physiology based Muscle activity using EMG and MMG Rest and postural tremor, discrimi‑
nation between ET and PD

2.4 Physiology based Brain activity using EEG Rest and postural tremor

2.5 Movement based Accelerometers, gyroscopes, magnetometers and IMUs (sensor fusion) Rest, postural, and intention tremor

2.6 Movement based Cameras Rest, postural, and intention tremor
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from those without tremors. Digitizing tablets have 
been used to assess tremor by analyzing writing and 
drawing shapes and AS [39–49], as well as combining 
it with FT [50–53]. Studies have shown that the fre-
quency spectrum of velocity profiles in digitized Archi-
medes spirals drawings is a reliable measure of tremor 
intensity and more accurate than traditional visual rat-
ing methods [54].

Smartphone apps offer greater accessibility and flex-
ibility for at-home testing compared to tablets since indi-
viduals are more likely to possess a smartphone than a 
tablet. Furthermore, the choice between smartphones 
and tablets can affect the reproducibility and intravari-
ability of results, and more straightforward tests may 
be preferred for smartphone-based MS assessment 
[55]. This could be advantageous, especially in using 
small screens where drawings are limited due to space. 
These approaches include drawing simpler shapes than 
Archimedes spirals [14, 56–58], tilting a smartphone to 
maintain an objective in position using the smartphone 
accelerometers [59–61], and finger tapping (FT) to assess 
upper limb impairment [62, 63].

Regarding intention tremor, Erasmus et  al. [64] pio-
neered this method for quantification of ataxic symptoms 
in MS. They tested it in a large cohort of 342 pwMS where 
they drew an’8’ shape in a tablet. Consequently, Feys et al. 
[65] investigated the validity and reliability of drawing 
regular and squared Archimedes spirals on a tablet as a 
test for tremor severity. They successfully differentiate 
pwMS with intention tremor from pwMS with no tremor 
and healthy subjects (HS) by comparing the radial and 
tangential velocity PSD in the 3–5  Hz frequencies with 
FTMRS scores. Archimedes spirals drawings have also 
proven to be a good measure to identify the presence of 
intention tremor in pwMS by comparing it with FTN, 
9HPT, and BBT [66]. Measuring the segment rate, i.e., 
the number of times the pen changes from the upward 
to the downward direction, is the feature that correlates 
more to visually inspected intention tremor. The advan-
tage of this metric is probably related to the fact that the 
segment rate increases as the frequency of the movement 
increases, suggesting that intention tremor could also be 
detected by analyzing the PSD of the Archimedes spirals 
movement, as proven by Creagh et  al. [56] during the 
DaS test.

In summary, digitized drawings and app-based games 
are accessible tools to quantify tremors that could be 
used in clinics and at home. Tasks such as Archimedes 
spirals are very effective in eliciting tremors in various 
neurological diseases. However, it is still unclear how this 
task is related to intention tremor. Further analysis and 
correlation to intention tremor tasks, for example, using 
it in combination with the SARA test, would provide 

a deeper understanding of its relation to intentional 
movements.

Physiological measurements: discriminating 
between different neurological diseases
Surface electromyography (EMG), measuring muscle 
electrical activity, and mechanomyography (MMG), 
measuring surface oscillations produced by motor units, 
are used to analyze muscle activation patterns in upper 
limb tremors. In the 80–90s, EMG was used to detect 
tremors using FFT and PSD in subjects with neurologi-
cal disorders [67–69]. EMG has been used to distinguish 
muscle activation depending on the neurological disease 
[70–72]; for example, Nisticò and Vescio et  al. [73, 74] 
showed that during rest tremor, the activation of antag-
onist muscles is synchronous in subjects with ET and 
alternating in those with PD. EMG and accelerometer/
IMU combinations [75–83] have been extensively used 
to discriminate PD, ET [84–89], physiological tremor 
(PH) [90, 91], psychogenic tremor [92, 93], advanced ET 
[94], and MS [95] from each other by using ML tech-
niques on DWT and HT signal decomposition during, 
in its majority, stretch and steady positions. MMG [96] 
was recently used with EMG, force sensors, and IMUs to 
detect tremor differences in PD after deep brain stimula-
tion [97].

Electroencephalogram (EEG) measures the brain’s elec-
trical activity from the scalp, providing excellent tempo-
ral resolution. However, its low spatial resolution poses 
a challenge in precisely identifying activity in different 
brain structures. Despite this drawback, EEG is a valu-
able tool for evaluating motor tasks [98], as long as the 
influence of movement artifacts is carefully considered. 
EEG has been used to explore the involvement of the 
cerebellum in conditions such as spinocerebellar and cer-
ebellar AT [99, 100], as well as ET in comparison with PD 
[101, 102], HS [103], and people with age-related trem-
ors (ART) [104]. These studies consistently demonstrate 
a strong involvement and oscillations of cerebellar activ-
ity in ET and PD. Excessive oscillations in cerebellar EEG 
have been correlated with tremor intensity in ET [105, 
106], while increased oscillations in the theta band of 
cerebellar EEG have been observed in PD [107]. EEG has 
also been employed to assess the effects of transcranial 
magnetic stimulation (TMS) therapy in individuals with 
multiple system atrophy cerebellar subtypes (MSA-C) 
[108], showing higher cerebello-frontal connectivity and 
a negative correlation to SARA.

EMG and MMG measurements have effectively been 
used to differentiate tremor pattern activations in differ-
ent neurological conditions, even when the subjects per-
form the same type of activity. These results suggest that 
muscular activity could be a powerful tool to understand 
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how tremor is propagated and where it is localized. On 
the other hand, the mentioned studies have emphasized 
the importance of EEG in studying the involvement of the 
cerebellum in movement disorders, which could provide 
valuable insights into the underlying pathophysiology of 
intention tremor and potential treatment strategies.

Inertial‑based recordings using acceleration, orientation, 
and sensor fusion algorithms
Inertial measurement units (IMUs), consisting of accel-
erometers, gyroscopes, and magnetometers, measure 
linear acceleration, angular velocity, and magnetic field 
strength, respectively. As these signals vary depending on 
the orientation of the sensor, IMUs have become increas-
ingly prevalent in modern technology applications. These 
sensors can be positioned on different parts of the limbs, 
such as the wrist, hand, or fingers, to analyze movement 
by measuring the acceleration, velocity, and orientation 
of the limbs. Furthermore, suppose multiple IMUs are 
used on each limb segment, i.e., hand, forearm, upper 
arm, and trunk. In that case, it is possible to extract the 
limb’s position relative to the trunk and measure addi-
tional features such as range of motion and movement 
synergy.

In the past, accelerometers, gyroscopes, and mag-
netometers were available as separate components, 
and smartphones typically only included accelerom-
eters due to cost considerations. At the end of the last 
century, accelerometers were used to detect tremors 
[109–113], quantify medication efficacy [114] in PD, 
and analyze intention tremors in patients with cerebellar 
pathology [115]. Accelerometers attached to the hands 
or wrist either in single form [116–144] or in the form 
of a smartwatch [145–156] or smartphone [157–165] 
have been extensively used to quantify tremors in differ-
ent neurological diseases [166, 167], either by analyzing 
acceleration frequency [88, 168] and amplitude [169] or 
by using machine learning methods to classify measure-
ments according to tremor type [170–173]. Gyroscopes 
can detect changes in angular velocity and measure the 
angular movement of a body part. Analogous to accel-
erometers, gyroscopes have also been used individu-
ally [174–178], in smartphones [179] and smartwatches 
[180–182] to decompose tremorous and voluntary move-
ment using different signal processing techniques such 
as EMD, HHT [183, 184], WFLC, and EKF [185]. Other 
types of motion detection sensors, such as force trans-
ducers [186–188] or electromagnetic sensors [189–194], 
have been proposed to track tremors in ET, PD, and MS.

The miniaturization of IMUs has enabled the direct 
measurement of tremors on distal limbs using a single 
chip. Although some studies have utilized both acceler-
ometers and gyroscopes [96, 97, 195–230] to gain insight 

into tremorous movements, only a portion of them have 
employed sensor fusion algorithms to integrate these 
data and improve measurement reliability [131, 231–
255]. Sensor fusion filters are used in IMUs to combine 
data from multiple sensors and improve the accuracy and 
reliability of the measurements. Their output is no longer 
angular velocity or acceleration but the IMU orientation 
relative to a predefined reference. Popular filters include 
the Madgwick filter and extended Kalman filter (EKF). 
The Madgwick filter is computationally efficient, using 
quaternions to combine accelerometer, gyroscope, and 
magnetometer data for orientation estimation. In con-
trast, the EKF employs a mathematical model and Bayes-
ian inference to estimate the system state by fusing data 
from multiple sensors.

Overall, measuring acceleration and angular veloc-
ity, using electromagnetic tracking to track upper limb 
movement, or using a combination of sensors embed-
ded in IMUS has proven to be a popular and straightfor-
ward method for measuring tremors. To achieve a more 
accurate and comprehensive understanding of tremorous 
movement, future research should use sensor fusion algo-
rithms, which are currently underutilized (less than 39% 
of the studies using IMUs). This approach would enable 
researchers to calculate limb position, velocity, and accel-
eration without the noise drawbacks from accelerom-
eters and gyroscopes to characterize tremor movements. 
Additionally, this approach would benefit understanding 
movement synergies and tremor propagation.

Movement prediction with video recordings
Marker-based motion capture uses optical 3D motion 
analysis systems to track reflective markers placed stra-
tegically on the body during movement analysis. It uses 
infrared cameras to capture marker movement, which 
is then used to calculate various spatiotemporal, kin-
ematic, and kinetic gait parameters through software cal-
culations [256]. In particular, Deutschl et  al. [257] used 
marker pose estimation to observe whether people with 
ET showed intention tremors by instructing the partici-
pants to grasp a target. The researchers identified the 
presence of intention tremors similar to that seen in MS 
and ataxia.

Leap motion systems use multiple cameras and infra-
red sensors to analyze hand motions within their field of 
view. While highly accurate, their range of motion is lim-
ited [258, 259]. Chen et al. [260] and Khwaounjoo et al. 
[261] used a leap motion sensor to quantify ET and PD 
postural tremor by measuring the finger tremor ampli-
tude and frequency. Although their results were less 
accurate than using IMUs, they showed a strong cor-
relation with respect to them; they localized the best 



Page 8 of 17Paredes‑Acuna et al. Journal of NeuroEngineering and Rehabilitation            (2024) 21:8 

positions for tremor identification and achieved high 
accuracy at lower frequencies.

Markerless pose estimation is a new technique used 
to estimate the position and movement of human body 
joints without using physical markers. Using standard 
video, it utilizes computer vision and machine learn-
ing algorithms to analyze movement in real-time. The 
technique involves detecting and recognizing key body 
landmarks, constructing a skeletal model, and estimating 
joint position and movement over time. Markerless pose 
estimation software is user-friendly and flexible. Still, it 
has limitations, including lower accuracy than marker-
based systems, difficulty tracking occluded or partially 
visible body parts, and sensitivity to environmental fac-
tors. Nonetheless, ongoing advances in computer vision 
and machine learning are enhancing the accuracy and 
robustness of these techniques [262–267], making them 
potentially valuable for tremor characterization—for 
example, Park et al. [15] utilized Mediapipe [268] to ana-
lyze its feasibility in telemedicine for PD. Although the 
study involved healthy subjects, the findings suggested 
that movement tracking accuracy was hindered by poor 
video quality. Nevertheless, the researchers proposed 
that the software could be effectively utilized with bet-
ter video setup and equipment. Furthermore, Pang et al. 
[269] used OpenPose [270], a real-time body pose esti-
mation library using deep learning, to successfully track 
tremors and bradykinesia in PD using DWT to detect 
finger motion changes in the frequency domain.

In summary, marker-based estimation technologies 
capture tremors, but their setup and costs limit their 
evaluation in large patient cohorts or clinical practice. 
However, with advancements in computer vision based 
on deep learning algorithms, markerless pose estima-
tors have the potential to become widely adopted for 
easy tremor analysis using simple setups such as phone 
cameras.

Conclusions: future avenues to assess intention 
tremor
Of all the collected studies, 52 (21% of the total) assessed 
intention tremor tasks. Furthermore, 37% of these stud-
ies [36, 37, 56, 65, 66, 71, 84, 115, 122, 124, 183, 193, 210, 
241, 251–253, 257, 265] (less than 8% from all studies) 
focus on pwMS, ataxia, or cerebellar disease, who tend to 
exhibit intention tremor more clearly. The findings indi-
cate that assessment technologies measuring intention 
tremor should design tasks that elicit intention tremor 
and involve individuals who exhibit relevant symptoms.

Although digitized drawings have been examined 
in people with intention tremor [14, 55, 56, 58, 65, 66], 
further comparison with other intention tremor tasks 

is needed, such as the SARA scale and the FTN or fin-
ger chase tasks. Moreover, the effectiveness of digi-
tized drawings in eliciting intention tremor and their 
association with task-specific tremors require more 
investigation.

Regarding physiological sensors, EMG has been used 
in pwMS [84, 95]. Still, only one study has explored its 
application in intention tremor [84], yet their findings 
did not provide conclusive evidence concerning the rela-
tionship between accelerometry and EMG. The under-
standing of muscle activity in intention tremor remains 
incomplete, necessitating a more comprehensive analy-
sis. For instance, conducting tasks specifically designed 
to elicit intention tremor in individuals with cerebellar 
pathology would facilitate an in-depth investigation of 
motor conduction times and activation patterns [62].

EEG could help to differentiate movement intention 
from tremor, as previously suggested by Gallego and 
Ibáñez et  al. [98, 238] in their analysis of tremor in ET. 
Examining patients’ brain activity with intention trem-
ors may shed light on how cortical or cerebellar activities 
change during motor control tasks. From computational 
neuroanatomy and neuroimaging studies, the premotor, 
primary motor, parietal regions of the cortex, and cere-
bellum are believed to be involved in motor control [271] 
and tremorous movements [101, 272]. Assessing cerebel-
lar activity during motor control and intention tremor 
tasks could be valuable, especially for patients with cer-
ebellar pathology [107, 273, 274]. For example, recent 
studies observed heightened cerebellar activity through 
cerebellar EEG recordings of ET patients [105] with only 
one study, to the best of the authors’ knowledge, using 
an intention tremor task [106]. Additionally, the interac-
tion between the motor, parietal, and cerebellar regions 
could be analyzed during motor execution and intention 
tremor tasks. A past study investigated the functional 
interaction (using EEG modular functional connectivity) 
of the somatomotor system and higher-order processing 
systems during a motor task [275].

Motion capture algorithms could be one of the best 
ways to assess intention tremors due to their easy inte-
gration with wearable technologies for intervention, such 
as tremor-damping exoskeletons. The valuable research 
conducted by Morgan et  al. [115] and Deuschl et  al. 
[257], investigating intention tremor during activities that 
induce this type of tremor, can now be easily replicated 
using markerless pose estimation software, as done by 
Pang et al. in PD [269]. On the other hand, IMU sensors 
have become practical and effective for tremor detection 
but require sensor fusion algorithms and signal process-
ing techniques for reliable analysis [90, 183, 242]. Another 
study was performed by Carpinella et al. [183] effectively 
employed the combined capabilities of EMD and HHT to 
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accurately detect minute variations in intention tremor 
tasks. They accomplished automatic classification and 
distinction between HS and pwMS and detected subtle 
tremors from voluntary movement in MS. Furthermore, 
Tran et al. [251, 252] used ballistic tracking (an intention 
tremor task analogous to the finger chase test) with an 
IMU and a Kinect camera to distinguish between ataxia 
and HS successfully. These outcomes present promising 
prospects for the automated detection and assessment of 
intention tremors. In addition to facilitating such analy-
sis, this technique could also provide valuable insight into 
developing intention detection algorithms for individu-
als with neurological conditions such as pwMS, thereby 
enabling wearable technologies to function not only as 
assessment tools but also as sensors for interventions and 
assistive technologies in daily life.

This review examined the utilization of sensor tech-
nology in evaluating tremors across various neurological 
conditions. Some limitations of our review include man-
uscripts with unclear terminology related to tremor, e.g., 
studies not differentiating between the different types of 
kinetic tremor, and studies with imprecise methodology, 
especially on sensor fusion with IMUs. Nevertheless, in 
this review, we tried to the best of our abilities to sys-
tematically infer those missing fields using the informa-
tion in other parts of the manuscripts, e.g., experimental 
protocol and patient population, to infer tremor type and 
results and conclusions to infer sensor fusion modalities.

While most research has focused on assessing tremor 
in PD and ET, intentional tremors observed in patients 
with lesions in the cerebellum could be better under-
stood. This challenge can be approached by targeting 
intention tremors and leveraging existing technology 
(see Fig. 3). First and foremost, a technical contribution 
is needed to make better intention tremor assessments 

beyond the current tests. Furthermore, analyzing muscle 
activation and brain activity through EMG and EEG can pro-
vide insights into the underlying causes of intentional trem-
ors. Regarding motion capture, it is crucial to optimize IMUs 
through sensor fusion algorithms that utilize the strengths 
of each sensor (accelerometer, gyroscope, magnetometer) to 
obtain an accurate limb position to extract tremorous move-
ments using time–frequency analysis.

Additionally, using markerless pose estimation would 
offer a more straightforward and flexible means of cap-
turing data without requiring specialized equipment, 
enabling assessments to be conducted on more subjects 
exhibiting intention tremors, for example, at home. Dis-
tinguishing between voluntary and involuntary move-
ment remains a challenge for the technologies discussed. 
Therefore, it is essential to use and further develop sig-
nal processing techniques that focus on separating dif-
ferent movement components, such as EMD or DWT, 
to enhance the detection of the distinct aspects of trem-
orous movements, their onset, and their differentiation 
from voluntary movements.
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Fig. 3 Intention tremor can be further studied through technology and specialized tasks, which isolate and amplify it. EMG and EEG provide 
insights into source localization and connectivity. Motion capture technologies and algorithms such as EMD reveal details about voluntary 
and involuntary actions. The figure is adapted from [276] and used under granted copyright by CCC RightsLink
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