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Abstract 

Background Technological advancements in functional neuroimaging and motion capture have led to the develop‑
ment of novel methods that facilitate the diagnosis and rehabilitation of motor deficits. These advancements allow 
for the synchronous acquisition and analysis of complex signal streams of neurophysiological data (e.g., EEG, fNIRS) 
and behavioral data (e.g., motion capture). The fusion of those data streams has the potential to provide new insights 
into cortical mechanisms during movement, guide the development of rehabilitation practices, and become a tool 
for assessment and therapy in neurorehabilitation.

Research objective This paper aims to review the existing literature on the combined use of motion capture 
and functional neuroimaging in motor rehabilitation. The objective is to understand the diversity and maturity 
of technological solutions employed and explore the clinical advantages of this multimodal approach.

Methods This paper reviews literature related to the combined use of functional neuroimaging and motion capture 
for motor rehabilitation following the PRISMA guidelines. Besides study and participant characteristics, technologi‑
cal aspects of the used systems, signal processing methods, and the nature of multimodal feature synchronization 
and fusion were extracted.

Results Out of 908 publications, 19 were included in the final review. Basic or translation studies were mainly rep‑
resented and based predominantly on healthy participants or stroke patients. EEG and mechanical motion capture 
technologies were most used for biomechanical data acquisition, and their subsequent processing is based mainly 
on traditional methods. The system synchronization techniques at large were underreported. The fusion of multi‑
modal features mainly supported the identification of movement‑related cortical activity, and statistical methods 
were occasionally employed to examine cortico‑kinematic relationships.

Conclusion The fusion of motion capture and functional neuroimaging might offer advantages for motor reha‑
bilitation in the future. Besides facilitating the assessment of cognitive processes in real‑world settings, it could 
also improve rehabilitative devices’ usability in clinical environments. Further, by better understanding cortico‑periph‑
eral coupling, new neuro‑rehabilitation methods can be developed, such as personalized proprioceptive training. 
However, further research is needed to advance our knowledge of cortical‑peripheral coupling, evaluate the validity 
and reliability of multimodal parameters, and enhance user‑friendly technologies for clinical adaptation.
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Introduction
Technological advancements have paved the way for 
innovative neurorehabilitation methods. State-of-the-art 
sensor systems now enable the minimal intrusive acquisi-
tion of various biological parameters in a wide range of 
settings. Additionally, increased computational power 
allows for more complex analysis methods and acceler-
ated processing [1–4]. These advancements greatly ben-
efited the field of Mobile Brain/Body Imaging (MoBi), 
which focuses on the acquisition and analysis of complex 
multimodal signal streams, such as neurophysiological 
data (e.g., electroencephalography and functional near-
infrared spectroscopy) and behavioral data (e.g., motion 
capture and eye-tracking). This has led to new insights 
into the brain’s cortical mechanisms during ecologi-
cal valid movement and is thought to not only guide the 
development of new rehabilitation practices but also 
become a future tool for assessment and therapy in neu-
rorehabilitation [5–7].

Sensor‑based practices in motor rehabilitation
Acquired neurological disorders, such as stroke, are the 
leading cause of long-term disability worldwide. Con-
sequently, it is crucial to develop improved methods to 
elevate the quality of life for individuals impacted by 
these disorders. [8]. Motor rehabilitation focuses on 
improving functionality by promoting internal processes 
that drive spontaneous neural restoration via neuroplas-
tic changes [9, 10]. Current practices involve clinicians 
manually assessing and treating sensory-motor defi-
cits by facilitating motor learning, but these methods 
are resource-intensive, and the efficacy is often debated 
[11–13]. Utilizing validated sensor data can help objec-
tively evaluate those existing rehabilitation methods 
while also introducing new assessments and therapeutic 
methods. A more comprehensive and robust understand-
ing of a patient’s functional deficits and training effects 
can be achieved by concurrently examining movement 
biomechanics and underlying neuroplastic changes. An 
additional benefit of incorporating MoBi into motor 
rehabilitation is the ability to evaluate patient progress 
within an ecologically valid context, as the training mir-
rors relevant and task-specific movements in real or vir-
tual environments [6, 7]. This approach aligns with the 
nature of activities of daily living (ADLs), characterized 
by task-, environment-specific, and complex movements, 
and has been demonstrated to yield the highest benefit 
for functional recovery [13, 14].

Motion capture technologies for biomechanical 
assessments
Regaining motor function is a top priority in rehabilitat-
ing after acquired neurological disorders like stroke or 

traumatic brain injuries (TBI) [15]. Traditional motor 
rehabilitation primarily focuses on continuously analyz-
ing movement biomechanics and providing feedback 
on the quality. During the initial physical examination, 
these biomechanical assessments are crucial for selecting 
the most effective treatment strategy and determining 
a probable prognosis [16]. In the subsequent rehabilita-
tion, biomechanical measures assist in building muscle 
strength and mobility by evaluating functional changes 
and providing corrective feedback. While manual assess-
ment scores, like the Fugl-Meyer Assessment (FMA), 
have traditionally been used for this purpose, various 
motion capture technologies have been applied to assess 
relevant movement biomechanics automatically [17].

Optical motion capture devices are a common clinical 
method for capturing human motion. These systems uti-
lize camera systems to either capture markers attached 
to the patient or estimate joint positions directly from 
video data using machine learning. Because of their 
high spatial and temporal precision, the aforementioned 
marker-based systems are still considered the gold stand-
ard. However, their resource-intensive set-up often lim-
its their use in clinical settings [1, 18]. In recent years, 
markerless motion capture systems have advanced sig-
nificantly, particularly with regard to spatial accuracy and 
usability [19].

In addition to optical sensors, mechanical and mag-
netic sensor systems are also used for motion capture. 
Both systems require the manual application of sensor 
systems on the joint or limb of interest, making global 
motion tracking of multiple joints impractical [2]. How-
ever, unlike optical motion tracking systems, mechani-
cal and magnetic sensors do not require a line of sight 
between the marker/joint and a camera system, thus 
avoiding the issue of occlusion [18].

Functional neuroimaging technologies for neurological 
assessment
Aside from movement mechanics, the underlying corti-
cal and subcortical processes are consulted in neurore-
habilitation. This allows for directly assessing, predicting, 
and addressing altered cortical activity related to brain 
disorders and subsequent changes during therapy [20, 
21]. Recent studies highlight the benefits of employing 
functional neuroimaging for treating neuromotor dis-
eases, such as using brain-computer interfaces (BCI) for 
motor training [22].

Portable and non-invasive methods, such as electro-
encephalography (EEG) and functional near-infrared 
spectroscopy (fNIRS), are increasingly used in motor 
rehabilitation due to their relative simplicity and afford-
ability. The electric activity measured by the EEG is based 
on the sum of inhibitory and excitatory postsynaptic 
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potentials of large neuronal networks firing synchro-
nously in response to internal or external stimulus [23]. 
Conversely, fNIRS employs near-infrared light to detect 
changes in cortical hemodynamic activity resulting from 
earlier changes in neural activity [24]. Compared to 
fNIRS, EEG offers a higher temporal resolution (EEG: < 
1 ms; fNIRS: < 100 ms), which is advantageous for gen-
erating real-time feedback on movement-related changes 
in rehabilitation applications. The downside is that EEG 
is more susceptible to environmental (e.g., power line 
noise) and physiological (e.g., movement, eye-blink, 
sweat) artifacts, necessitating extensive pre-processing 
before feature extraction to obtain valid results [25, 26].

Comparably offer non-portable technologies, like 
Magnetoencephalography (MEG), functional magnetic 
resonance imaging (fMRI), and positron emission tomog-
raphy (PET), superior spatial resolution (MEG: 2–3 mm, 
fMRI: 1  mm, PET: 2.5 mm). However, their applicabil-
ity in motor rehabilitation is limited due to their static 
nature and high cost, necessitating magnetically shielded 
rooms (MEG, fMRI) or complex logistics (PET) [27–29]. 
MEG, similar to EEG in temporal accuracy, records 
changes in the brain’s less distorted magnetic fields 
using magnetometers, providing higher spatial resolu-
tion (2–3  mm) than EEG (7–10  mm). Notably, port-
able MEG systems are in development [27, 30, 31]. fMRI, 
similar to fNIRS in temporal accuracy, detects hemody-
namic changes by monitoring the electromagnetic signals 
emitted by hydrogen protons during imposed magnetic 
moment (spin) changes. Unlike fNIRS, fMRI offers high 
spatial accuracy throughout brain, not limited predomi-
nantly to the cortex [28]. PET, beyond its non-portability, 
is invasive, requiring radioactive tracer injection. Exter-
nal detectors track radioisotope metabolization and dis-
tribution, providing brief insights into specific processes 
with high spatial but low temporal resolution (1 min) 
[29].

Multimodal measurements in motor rehabilitation
Research on multimodal assessments in the field of neu-
rorehabilitation is generally limited. Nevertheless, recent 
reviews investigated the fusion of functional neuroimag-
ing and electromyography (EMG), as well as biomechani-
cal measurements and EMG. [16, 32, 33]. Combined 
EMG/EEG measures, such as corticomuscular coherence 
(CMC) representing corticospinal synchronization, cor-
relate with motor improvement. However, their reliabil-
ity is insufficient for the clinical assessment of functional 
deficits [16, 34]. Hybrid BCIs for motor rehabilitation 
increasingly apply combined EMG/EEG to improve the 
robustness of neural decoding clinical environments [33, 
35].

On the other hand, the fusion of kinematic/kinetic and 
neurological measures for motor rehabilitation remains 
underexplored. Despite the increase of motion capture 
and functional neuroimaging as separate tools for motor 
rehabilitation, their combined applications, which appear 
complementary, have received little attention outside of 
MoBi research on healthy participants [5–7]. Although 
motion capture offers insights into movement qual-
ity, functional neuroimaging focuses on cortical activity 
related to motor planning, initiation, execution, atten-
tion, and neural reorganization [16, 21]. Compared to 
traditional assessment and rehabilitation methods, com-
bining both modalities provides a more holistic insight 
by covering movement from planning to execution and 
control, emphasizing afferent somatosensory processing 
and highlighting maladaptive neuroplastic changes [6, 16, 
34]. Furthermore, by relying on multiple data streams, 
more robust rehabilitation tools can be developed that 
facilitate usability and improve the efficacy and validity 
of motor assessment and the training of complex real-life 
movements in ecologically valid environments [16, 34].

Research objective
To address the current literature gap, a comprehensive 
review of the emerging field that combines motion cap-
ture and functional neuroimaging for motor rehabilita-
tion is crucial. More specifically, it would be interesting 
to understand the diversity and maturity of the employed 
technological solutions as well as the reported clinical 
advantages of employing such a multimodal approach. 
Specifically, it is essential to gain insights into the diver-
sity and maturity of the technological solutions related 
to this specific multimodal approach that are relevant for 
future clinical applications. While acknowledging that 
certain studies may involve multiple additional modali-
ties, we have intentionally focused on these chosen 
modalities to maintain scope and specificity. Thus, this 
paper aims to present and discuss various studies that 
have examined the combined use of functional neuro-
imaging and motion capture in motor rehabilitation. In 
particular, we will elaborate on the following Research 
Questions (RQ):

• (RQ1): Which technologies were used to acquire 
combined neurophysiological and kinetic/kinematic 
signals?

• (RQ2): What signal analysis techniques were used?
• (RQ3): How were the modalities combined?
• (RQ4): What was the outcome of the assessment or 

intervention methods?
• (RQ5): Were any suggestions made on future clinical 

applications?
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A critical evaluation of current technical approaches and 
features is conducted based on the descriptive analysis 
of the results. Following that, broader trends and rec-
ommendations for future research and development are 
established by incorporating supplementary literature.

Materials and methods
Search strategy and selection criteria
This narrative review evaluates studies published on the 
combined use of functional neuroimaging and motion 
capture in motor rehabilitation. It was conducted follow-
ing an adapted version of the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) 
using the platform Colandr [36, 37]. All articles that are 
part of this review were obtained by searching the data-
bases of IEEE, PubMed, and Scopus on the 17th of Janu-
ary 2022 (updated on the 9th of May 2023) using the 
following search query:

((EEG) OR (Electroencephalography) OR (fNIRS) 
OR (functional near-infrared spectroscopy) OR (BCI) 
OR (Brain-Computer-Interface)) AND ((Mocap) OR 
(Pose Estimation) OR (IMU) OR (Inertial Measurement 
Unit) OR (Time-of-flight) OR (Kinect) OR (Kinematic*) 
OR (Movement*) OR (Motion*) AND (Rehabilitation) 
AND((Acquired brain injur*) OR (ABI) OR (Stroke) OR 
(Traumatic brain injur*) OR (TBI))  Further, all included 
studies had to meet the following criteria to be included:

• Article: Must be written in English and be a peer-
reviewed full-length study (min. four pages).

• Rehabilitation: The study must have direct or indirect 
implications on rehabilitating acquired brain injuries.

• Functional neuroimaging: Only EEG and fNIRS-
based systems are considered for functional neuro-
imaging methods due to their applicability in clinical 
practices.

• Motion capture: Only systems that directly measure 
kinetic or kinematic modalities, such as motion cap-
ture systems, are included.

• Technology: The signal from both modalities is 
acquired simultaneously and linked. Further, no 
modality other than the described functional neu-
roimaging and motion capture methods is used as a 
main modality.

Selection process
In Fig.  1, the PRISMA flow diagram summarizes the 
article selection process in detail. First, the records were 
extracted from the databases based on their keywords. 
After removing duplicates, 762 records were screened 
based on their titles and abstracts. A full-text screening 
was conducted on the remaining 89 articles, of which 
16 were included in the final data extraction. During the 
full-text screening, publications that were prestudies of 

Fig. 1 PRISMA flow diagram. Reports were excluded when they did not fulfill the stated inclusion criteria on articles (Article), the used technology 
and its synchronization (Technology), and its context in rehabilitation (Rehabilitation)
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other included studies were excluded. In the updated 
search, 210 records were identified publications, and 62 
were eligible for full-text screening, leading to 3 articles 
for the final data extraction. Thus, a total of 19 studies 
were included in the final review.

Data extraction
Table  1 shows which data was systematically extracted 
and subsequently evaluated from the included studies. 
The review focuses on technological aspects but also 
includes medical use cases. Only parameters directly 
related to the fusion of both modalities were included in 
extracting information on functional neuroimaging and 
motion capture data acquisition and processing.

Throughout the review, we utilized various classifica-
tions to summarize the results efficiently. We provide an 
overview of the categories used for summarizing research 
types, motion capture metrics, functional neuroimag-
ing feature domains (according to [38]), and multimodal 
fusion techniques in Table 2.

Results
Study characteristics
This chapter grouped the studies according to their study 
characteristics, such as application type, research type, 
frequency of measurement, and the type of control group 
used. Further, a summary of the respective study aims 
and the temporal distribution of the publications is given. 
The study characteristics are summarized in Table 3.

The median publication date for all included studies 
is in 2017, with the earliest publication being from 2000 
[39] (Fig. 2).

The majority of the studies (12 out of 19) focused on 
the development and evaluation of therapeutic applica-
tions [40–51], while the rest focused on the exploration 
of novel diagnostic applications [39, 52–57].

Six out of the 19 studies were categorized as basic 
research [39, 42, 48, 54, 56, 57], 9 out of 16 studies were 
categorized as translational research [43, 45, 47, 49, 50, 
52, 53, 55, 58] and only four of the 16 studies could be 
classified as clinical research [40, 41, 44, 46]. No clinical 
studies were found for diagnostic applications.

Table 1 Data extraction labels. A summary of the data extracted from the included studies

Study Participants Technology Medical

Type Target pathology Neuroimaging hardware Anatomical target

Aim Target demographics Neuroimaging signal processing Application

Outcome Control pathology Motion capture hardware Modality fusion

Control demographics Motion capture signal processing
Synchronisation

Table 2 Review categories. An explanation of the used category to summarize various extracted features

Topic Category Description

Research type Basic research Seeking new insights into cortical and biomechanical processes

Translational research Applying new knowledge and methods to first practical applications

Clinical research Evaluate the effectiveness of implemented interventions

Motion capture Event markers Denote specific instances in time when biomechanical changes occur

Kinematics Linear or angular changes within a spatial‑temporal context

Kinetics Forces that are generated by or acting on the body

Parameters Physical measurements of motion

Assessment scores Complex features, based on single or multiple physical motion measurements

Functional neuroimaging Time Temporal signal changes

Frequency Presence and power of frequency components

Time‑Frequency Temporal changes in the power of frequency components

Non‑linear Non‑linear analysis methods

Multimodal fusion technique Movement event detection Movement events to segment and classify the neural signal

Decoder training Multimodal training and evaluation of neural decoders

Statistical relationship Multimodal relationship based on statistical methods

Parallel applications Indirectly related biomechanical and cortical features, fused for feedback
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Most studies were cross-sectional (13 out of 19) [39, 
42, 43, 47–51, 53–57], with only one longitudinal study 
for translational diagnostic applications [52]. For ther-
apeutic applications, all clinical studies were longitudi-
nal studies [40, 41, 44, 46].

Six out of 19 studies used control groups, of which 
six used healthy controls without any relevant pathol-
ogy [39, 41–43, 50, 52] and one using a non-healthy 
control group with stroke [46]. One study solely dem-
onstrated the technical design of an intervention with-
out including any participants [45].

Participant characteristics
This chapter briefly summarizes the total number of 
involved participants (N) and the number of female 
participants (f ), their age (Age), time since brain injury 
(Post-Injury), the severity of their motor disability 
(Motor Severity), and if the participants received any 
other intervention throughout the study of the involved 
participants.

On average, 11 (SD: 9) participants were included in 
the studies, with one study not including any partici-
pants, as the sole focus was on the technical design of 

Table 3 Study characteristics. The table gives an overview of the targeted application type, the research type, the frequency of data 
collection, what control was used, and a summary of the aim of the study. ‘–’ indicates that this does not apply to the respective study

Application Type Frequency Control Study aim References

Diagnostic Basic Cross‑sectional None Identification of submovement signatures in EEG during a double‑step 
target displacement task

[54]

Investigation of the effects of cognitive and motor dual tasking on gait 
performance and brain activities after stroke

[56]

Investigate the participation of midfrontal theta dynamics in a behavioral 
monitoring system for reactive balance responses

[57]

Healthy Identification of particular impairments by pre‑ and post‑movement 
changes in EEG after stroke

[39]

Translational Cross‑sectional None Feasibility of recording kinematic and EEG data during visuomotor coordina‑
tion task

[53]

Feasibility of the combined detection of EEG and gait events during tread‑
mill walking for rehabilitation

[55]

Longitudinal Healthy Development of a multivariate analysis method to couple clinical evalua‑
tions with multimodal instrumental evaluations

[52]

Therapy Basic Cross‑sectional None Evaluation of changes in cortical involvement during treadmill walking 
with and without BCI control of an avatar

[48]

Healthy Investigation of the inter‑limb coordination based on brain activity and kin‑
ematic features

[42]

Translational Cross‑sectional None Comparison of non‑adaptive and adaptive approaches in MRCP detection 
for motor rehabilitation

[47]

Investigation of a transfer learning framework for personalized decoding 
of TES‑assisted 3D reaching task

[49]

Development of a real‑time EEG‑signal processing and classification pipeline 
of movement intention for clinical motor rehabilitation

[51]

Healthy Evaluation of an active robotic upper limb exoskeleton based on gaze track‑
ing and BCI to assist with upper limb movements

[43]

Evaluation of movement task with visuomotor feedback based on related 
changes in the motor cortex

[50]

– – Presentation of an exergame based on EEG and Kinect for lower‑limb 
rehabilitation

[45]

Clinical Longitudinal None Feasibility of decoding gait kinematics during robot‑assisted gait training 
from stroke patients using a powered exoskeleton

[44]

Evaluation of a BCI system to assist with upper‑limb functional movement 
rehabilitation

[40]

Healthy Evaluation of an assessment system for functional upper limb assessment, 
based on EEG and kinematic, dynamic data during planar reaching move‑
ments

[41]

Non‑Healthy Evaluation of a novel multimodal upper‑limb stroke rehabilitation exergame [46]
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the application [45]. Wasaka et al. [50] included with 27 
participants the most.

Only 28% (SD: 29%) on average of all included partic-
ipants were female, with four studies having no female 
participants at all [40, 44, 47, 49, 51]. The included par-
ticipants’ ages differed between younger healthy (age 
range: 19–58) and older non-healthy (age range: 49–83) 
participants. In two studies, the age of the participants 
was not mentioned [42, 55].

Eight out of 19 studies included only healthy par-
ticipants without any relevant pathological condi-
tions [47–49, 51, 53–55, 57], of which one study had a 
healthy participant simulating a pathological gait pat-
tern typical for stroke [55]. Three studies included non-
healthy participants only [40, 44, 46] and the remaining 
six included studies had both healthy and non-healthy 
participants [39, 41–43, 50, 52]. All non-healthy partic-
ipants were stroke patients with various aetiologies and 
severities and at different stages post-stroke. The time 
post-stroke for the included stroke patients ranged 
from the sub-acute phase (3  weeks) to the chronic 
phase (5 years).

The studies applied various motor assessment scales 
to quantify the participants’ functional state. For a bet-
ter overview, only the predominant motor disability is 
summarized. Most included stroke participants showed 
mild functional deficits [40, 41, 44, 46, 56]. One study 
included stroke participants with mild to moderate 
deficits [39], one study participants with moderate defi-
cits [52], and one study participants with mild to severe 
participants [50]. Frisoli et  al. [43] did not state the 
motor severity of the included stroke patients.

Five out of 19 studies with non-healthy participants 
mentioned that some [40] or all participants [39, 41, 46, 
52] underwent other rehabilitation programs.

Anatomical targets and movements
The anatomical target of the presented studies was cat-
egorized by their general region, the targeted body part, 
and the investigated movement. An overview is given 
in Table 4. The majority of the studies focused on upper 
limb movements (12 out of 19) [39–41, 43, 46, 46, 49, 
50, 52–54, 58], with reaching being the most commonly 
studied movement (7 out of 19) [40, 41, 43, 46, 49, 51, 
52]. The remaining studies focused on whole-body move-
ments, including a balance task [45, 57] and gait tasks 
based on overground walking [44, 56] or treadmill walk-
ing [42, 48, 55].

Motion capture
The motion capture systems were analyzed based on 
their hardware setup and the subsequent signal pro-
cessing steps. Information on the hardware includes 
the underlying sensor category, the extent of captured 
joints and limbs (target), body parts from which data was 
acquired, the used motion capture technology, and the 
sample rate used for acquisition. The signal processing of 
the acquired signal was divided into the feature catego-
ries, used filter, the eventual use of an artifact rejection or 
correction method, and the final extraction of the kine-
matic or kinetic features. An overview of both used hard-
ware and signal processing methods is given in Table 5.

Fig. 2 Publication chart. The number of included publications between 2000 and 2022 are displayed
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Motion capture hardware
Most sensor systems used for motion capture were 
mechanical sensors that register movement kinemat-
ics based on positional changes of the sensor itself (e.g., 
accelerometer [39, 46, 48] or gyroscope [40]) or posi-
tional changes of attached to a body part in reference to 
another (e.g., goniometer [48] or exoskeletons [41, 52, 
54]). Movement kinetics were acquired via a force trans-
ducer [47, 50] or by pressure sensors [55–57]. Regarding 
the exoskeletons studies, only Contreras-Vidal et al. [44] 
reported the integrated sensor types used for kinematic 
and kinetic measurements.

Magnetic motion capture systems, such as those used 
by [44, 53], use magnetic sensors that measure move-
ment kinematics based on changes in the surrounding 
magnetic field. Both studies used Hall sensors within the 
exoskeletons that register changes in distance to a mag-
net. It was not reported which sensor types any of the 
other exoskeletons used.

Optical motion tracking was either based on mark-
erless motion capture systems [43, 45, 51], active 
marker-based motion capture system [42, 49] or passive 
marker-based motion capture [57]. One of the marker-
less systems employed was the Kinect sensor system [43, 
45]. Using a pre-trained randomized decision forest, it 
infers the three-dimensional position of 14 joint centers 
based on the input of an RGB camera and a TOF camera 
(depth camera) [59]. Another markerless motion capture 
system used was the Leap Motion Orion [51]. Besides the 
Kinect, it is based on stereoscopic IR cameras, which feed 
undisclosed algorithms to interfere with the hand posi-
tion in three-dimension [60]. Active and passive marker-
based motion capture systems rely on correctly applying 
light-emitting or light-reflecting markers, which are then 
registered by multiple specialized cameras. Based on the 

extracted 2D marker position, the 3D marker positions 
can be triangulated. It should be mentioned that Stokker-
mans et al. [57] used both mechanical and optical motion 
capture.

Four papers did not report on the sampling rate used 
[41, 45, 52, 56]. However, one of those used a Kinect, 
which has a fixed sample rate of approximately 30 Hz 
[45]. Three additional studies recorded movement data 
at sample rates below 100 Hz [43, 46, 55]. Most studies 
(9 out of 19) used samples rates between 100 and 1000 
Hz [39, 40, 42, 44, 48–51, 57] and three studies even sam-
ple rates above 1000 Hz up to 2048 Hz [47, 53, 54]. The 
systems with high sample frequency were based on mag-
netic and mechanical sensor systems.

Motion capture data analysis
For most studies (11 out of 16), no signal-preprocessing 
steps were reported [39, 41, 43, 45, 46, 49, 52, 53, 55, 56]. 
Five studies utilizing high to mid-high sampling rates 
applied a low-pass filter at cut-off frequencies around 12 
Hz [54], 10 Hz [40], and 3 Hz [44, 47, 48], to retrain the 
signal component of slow movements and reject artifacts 
in higher frequencies. Only one study reported the man-
ual correction of artifacts [40].

Regarding feature complexity, movement event detec-
tion has relatively low requirements for signal process-
ing. 9 out of 19 studies used either movement onset 
and offset as an event marker for subsequent EEG seg-
mentation, like movement [40, 42, 47, 50–53, 55, 57] or 
submovement onset/offset [54]. Such movement events 
were used for gait event detection, like heel strike and 
toe-off [42, 55], or perturbed balance-related changes in 
leaning direction and stepping behavior [57]. Movement 
onset was either defined as a change in force [47, 50], 
velocity [40, 54], position [51] or joint rotation [53] above 

Table 4 Anatomical targets. Anatomical target and investigated the movement of included studies

Category Anatomical target Movement References

Upper limb Arm Reaching [40, 41, 43, 46, 49, 51, 52]

Free/reaching/circular [53]

Wrist Flexion/extension and radial/ulnar deviation [54]

Pronation/supination [46]

Finger Triangular trajectory [39]

Hand Isometric grip [50]

Lower limb Ankle Isometric dorsiflexion [47]

Gait Free overground walking [44]

Straight overground walking [56]

Treadmill walking [48, 55]

Supported treadmill walking [42]

Whole body Balance Leaning [45, 57]
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Table 5 Motion capture systems. Motion Capture hardware and related signal processing and analysis. ‘–’ indicates that the authors 
gave no information on the respective matter

Hardware Signal processing References

Category Category Captured 
body part

Technology Sample rate Filter Feature 
extraction

Features

Mechanical Movement 
event marker

Ankle Force trans‑
ducer

2048 Hz Low‑pass (3 
Hz)

Force change Movement 
onset

[47]

Feet (Gait) Pressure sens‑
ing treadmill 
system

20 Hz – – Toe‑off
Heel strike

[55]

Distal third 
of forearm, 
middle of arm

Gyroscopes 100 Hz Low‑pass (10 
Hz)

Angular veloc‑
ity change

Movement 
onset

[40]

Hand Force trans‑
ducer

500 Hz – Force increase Movement 
onset

[50]

Movement 
event marker, 
Kinematic 
parameters/
assessment

Arm via end‑
effector

Active robotic 
system

– – Velocity 
change detec‑
tion

Movement 
onset/offset
Mean velocity, 
Movement 
accuracy
Movement 
smoothness
Spectral arc‑
length metric
Distance 
at robotic assist
Robot 
assistance 
frequency
Explored work‑
space area
Completion 
time

[52]

Kinematic 
parameters

Hip, knee, ankle Accelerometer
Goniometer

100 Hz Band‑pass (0–3 
Hz)

– Joint angles [48]

Wrist, forarm 
via end‑
effector

Accelerometer 20 Hz – Kalman filter Tilt angle
Acceleration
Angular veloc‑
ity

[46]

Wrist  Active robotic 
system

1000 Hz Low‑pass (12 
Hz)

(1) Euclidian 
norm of veloc‑
ity; (2) Greedy 
algorithm

(1) Velocity; (2) 
Submovement 
on/offset

[54]

Index finger Accelerometer 500 Hz – – Maximal accel‑
eration

[39]

Kinematic 
parameters/
assessment
Kinetic param‑
eters

Arm via end‑
effector

Passive robotic 
system

– – – Movement 
efficiency
Number 
of velocity 
peaks
Mean force 
vector

[41]

Kinetic param‑
eters/assess‑
ment

Feet (Gait) Pressure sens‑
ing walkway 
system

– – – Speed, 
Cadence, 
Stride time
Stride length
Spatio‑tempo‑
ral asymmetry

[56]
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a defined threshold, like a change above three standard 
deviations from baseline [47], change greater than 5% of 
the peak amplitude value [40] or extracted using a greedy 
algorithm [54].

Kinematic parameters, like position change [43–46, 
48], movement velocity [41, 44, 46, 52, 54, 56] and accel-
eration [39, 46] were extracted for further multimodal 
analysis in eight studies. One study extracted the mean 
force vector as a kinetic feature [41]. In a few studies, the 
kinematic and kinetic parameters were not used directly 
but were further processed to allow for clinical move-
ment assessment. Commonly used features of this cat-
egory were measurements of movement accuracy [41, 
52], movement smoothness [41, 49, 52]. Mazzoleni et al. 
[41] further extracted movement efficiency, Pierella et al. 
[52] spectral arc-length metric, time to complete tasks, 
and features related to robotic assistance during the task 
execution and Liu et  al. [56] gait-specific features like 
cadence and stride time, length and asymmetry.

Functional neuroimaging
The utilized functional neuroimaging hardware and sig-
nal processing methods were analyzed by extracting 
information on the underlying sensor technology, sensor 

type, number, placement, and the system’s sample rate. 
The signal processing of the acquired signal was divided 
into the feature categories, used filter, re-referencing 
method, signal segmentation, artifact rejection or correc-
tion methods, and the final extraction of relevant neural 
features. An overview of both the used hardware and sig-
nal processing methods is given in Table 6.

Functional neuroimaging hardware
Among the technologies employed, EEG was the most 
commonly used (18 out of 19 studies)[39–57], while only 
one study used fNIRS [56].

The electrode number and placement varied signifi-
cantly, ranging from single-channel EEG [45, 46] to low-
density EEG [39–41, 43, 50, 55], common 64-channel 
EEG [44, 47, 48, 52, 54], and HD-EEG [42, 49, 51, 53, 
57]. Most studies adhered to the 10–20 electrode place-
ment system, except for five studies that used the 10–5 
placement [49, 50, 53, 56, 57]. The selection of electrode 
placement varied according to the study’s cortical area of 
interest, such as prefrontal [45], central [46], frontal/cen-
tral [43], prefrontal/frontal [56], frontal/central/parietal 
[50], and frontal/central/parietal/occipital [40]. Addi-
tionally, 5 out of 19 studies excluded electrodes during 

Table 5 (continued)

Hardware Signal processing References

Category Category Captured 
body part

Technology Sample rate Filter Feature 
extraction

Features

Mechanical, 
optical

Mec: Move‑
ment event 
marker
Opt: Kinematic 
parameters

Mec: Feet
Opt: Full body

Mec: Force 
plate
Opt: Passive 
marker‑based 
motion capture

Mec: 2000 Hz 
Opt: 100 Hz

Mec: ‑
Opt: Low‑pass 
(10 Hz)

Mec: Leg 
weight unload‑
ing
Opt: Labeling, 
gap filling
Marker move‑
ment

Mec: Stepping 
behavior 
by foot‑offset
Opt: Leaning 
direction

[57]

Mechanical, 
magnetic

Kinematic 
parameters

Lower body Active robotic 
system

100 Hz Low‑pass (3 
Hz)

– Joint angular 
position
Velocity

[44]

Magnetic Movement 
event marker

Arm Passive robotic 
system

1000 Hz – Joint rotation 
change of end 
effector

Movement 
onset

[53]

Optical Movement 
event marker

Thigh, shank, 
foot

Active marker‑
based motion 
capture

140 Hz – – Toe‑off
Heel strike

[42]

Hand Marker‑less 
hand tracking 
system

100 Hz – Move‑
ment away 
from start 
position

Movement 
onset

[51]

Kinematic 
parameters

Upper body Marker‑less 
motion capture

30 Hz – – 3D joint center 
position

[43]

Upper body Marker‑less 
motion capture

30 Hz – – 3D joint center 
position

[45]

Kinematic 
assessment

Arm Active marker‑
based motion 
capture

960 Hz – Normalized 
averaged recti‑
fied jerk

Jerk [49]
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post-processing. Mazzoleni et al. [41], Liu et al. [55], and 
Colamarino et  al. [47], Wasaka et  al. [50] included only 
relevant electrode sites for feature extraction and Luu 
et al. [48], and Contreras-Vidal et al. [44] excluded known 
movement artifact prone peripheral channels. Luu et al. 
[48] further modified the 10–20 system due to the prox-
imity of the GND and REF electrodes to the area of inter-
est (motor cortex).

Active electrodes were the most commonly used in the 
studies, with 10 out of 19 employing them [40–44, 47–49, 
52, 54]. However, not all studies reported whether wet 
or dry electrodes were used [43, 44, 50, 52]. Five studies 
used passive wet electrodes [39, 51, 53, 55, 57], one used 
dry electrodes [45], and one used dry foam electrodes 
[46]. Optodes were used for the fNIRS measurements 
[56].

The sample rate varied among studies, with most using 
sample rates of around 256 Hz [40, 43, 55], 500 Hz [39, 49, 
50, 52], or higher frequencies of around 1000 Hz [42, 44, 
54]. One study used a relatively low sample rate of around 
100 Hz [48], and three used a very high sample rate of 
2048 Hz [57] and 5000 Hz [47, 51]. In seven studies [44, 
46, 47, 51–54], the recorded data stream was downsam-
pled, particularly for studies using higher recording sam-
pling rates of 500 Hz and above. Downsampling was done 
to 56 Hz [46], 128 Hz [44, 52, 54], 200 Hz [53], 1000 Hz 
[58], or 2048 Hz [47] during further signal preprocessing.

Functional neuroimaging data analysis
Out of 19 studies, eight studies were identified that used 
time-domain features [40–42, 47, 50, 51, 54, 56], five 
studies that used frequency-domain features [43, 46, 49, 
55, 57], six studies that used time-frequency-domain fea-
tures [39–41, 52, 53, 57], and two studies that used non-
linear features[44, 48]. Three studies combined different 
domains as time and time-frequency domain features 
[40, 41] or frequency and time-frequency domain fea-
tures [57].

The further description of the used functional neuro-
imaging methods is structured by their respective signal 
domain and the corresponding features, their extrac-
tion, and their domain and feature-specific preprocess-
ing steps are described together. The description of the 
signal processing steps does not follow their exact order 
as applied in the publications, and instead, a standardized 
signal processing sequence is used.

Cortical time domain features  For time-domain fea-
tures, the studies mainly used event-related potentials 
such as induced gait perturbation-related potentials [42], 
movement-related cortical potentials (MRCP) [40, 41, 
47, 50], or specific components of MRCP such as Bere-
itschafts potential (BP) amplitude [40], motor potentials 

(MP) amplitude [41]. Ibanez et  al. [40] selected for the 
extraction of the BP the channel with the highest BP-Peak 
out of three virtual central channels and classified by a 
matched filter for movement intent. Colamarino et al. [47] 
used a Locality Sensitive Discriminant Analysis (LDSA) 
to classify movement intent based on the MRCP. Dipietro 
et al. [54] extracted microstates using a modified K-means 
algorithm based on submovements of movement correc-
tion during reaching, and Wasaka et  al. [50] extracted 
spatiotemporal vectors and the mean and variance of 
ICA components. Liu et  al. [56] extracted the index of 
hemoglobin differential (Hbdiff) based on the difference 
between de- and oxygenated hemoglobin levels from the 
fNIRS signal after correlation-based signal improvement.

Movement-related cortical potential  The EEG signals 
were filtered at different frequencies during preprocess-
ing. The publications targeting the extraction of move-
ment-related cortical potential (MRCP) focused mainly 
on the lower frequencies up to around 1 Hz [40] to 2 Hz 
[47]. Wasaka et al. [50] included frequencies up to 20 Hz, 
and Mazzoleni et al. [41] included frequencies up to 40 Hz 
for the MCRP analysis, but additional extracted features 
of the time-frequency domain.

Only two studies on the MRCP stated the used re-ref-
erencing method, Laplacian re-referencing [40, 47]. The 
Laplacianan re-referencing method used by Ibanez et al. 
[40] was modified using the average of peripheral chan-
nels as a reference to minimize the individual weight of 
those.

For segmentation, the window size was chosen between 
− 5 s to − 2.5 s from movement/force onset to − 0.5 s to 1 
s for the extraction of the MCRP.

Regarding artifact correction, only three studies 
extracting the MRCP [41, 47, 50] mentioned apply-
ing this preprocessing step. Two studies relied to some 
extent on a manual rejection of artifacts and the prede-
termined selection of electrodes for the area of interest 
(sensorimotor cortex) [41, 47]. Mazzoleni et  al. [41, 50] 
study further adapted the included electrodes based on 
the laterality of the movement and applied ICA for arti-
fact correction. Only Wasaka et al. [50] used non-manual 
statistical methods to reject artifact-prone trails.

Other cortical time domain features  For the extraction 
of gait-related ERPs, a more comprehensive frequency 
range from 0–0 Hz was applied by Skidmore et al. [42], 
and subsequent artifact rejection was based on the sta-
tistical properties of the signal. Dipietro et  al. [54] used 
quite an extensive frequency range from 0.1 to 128 Hz to 
extract microstates and applied manual channel and arti-
fact rejection, and subsequently applied ICA and DIPFIT 
artifact rejection algorithms. McDermott et al. [51] used 
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a frequency range of up to 45 Hz and manually rejected 
artifact-prone trials, channels, and ICA components. All 
studies used a common average filter (CAR) for re-refer-
encing [42, 51, 54].

Cortical hemoglobin differential  For the extraction of 
walking task-related Hbdiff, a band-pass filter at 0.005 Hz 
to 0.03 Hz was chosen. Liu et al. [56] further used fNIRS-
specific artifact correction as channel and trial rejection 
based on the relative coefficient of variation for each 
wavelength and wavelet filtering of movement artifacts 
and final baseline correction.

Cortical frequency domain features  Features of the fre-
quency domain used in the included publications were 
theta/beta ratio [46], theta z-score [51], a matrix consist-
ing of delta, theta, alpha, beta, and high gamma band for 
each electrode and trial [49], the spatial distribution of 
mu and beta band rhythms [55] and theta [57] over the 
cortex, and movement intent classification and tuning of 
kinematic parameters based on a support vector machine 
(SVM) classifier using the first and last component of 
Common Spatial Pattern (CSP) filter for the mu and beta 
band [43].

Only one study using frequency domain features stated 
using a filter for the range of 2–200 Hz [57]. Two studies 
noted the re-referencing of the EEG to Common Average 
Reference (CAR) [49, 57]. Three studies stated segmen-
tation, either based on a moving window of 1 s [43] for 
online processing, a 5 s window around external balance 
perturbation onset [57], or a 10-s long window from 7.5 s 
after the trial start, within which the subject is expected 
to perform the given task [49]. All studies used artifact 
correction methods, such as manually excluding chan-
nels based on the area of interest [55] or due to artifacts 
in given channels [49] or trials [57]. Additionally, the 
studies used an algorithm for artifact correction based on 
either EOG recording [55], statistical parameters [57], or 
ICA-based artifact rejection [49, 57].

Cortical time-frequency domain features  Time-fre-
quency domain features such as event-related desynchro-
nization (ERD) were extracted in multiple studies [39–
41], with Platz et al. [39] focusing on the dominant alpha 
and beta bands, while the other publications considering a 
more extensive frequency range that encompasses multi-
ple EEG bands [40, 41]. Pierella et al. [52] extracted topog-
raphy maps of the first three SVD components, which 
accounted for 75% of the variance for each delta, theta, 
alpha, and beta frequency band using Morlet projections. 
Stokkermans et  al. [57] extracted time-frequency maps 
around up to 40 Hz based on the generalized eigende-
composition (GED) component with the greatest eigen-

value. Steinisch et al. [53] extracted the volume-based and 
intensity-based lateralization index based on the oscil-
latory source power of neural clusters calculated using 
Morlet projections for intervals of 200 ms in the range of 
0.5 to 30 Hz.

All studies using features of the time-frequency domain 
[39–41, 52, 53, 57] applied a filter, except for Platz et al. 
[39], which defined the frequency range later during fea-
ture extraction. Filters used in the studies ranged from 
0.5 Hz [41, 53], 1 Hz [52], and 6 Hz [40] for the lower 
cutoff frequency to 32 Hz [40], 40 Hz [41, 52], and even 
up to 200 Hz in two studies [53, 57] for the upper cutoff 
frequency.

The most used re-referencing method (3 out of 6) was 
CAR [39, 52, 53]. Only one study used Laplacian re-
referencing [40], and one did not state any re-referenc-
ing method [41, 57] for features of the time-frequency 
domain.

Regarding segmentation, most studies (4 out of 6) used 
movement onset as a reference for segmentation, and the 
window size ranged from − 5 s [39, 41], − 3 s [40], or − 2 
s [53] to − 0.5 s [40], 1-s [41], 4-s [53], or even up to 18 
s [39]. Stokkermans et al. [57] used the onset of external 
balance perturbation as a trigger and extracted cortical 
features in a window from − 2 to 3 s.

Mazzoleni et al. [41] applied the same artifact correc-
tion/rejection steps to extract their time-domain feature. 
Pierella et  al. [52] used a purely manual approach for 
channel correction and artifact rejection. Both Platz et al. 
[39] and Steinisch et al. [53] used a combination of man-
ual artifact rejection channel rejection based on the sta-
tistical features of the signal and the InfoMax algorithm 
[53] or manual trial rejection and additional electroocu-
logram-based (EOG) artifact rejection [39]. Stokkermans 
et  al. [57] used the same artifact correction as for their 
frequency features stated above.

Cortical non-linear domain features  Non-linear fea-
tures of functional neuroimaging have been used to pre-
dict joint angle [48] and additional velocity [44] during 
walking. Both studies used the Unscented Kalman Filter 
(UKF) based on the standardized EEG signal to predict 
the aforementioned kinematic features.

To improve the quality of EEG signals, both studies 
used a frequency band of 0.1 Hz to 3 Hz [44, 48]. The fre-
quency band was chosen to remove high-frequency noise 
and filter out artifacts that can contaminate the EEG sig-
nal. One study of the studies [44] also stated that they 
re-referenced the EEG based on CAR and used a seg-
mentation window ranging from 6 s to 6 min, depending 
on the walking time of participants.

Both studies excluded peripheral channels to reduce 
the influence of movement artifacts on the EEG signal 
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[44, 48]. However, there were differences in the artifact 
correction/rejection methods used. Luu et  al. [48] used 
movement EOG-based eye artifact correction to remove 
eye movement artifacts, while Contreras-Vidal et al. [44] 
applied artifact subspace reconstruction (ASR) to cor-
rect for a wide range of artifacts, including eye blink, eye 
movement, and muscle activity.

Fusion of functional neuroimaging and motion capture
The fusion of functional neuroimaging and motion cap-
ture has been utilized in various settings in the included 
studies. These settings are categorized as mentioned in 
the methods. Details on modality features are summa-
rized in Table 7.

Nine of the 19 studies [40–42, 44, 50, 51, 53, 55, 57] fall 
under the category of movement event detection. Six of 
the 19 studies [40, 43, 44, 47–49] were categorized into 
decoder training. Six of the 19 studies [39, 41, 52, 54, 
56, 57] evaluated the multimodal statistical relationship. 
Two of the 19 studies [45, 46] were categorized as paral-
lel applications. Finally, four studies fell into multiple cat-
egories. For example, Ibanez et  al. and Contreras-Vidal 
et  al.[40, 44] utilized multimodal data for movement 
event detection and decoder training. In contrast, Maz-
zoleni et  al. and Stokkermans at al. [41, 57] utilized the 
multimodal data for both movement event detection and 
statistical relationship.

Movement event detection
All studies used movement kinematics or kinetic to 
detect movement onset/offset or movement events dur-
ing offline processing. Four of the nine studies used hard-
ware synchronization [41, 51, 53, 57] using either a not 
closer defined push-button trigger [53], a trigger signal 
[41, 57] or indirectly via a photodiode on the screen [51]. 
One study only used a digital signal to synchronize the 
different modalities [40]. McDermott et al. [51] addition-
ally correlated the movement signal with the EMG signal 
to ensure correct synchronization.

Movement event detection was either used to seg-
ment the EEG data based on specified movement events 
like heel strike [42] or toe off [55] during gait to calculate 
related EEG features based on the average of all related 
segments [42] or for separately for every single segment 
[55]. Three studies used general movement onset to cal-
culate EEG features based on the average of all move-
ment-related segments [41, 53] or to extract only cortical 
activity related to walking sequences during free walking 
by further considering movement offset [44]. Ibanez et al. 
[40] used the movement onsets to segment a training 
dataset for decoder training. Stokkermans et al. [57] used 
movement events to categorize the behavior-related EEG 
features for subsequent statistical analysis.

Decoder training
The included studies that used movement kinematics 
to train, evaluate, and update neural decoders did apply 
both online processing (3 out of 6) [43, 47, 48] as well 
as offline processing (3 out of 6) [40, 44, 49]. Four stud-
ies stated that the synchronization method used for 
offline modality fusion was either based on a not closer 
defined digital signal (see movement event detection 
[40]), manual synchronization, or in the case of online 
modality fusion using software-based synchronization 
based on a customized C++ program [48] or via net-
work using UDP [43].

Contreras-Vidal et  al. [44], and Luu et  al. [48] used 
the recorded movement kinematics to train and evalu-
ate a neural decoder based on UKF to predict intended 
joint angles and velocities (only [44]) from EEG for gait. 
Ibanez et al. [40] used a naïve Bayes classifier, and Cola-
marino et al. [47] various adaptive LSDA classifiers for 
the classification of movement intention of upper-limb 
reaching [40] or isometric ankle dorsiflexion [47] based 
on motion capture data. Frisoli et  al. [43] classified 
movement intention for upper-limb reaching. However, 
they also used the output of the SVM classifier to tune 
the maximum joint jerk, acceleration, and speed. Mas-
takouri et  al. [49] calculated normalized averaged jerk 
to measure motor performance based on movement 
kinematics and trained a transfer learning regression 
model to predict future personalized transcranial elec-
trical stimulation (tES) training.

Statistical relationship
Studies exploring the statistical relationship between 
movement kinematics and neural activity did so only 
during offline processing [41, 52, 54, 56, 57]. One 
study only used a synchronization method based on a 
not closer defined trigger signal (see movement event 
detection) [41] and another study manually synchro-
nized both modalities during post-processing [39].

Most studies (4 out of 5) calculated the correlation 
between biomechanical and neural parameters [41, 52, 
54, 56]. Mazzoleni et  al. [41], Pierella et  al. [52], and 
Liu et  al. [56] calculated the correlation between neu-
ral time and time-frequency features and kinematic 
parameters and calculated motor performance scores 
to investigate the cortical influence on motor perfor-
mance. Platz et  al. [39] applied a regression model to 
assess the relationship between kinematic parameters 
and EEG time-frequency features. As mentioned, Stok-
kermans et  al. [57] used movement events (leaning 
direction and stepping behavior) to model the relation-
ship between cortical dynamics and balance-related 
behavioral responses.
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Table 7 Feature fusion and synchronization. Details on the synchronization and use of the multimodal feature. ‘–’ indicates that the 
authors gave no information on the respective matter

Category Online/offline Method Trigger Feature fusion details References

Movement event detection Offline – – Movement event of left heel strike for cal‑
culation of EEG time domain features

[42]

– – Movement event of toe‑off for calcula‑
tion of EEG frequency domain features

[55]

Hardware Pushbutton trigger Movement onset of arm movement 
for calculation of EEG time‑frequency 
features

[53]

‑ – Grip force onset for calculation of EEG 
time domain features

[50]

Online Hardware Photodiode/screen Movement onset of hand for the training 
of a regression model based on EEG time 
domain features

[51]

Movement event detection; decoder 
training

Offline Other Digital signal Training of naive Bayes classifier 
for detection of movement onset based 
on EEG time and time‑frequency domain 
feautres

[40]

– – Movement onset/offset of gait for train‑
ing/evaluation of UKF decoding joint 
kinematics

[44]

Movement event detection; statistical 
relationship

Offline Hardware Trigger signal Movement events of stepping behavior 
and leaning direction to model their rela‑
tionship to EEG time‑frequency domain 
feautres

[57]

Hardware Trigger signal Movement onset of arm for calculation 
EEG time and time‑frequency features
Correlation of kinematic assessment 
scores and a kinematics and EEG time 
and time‑frequency features

[41]

Decoder training Offline – –‑ Training/validation of a presonalized 
linear regression model prediciting 
motor perfomance index based on EEG 
frequency domain features

[49]

Online Software Customized program Training/validation of EEG UKF decoder 
that predicts joint kinematics

[48]

Software UDP Control of robotic arm based on move‑
ment and movement initiation and tun‑
ing of kinematic parameters via EEG‑
based SVM classifier

[43]

– – Training/evaluation of LSDA classifier 
predicting ankle movement onset based 
on EEG time domain features

[47]

Statistical relationship Offline Other Manual Training/Validation of a regression model 
for kinematic parameters and EEG time‑
frequency domain features

[39]

– – Correlation between kinematics, muscle 
and brain activity

[52]

– – Correlation of submovements onset/off‑
set and EEG time domain feature

[54]

– – Correlation between gait parameters 
and fNIRS time domain features

[56]

Attention Online – – Game interaction based on movement 
and feedback on attention level via EEG

[46]

– – Game interaction based on movement 
and feedback on attention level via EEG

[45]
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Parallel application
For this category of feature fusion, only two publications 
were found. In both, the authors did not state any use of 
synchronization method [45, 46]. Both studies used cor-
tical changes related to attention to change exergame 
modalities controlled by a motion capture system [45, 
46].

Multimodal feedback
The participants were also provided feedback on their 
movements and cortical activity using different technolo-
gies. Ten of the included studies used a screen [41, 45–51, 
53, 54] to present visual cues signaling the participants to 
move (1 out of 8) [47], moving a cursor towards a target 
on the screen based on movement input (4 out of 8) [41, 
49, 51, 54], as interactive game incorporating feedback on 
movement (1 out of 8) [53], as feedback on the deviation 
from the required grip force [50], or both movement and 
cortical activity (3 out of 8) [45, 46, 48].

One study also provided assistive robotic feedback, if 
needed, in addition to visual feedback on a screen [52]. 
Two studies [43, 44] only provided robotic-assisted feed-
back during reaching based on eye-tracking, motion cap-
ture, and EEG [43], and gait based on the motion capture 
[44]. Ibanez et al. [40] used functional electrical stimula-
tion (FES) triggered movement from the EEG-decoded 
movement intention as feedback. Skidmore et  al. [42] 
changed the stiffness on the walking surface according to 
gait event parameters. Four studies provided no feedback 
on any modality [39, 55–57].

Relevant study outcomes
As already demonstrated in the study characteristics, the 
different studies had different aims. Either the explora-
tion of novel features based on combined neuroimaging 
and motion capture or the actual evaluation of applica-
tions for diagnostic, therapeutic, or assistive applications. 
Therefore a direct comparison of the study outcomes can 
not be made. In the following paragraph, the most rel-
evant outcomes related to multimodal measurement in 
motor rehabilitation are in a semi-structured order.

Biomarkers
Five studies showed that multimodal data could help 
identify new neuromotor assessment and therapeu-
tic approaches. For example, dual-tasking walking can 
promote motor cortex plasticity [56], surface stiffness 
manipulation can improve inter-limb coordination 
based on changes in the supraspinal neural circuitry 
[42], a griping task with visual feedback of the exerted 
force enhances ipsilesional movement-related cortical 
activity [50], and robot-mediated therapy can enhance 

cortical activation and upper limb motor performance 
in post-stroke subjects [41]. Whereas Stokkerman et  al. 
[57] could find a statistical relationship between pos-
tural behavior responses and cortical dynamics, Platz 
et  al. [39] were not able to find a statical relationship 
between EEG and kinematic parameters, such as acceler-
ation and movement variation during a triangular finger 
movement.

Diagnostic applications
Four included studies concluded that multimodal neuro-
motor assessment could be a diagnostic tool to evaluate 
a patient’s state and progression. Topographic changes of 
submovement-related EEG microstates [54], combined 
metrics of EEG, EMG, and movement kinematics [52], or 
solely the combined assessment of EEG and movement 
kinematics [53] and novel gait training systems for the 
extraction of gait-related cortical activity [55], have been 
found to provide a more holistic evaluation of the reha-
bilitation progress and possible individualization of it.

Therapeutic applications
Five studies suggested new therapeutic applications 
based on combined neuroimaging and motion captures, 
such as treadmill training with hybrid BCI-controlled vir-
tual avatar [48] on movement kinematics-trained neural 
decoders for robot-assisted gait training [44], a clinical 
pipeline for reaching movement intention classification 
[51] and feedback on attention levels during exergaming 
[45, 46]. These approaches can potentially improve neu-
rological rehabilitation outcomes and be used for further 
assessment.

Assistive applications
Lastly, four studies explored the use of multimodal sys-
tems for developing assistive devices and their personali-
zation. Examples include combining eye-tracking, EEG, 
and motion capture for object selection and tracking for 
reaching assistance [43], as well as training and calibrat-
ing neural decoders based on the individual movement 
jerk [49]. Personalized neural decoders and adaptive sys-
tems can help decode spontaneous movements and initi-
ate timely assistance [40, 47].

Discussion
This paper reviewed studies that have combined motion 
capture and functional neuroimaging within the context 
of motor rehabilitation. Given the novelty of this field, 
the emphasis was set on the technical implementation 
that facilitated such measurements. The following dis-
cussion highlights important considerations for select-
ing suitable hardware and signal-processing methods, 
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and new methods that may facilitate future acquisition 
and analysis of multimodal data are pointed out. More-
over, we discuss the potential advantages of such multi-
modal measurements for motor rehabilitation, which can 
assist in the future development of novel rehabilitation 
applications.

Current state of research
The characteristics of the extracted studies underscore 
the nascent stage of combining functional neuroimaging 
and motion capture for motor rehabilitation. The major-
ity of included studies are relatively recent publications 
and primarily focused on basic or translational research. 
These studies explored novel movement-related cortical 
changes related to brain injuries during motor rehabili-
tation. They evaluated the feasibility of using multimodal 
biomarkers in future diagnostic and therapeutic applica-
tions. However, the lack of studies utilizing multimodal 
applications in clinical settings makes assessing their effi-
ciency, reliability, and validity difficult.

Another indication of the field’s infancy is the extracted 
population characteristics. Small sample sizes, the pre-
dominant use of healthy participants, although the ulti-
mate target groups were defined as patients, and the 
limited implementation of control groups support this 
observation. Furthermore, studies have mainly included 
participants suffering from a stroke, likely due to its high 
global prevalence and the need for improved rehabilita-
tion approaches [61]. Nonetheless, other acquired brain 
injuries have a similar aetiology, suggesting that insight 
gained from stroke patients could be transferable [62].

The primary focus of the research has been on upper-
body movements, such as reaching, possibly because 
around 80% of stroke survivors experience upper limb 
impairments, and these movements are well-researched 
in rehabilitation [63, 64]. This emphasis might also be 
attributed to the relevance of upper-body movements for 
DAIYLs and their relative simplicity of recording these 
movements (being relatively static) compared to lower-
limb movements like gait.

Motion capture in motor rehabilitation: current methods 
and applications
Most studies (13 studies) employed mechanical sen-
sors, such as IMUs, force transducers, and goniometers, 
for biomechanical measurements. These sensors were 
attached directly to the body, handheld controllers, or 
integrated into wearable robotic devices. Mechanical 
sensors seem to be a popular and viable option for sim-
ple single-joint measurements, like movement event 
detection of a certain end-effector. While mechanical 
and magnetic sensors have a clinically acceptable spatial 
resolution (around 2 ◦ angular error for IMUs [65]) and 

are generally robust towards artifacts, external artifacts, 
like magnetic disturbances, gyroscopic drift, excessive 
motion speed [66], and shifting of the sensor itself [65], 
can introduce measurement errors. Additionally, incor-
rect application, inadequate initial calibration, and the 
underlying analysis algorithms can introduce further 
inaccuracies [65].

In terms of temporal accuracy, it was observed that 
mechanical sensors provide higher sample rates (> 2048 
Hz) than marker-based (< 960 Hz) or markerless systems 
(< 200 Hz). Although high temporal resolution might not 
be crucial for acquiring slow movements encountered in 
rehabilitation, higher sample rates (> 1000 Hz) are ben-
eficial for accurate synchronization between modalities, 
which in turn is necessary for the extraction of time- 
or phase-locked cortical potentials [67]. Still, not all 
included studies that used such features reported using 
any synchronization. Lower sample rates are sufficient for 
the extraction of solely biomechanical features, and the 
signals were often low-pass filtered during postprocess-
ing, rejecting artifacts in higher frequencies.

Optical systems, including marker-based and marker-
less systems, were used to capture more complex move-
ments involving multiple joints and limbs. Although 
considered the current gold standard, their use is typi-
cally restricted to laboratory environments due to size, 
cost, and complexity. A trend towards markerless sys-
tems was observed, which could be attributed to their 
easier setup, eliminating the need for precise sensors or 
marker placement [1]. Although marker-based systems 
are still considered the gold standard for motion capture, 
the necessary marker placement is sensitive to misplace-
ment and calibration errors [68], skin movement arti-
facts [69], and marker occlusion artifacts. These errors 
can reduce the system’s theoretical sub-millimeter spatial 
accuracy [70], in some cases by up to 25  mm, translat-
ing to a joint angle error of approximately 10◦ [68]. This 
necessitates, in turn, more elaborate preprocessing, like 
marker labeling, gap-filling, and smoothing, before joint 
angle and rotation can be calculated with inverse kin-
ematic models. However, only one study in the review 
reported implementing these steps for their marker-
based recordings. Similar postprocessing steps should 
be used for IMU-based motion capture [71]. As the 
reviewed studies were primarily interested in voluntary 
movement events or kinematic parameters of end effec-
tors, extensive preprocessing and biomechanical analysis 
was not required. Thus, careful task design can help miti-
gate some of these limitations and minimize the need for 
complex preprocessing.

In the majority of studies (11 studies), kinematic 
parameters were extracted, which are valuable for the 
automatic assessment of the rehabilitation process and 
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therefore improved follow-up and individualization. Sev-
eral other reviews identified biomechanical features such 
as range of motion, mean speed, mean distance, normal-
ized path length, spectral arc length, number of peaks, 
task time metric, smoothness, and peak velocity as reli-
able features for movement assessment compared with 
traditional clinical assessments methods like the FMA 
[16, 64, 72]. Since hemiparetic movements show com-
pensatory movement patterns and jerks and are slower, 
those are suitable biomechanical measures to identify 
functional changes [64].

Movement event markers, such as gait events or (sub)
movement onset/offset, were also used in several stud-
ies (9 studies). This can facilitate the categorization of 
(online) data and enables the assessment of complex 
voluntary movements. These self-paced movements not 
only more accurately represent ecologically valid behav-
ior but also exhibit distinct cortical dynamics compared 
to externally prompted movements [73, 74], potentially 
positively influencing motor rehabilitation outcomes 
[75].

Another observed application for kinematic metrics 
(e.g., joint angle and velocity) was to train and calibrate 
assistive systems (6 studies). The automatic acquisi-
tion of kinematic data helped with the individualization 
and adaptation of the, e.g., walking systems and, there-
fore, better acceptance and efficacy for future clinical 
applications.

Functional neuroimaging in motor rehabilitation: current 
methods and applications
The analysis of the hardware used for functional neuro-
imaging systems indicates that EEG was the most utilized 
technology, while only one study employed fNIRS. As 
fNIRS is a relatively new technology, its utilization is nat-
urally lower [76]. The advantage of fNIRS over EEG is its 
higher spatial resolution and simple application, but due 
to its reliance on the delayed hemodynamic response, it 
possesses a lower temporal resolution [76]. This delayed 
response could hinder its use in applications that rely 
on real-time feedback. As mentioned, a high acquisition 
frequency (> 500 Hz) is necessary to achieve correct syn-
chronization between modalities and evaluate time- and 
phase-locked features. However, it is worth noting the 
majority of studies (9 studies) have primarily focused 
on slower cortical dynamics in the delta band range. 
Nonetheless, a few studies (2 studies) have examined 
movement-related cortical activities in higher frequency 
bands, such as alpha and beta ERD, and one study exam-
ined the mu rhythm.

Considering the electrode and optode placement, sev-
eral studies (5 studies) naturally focused on the sensori-
motor cortex, which is responsible for motor execution 

and sensory integration [77]. However, primarily motor 
initiation and execution are emphasized rather than sen-
sory integration. Given the high prevalence of somatic 
deficits (up to 80%) in stroke survivors [78], elated cor-
tical dynamics should be given more attention. In fact, 
recent research suggests investigating the widespread 
neural interactions throughout the entire brain, as non-
motor processes also influence motor behavior [79, 80]. 
Furthermore, sensor placement across the whole cortex 
enables extracting features in the source space. Although 
nearly all reviewed studies extracted the cortical fea-
tures from the electrode space, signal analysis in source 
space can provide insight into the specific neural gen-
erators and disrupted functional connectivity between 
brain regions. However, the necessity of applying source 
space analysis depends on the application, and the asso-
ciated increase in electrodes and its general complexity 
decreases usability in clinical applications [81].

Due to their sensitivity to signal artifacts, neuroimag-
ing methods require several preprocessing steps. Those 
preprocessing steps depend on the features of inter-
est and the underlying task. Artifact correction is one 
of the most critical preprocessing steps, especially for 
movement-related EEG measurements. Besides eye arti-
facts, muscle activity, cable, and electrode movement 
can introduce huge artifacts into the signal, which cor-
relate spatially and temporally with the source [82]. This 
can be leveraged to correct movement artifacts based 
on the recorded movement activity [83, 84]. Findings in 
the present review show that manual artifact correction 
was predominant by offline visual inspection or statisti-
cal thresholds (11 studies), although this is generally seen 
as a time-intensive and somewhat subjective process 
[85]. Nine studies, thus, use additional semi-automatic or 
solely automatic artifact correction methods, like blind 
source separation. Those algorithms are commonly based 
on subtracting components related to predefined artifact 
templates from the signal. Examples from the included 
studies are DIPFIT and online-processing capable algo-
rithms like InfoMax and artifact subject reconstruction 
(ASR). ASR and its variation Riemannian ASR (rASR), 
as well as the AMICA algorithm, perform favorably for 
MoBI tasks but with the limitation that they require an 
artifact-free baseline and the manual setting of hyperpa-
rameters [85, 86]. On the other hand, a study by [87] sug-
gests that movement artifacts are barely noticeable in the 
signal for slow walking and weak peripheral movements, 
and artifact correction is not required.

Several studies (4 studies) used movement-related 
time-domain features like the well-studied MRCP and 
its components (e.g., BP). Such event-related potentials 
(ERPs) are time- and phase-locked features, and, there-
fore, good synchronization of the different modalities 
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for extraction of movement events is essential, specifi-
cally for online applications [67]. However, none of the 
included studies explored phase changes during move-
ment execution, such as phase locking or synchrony, 
which correlate with the FMA, as shown in several stud-
ies summarized by Milani et al. [88]. For motor rehabili-
tation, the early components of the MRCP are frequently 
used to extract information on premovement cortical 
processes such as movement intention. This was used 
to initiate FES or assistive robotics movements and, 
thereby, closing the cortico-peripheral feedback loop, 
facilitating neuroplastic changes. However, MRCPs 
were also used to assess the changes in subcortical and 
cortical reorganization, which can aid in predicting the 
outcome of motor recovery. Besides classic parameters, 
like their latency and amplitude, their interhemispheric 
distribution was used as an indicator for motor recovery. 
The included studies analyzed this spatial distribution 
of the time domain using microstates. So far, MRCPs 
were mainly acquired for single-joint movements in 
healthy participants unrelated to complex real-world 
movements. Olsen et  al. [89] concluded that the lack 
of ecological validity, mainly caused by technical diffi-
culties, might limit the relevance of MRCPs for clinical 
applications.

Features of the time-frequency domains are time-
locked to a particular event. Like the MRCP, ERD and 
event-related synchronization (ERS) are well-study 
movement-related features, too. ERS in the delta and 
theta bands are also known cortical features related 
to movement [90], but were not used in any included 
study. These features were used for the assessment of 
stroke and their use for assistive applications, similar to 
MRCPs. Motor-related changes were often observed in 
the mu and alpha bands and seem highly reliable meas-
ures [16, 91]. However, only changes in the observed 
changes in lower frequency bands, like the delta and 
theta bands, were connected to motor recovery by Seas 
et al. [92]. The spatial distribution of time-frequency fea-
tures, like ERD/ERS lateralization or asymmetry index, 
can be used to support correct interhemispherical acti-
vation patterns, as the interhemispherical balance is 
altered toward greater activation of the ipsilesional hem-
isphere [88, 91]. However, this seems to be debated and 
rather dependent on the individual pathology and task 
design [93].

The unscented Kalman filter seems to be a popular 
choice for decoding gait joint kinematics in real-time. If 
precise control is needed, Nakagome et al. [94] suggested 
using recurrent neural networks, like gate recurrent units 
or quasi-recurrent neural networks. However, their real-
time applicability has to be evaluated closer first.

Multimodal signal synchronisation
As mentioned, not all authors stated their used methods 
of synchronization nor potential synchronization laten-
cies or jitter. In some cases, this was not required, as the 
features were calculated independently of each other for 
a whole session and then aligned offline. However, good 
temporal synchronization between the various features 
is essential for online applications and time- and phase-
locked movement-related features to acquire meaning-
ful results [67]. This can necessitate higher sample rates 
to extract such cortical dynamics, although low sample 
rates are sufficient for biomechanical analysis of the rela-
tively slow movements observed in our review (< 12 Hz) 
and clinical monitoring (< 20 Hz) [95]. The mismatch 
between sample rates can, if not correctly synchronized, 
introduce an uncertainty of several milliseconds, which 
can be problematic for online applications of time- and 
specifically phase-locked features [67]. Based on the time 
constraints of EEG/EMG connectivity measurements, 
Artoni et  al. [96] recommend that the maximum mis-
alignment between modalities should stay below 10 ms. 
Yet, this can be relaxed for other features, e.g., calculated 
over larger windows/segments.

Hardware-based synchronization based on TTL trig-
gers is still considered the gold standard and gives high 
temporal accuracy with low latencies and jitter. However, 
this requires specialized equipment supporting hard-
ware synchronization, which is often not economical or 
technically possible. Therefore, software synchronization 
is a simple alternative. Using protocols like LabStream-
ingLayer (LSL), various systems can be synchronized via 
a local network [97]. The temporal accuracy is sufficient 
for most applications if the hardware latencies and even-
tual jitters are measured and validated first [96].

Modality fusion of functional neuroimaging and motion 
capture in motor rehabilitation
Previous reviews on modality fusion have emphasized 
the benefits of utilizing either functional neuroimaging 
or biomechanical analysis as unimodal measurements 
[16, 20, 21]. Similarly, the combination of functional neu-
roimaging and electrophysiological measurements has 
been explored in multimodal approaches [32, 33]. How-
ever, integrating biomechanical features into this multi-
modal analysis has received comparatively less attention. 
To bridge this gap and explore the synergistic benefits of 
combining motion capture and functional neuroimaging, 
this section presents its current state of research.

Multimodal data fusion can be defined as a technique 
that aims at the synergistic integration of different data 
sources to extract information that may not be accessi-
ble through a single source. Not unlike in nature, where 
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humans and animals assess situations and make decisions 
based on the analyzed information of multiple senses. 
However, multimodal data fusion should not only focus 
on using sensor data to complement the overall informa-
tion by leveraging the specific strengths of given modali-
ties or reveal new information unavailable to unimodal 
measurement, but also constrain each other for more 
reliable outputs [98]. In the case of fusing biomechani-
cal and cortical features, motion capture can be primarily 
used to provide contextual and behavioral information, 
providing a more comprehensive and holistic under-
standing of the related neuromotor processes in ecologi-
cally valid environments. Additionally, such multimodal 
data allows for more robust and reliable information in 
disambiguous situations common in clinical applications 
(e.g., due to acquisition errors, environmental noise, and 
individual variability or complex behavioral tasks).

The extracted publications confirm the mentioned 
benefits of fusing neurophysiological and biomechani-
cal features for motor rehabilitation. The majority of 
these benefits were of a technical nature, as highlighted 
in 13 studies. These technical benefits include improved 
extraction of movement event markers or the online 
training of neural decoders based on acquired movement 
kinematics. The possibility of extracting cortical dynam-
ics related to voluntary movements is of particular value. 
These self-paced movements represent not only ecologi-
cally valid behavior more accurately but also exhibit dis-
tinct cortical dynamics compared to externally prompted 
movements [73, 74], potentially influencing motor reha-
bilitation outcomes [75]. It is suggested that the supple-
mentary motor area and subcortical areas are involved 
predominantly in self-initiated voluntary movements, 
whereas the premotor cortex has a higher involvement in 
externally cued movements [99]. Depending on the indi-
vidual’s lesion site, rehabilitation training in ecologically 
valid scenarios requiring voluntary movement initiation 
might be beneficial [99]. Furthermore, by using move-
ment kinematics for decoder training, the individual 
adaptation of especially assistive and therapeutic devices, 
like robot-assisted training, is facilitated and accelerated. 
For future clinical applications, easy usability and accu-
rate decoding are necessary to achieve broad adoption 
of new rehabilitation technologies. This, however, pre-
supposes that the additional hardware does not add any 
additional difficulties. Noteworthily, two studies differed 
by not assessing movement-related cortical processes but 
instead measured attention levels to improve user experi-
ence during training. Although this feature is not directly 
related to movement, as mentioned, monitoring nonmo-
tor processes, e.g., attention levels, might benefit motor 
learning by adapting task complexity and aiding the gen-
eralizability to real-world situations [4, 100].

Another commonly observed fusion technique was the 
use of the statistical relationships between biomechanical 
and cortical features to assess the patient’s current state 
and predict possible rehabilitation outcomes. Combining 
biomechanical analysis to gain information on the qual-
ity of movement execution and synchronous evaluation 
of cortical changes during movement planning and ini-
tiation enables a holistic insight and increases reliability 
[52]. Therefore, more accurate patient progress predic-
tions can be made, and the rehabilitation plan can be 
adjusted appropriately [16]. The reviewed studies, how-
ever, had different study designs and extracted different 
biomechanical features, which does not allow for any 
generalization. It should be further noted that included 
studies only analyzed linear statistical relationships (e.g., 
Pearson correlation). However, the reviewed studies 
decoding movement kinematics suggest using nonlin-
ear filters, such as the UKF, to account for the nonlinear 
relationship between cortical dynamics and movement 
kinematics. Yang et al. [101] furthermore suggested con-
sidering the complex nonlinear properties of the sen-
sorimotor control loop, specifically for proprioceptive 
afferent feedback.

To improve cortical-peripheral coupling, therapeu-
tic applications should further consider the right choice 
of feedback. Feedback on movement-related changes in 
cortical dynamics is a common BCI application used to 
restore interrupted cortico-peripheral coupling and thus 
improve functional outcomes [4]. In this review, only a 
few studies (6 studies) gave feedback on changes in cor-
tical dynamics, like movement intention, whereas most 
studies gave feedback solely on movement. Consider-
ing the overall limited research on the fusion of biome-
chanical and cortical features, it is reasonable that the 
incorporation of appropriate feedback may not have 
been a primary focus. Further studies may be necessary 
to address this gap and systematically develop effective 
feedback designs for this area of research.

In terms of clinical validity and reliability, current com-
bined measures’ are not yet proven sufficiently, thus hin-
dering the implementation of clinical studies [16, 102]. 
Further, considering the inter-subject variability of motor 
disabilities and their cortical manifestations, evaluat-
ing those measures required large clinical trials, which 
have not been done so far [34]. However, several authors 
argue that the use of multimodal biomarkers could 
increase robustness for clinical applications. Either due 
to the elimination of time-intensive user-specific adapta-
tion of underlying classification algorithms [103] or the 
increased reliability and validity of the fused features due 
to the inherent redundancy of multimodal systems [98].

From a technological standpoint, the recent advance-
ments in the related fields have made clinical applications 
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of fusion-based applications more feasible. Notably, the 
continuously improving comprehensive spatial depiction 
and high spatiotemporal accuracy of some motion cap-
ture allow for novel clinical applications. This presents 
a distinct advantage of motion capture when compared 
to other movement-related modalities, such as the com-
monly used EMG. However, it should be taken into con-
sideration that compared to EMG, motion capture is less 
sensitive to residual muscle movements and thus also to 
involuntary muscle activity due to, e.g., spasticity post-
stroke [104]. On the other hand, motion capture technol-
ogies can measure passive movements and thus be used 
for the assessment of cortico-peripheral coupling even 
when no residual muscle activity is present. Further-
more, continuous technological advances in neuroim-
aging enable new clinical applications, as well. Notably, 
due to novel electrodes/optodes technologies [105], the 
miniaturization of mobile brain imaging hardware, and 
improved artifact rejection algorithms [106] will most 
likely increase the clinical usability of functional neuro-
imaging in the coming years.

In summary, it may be asserted that the implications 
for motor rehabilitation of multimodal measurements 
based on motion capture and functional neuroimag-
ing are not entirely predictable. Current studies mainly 
evaluate the technological feasibility and build a basic 
understanding of cortical changes post-stroke and during 
rehabilitation training. The fusion of both modalities has 
been shown to aid in a better understanding of cortical 
changes’ effect on functional improvement for ecological 
valid tasks. Based on those insights, objective and robust 
multimodal assessment methods, considering the mech-
anism of cortical-peripheral coupling, might aid in bet-
ter planning of rehabilitation measures and even promote 
new rehabilitation technologies, as suggested by multiple 
other publications [6, 16, 20, 34].

Suggestions for future research
Development in related fields might aid in overcoming 
the mentioned shortcomings, which could facilitate the 
use of combined motion capture and functional neuroim-
aging in future rehabilitation applications and research.

As mentioned, a trend toward markerless motion cap-
ture was observed. AI-based motion capture systems, 
such as camera-based human pose estimation (HPE), 
offer an alternative to traditional systems for tracking 
multiple persons’ whole-body kinematics in diverse envi-
ronments without the intrusive placement of sensors 
or markers and at a low cost [107]. The Kinect or Leap 
Motion Orion, included in the review, are examples of 
AI-based systems. Whereas the Kinect and Leap Motion 
Orion are based on proprietary hardware and software, 

are both open-source HPE pipelines available [108], as 
well as commercial solutions (Theia 3D). The significant 
progress in spatial and temporal accuracy and robust-
ness over the last few years [107] could enable clinical 
applications. Current offline systems show acceptable 
spatial accuracy of < 4 ◦ angular errors, while online HPE 
is approaching the maximum permissible limit for 
clinical applications of 5 ◦ angular errors [108, 109]. 
Temporal accuracy depends on the camera system (con-
sumer-grade webcams: 30–60 Hz, specialized high-fram-
erate USB cameras:   750 Hz) and for online applications 
on the employed HPE algorithm. However, despite the 
potential clinical benefits, challenges remain unresolved, 
such as the requirement for camera calibration, occlusion 
handling, high computational hardware demands [108], 
and lacking knowledge of the technology’s reliability and 
validity. It should be noted that most HPE algorithms are 
trained on manually annotated or marker-based motion 
capture data, which, as discussed above, can introduce 
errors.

Current feature fusion did not take the intercortical 
and peripheral coupling fully into account. However, 
there is a general shift from analyzing different cortical 
areas independently to focusing on their interconnectiv-
ity [80, 110]. Going even further and studying changes 
in the long-range top-down (efferent) and bottom-up 
(afferent) cortico-peripheral coupling could aid in under-
standing the role of the motor feedback loop during reha-
bilitation [34]. A common feature for measuring efferent 
cortical-peripheral coupling is cortico-muscular coher-
ence (CMC), based on measurements of muscle activity 
and underlying cortical activity [32, 111]. Recent studies 
even indicated its potential use in a BCI-based rehabili-
tative approach. By utilizing CMC in combination with 
neuromuscular electrical simulation Guo et al. [103] were 
able to improve voluntary wrist movement post-stroke 
and simultaneously suppress maladaptive, compensatory 
strategies. They argued that motor improvements could 
be attributed to neuroplastic changes in the afferent and 
efferent corticospinal tracts.

More recently, the afferent sensory feedback features 
have been investigated, as somatic deficits have a high 
prevalence (up to 80%) in stroke survivors [78]. Cortico-
kinematic coherence (CKC) evaluates the functional 
connection between cortical activity and movement kin-
ematics and mainly reflects proprioceptive feedback to 
the primary sensorimotor cortex [112]. Thereby it could 
help to asses disruption in cortical somatosensory pro-
cessing based on the correlating topographic changes 
in cortical activity [34]. CKC seems to be a robust fea-
ture with potential for clinical rehabilitation; however, 
it was not used in this specific context [113]. The use of 
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deep-learning-based motion capture to calculate CKC 
was successfully demonstrated by Maezawa et  al. [114] 
to map cortical areas involved in tongue movement. 
Another feature that can assist in evaluating somatosen-
sory impairments based on the coherence between EEG 
and perturbed mechanical movement is position-cor-
tical coherence (PCC). PCC, however, requires a more 
elaborate setup compared to CKC but has shown to be 
a reliable test for afferent pathway integrity in stroke sur-
vivors [115]. As the named futures are currently mainly 
analyzed on their linear relationships between the 
modalities, Bao et  al. [34] suggest analyzing non-linear 
relationships in the feature, better representing the soma-
tosensory control loop.

Finally, current reviews on multimodal measurements 
for clinical applications [32, 33], alongside this present 
work, predominantly focus on the fusion of two modali-
ties. Only Maura et  al. [16] identified a singular study 
where multiple modalities were combined (specifically, 
EEG, EMG, and kinematic measurements). The current 
emphasis on bi-modal measurements undoubtedly rep-
resents an important first step in comprehending this 
emerging methodological approach. However, a compre-
hensive exploration of the fusion of multiple additional 
modalities, weighing of their respective advantages, 
disadvantages, and usability, might provide additional 
insight into cortical processes related to various behavio-
ral responses.

Conclusion
In our review article, we explore the fusion of func-
tional neuroimaging and motion capture techniques in 
the context of motor rehabilitation in order to under-
stand the diversity and maturity of technological solu-
tions employed and explore the clinical advantages of 
this multimodal approach. We investigate the techno-
logical advancements that have facilitated the synchro-
nous acquisition and analysis of complex signal streams, 
encompassing neurophysiological data (such as EEG and 
fNIRS) and behavioral data (such as motion capture).

Despite being in an early stage of research, the combi-
nation of motion capture and functional neuroimaging 
shows promising technical and therapeutic benefits for 
motor rehabilitation in terms of both clinical assessment 
and therapy.

However, the field still relies on traditional methods 
of data acquisition and analysis methods, which stay 
behind the current technological possibilities. Similarly, 
the final fusion of modalities relied on simple methods, 
such as exploring linear statistical relationships and 
voluntary movement-related localized cortical dynam-
ics. Additionally, the synchronization of data streams 
was underreported. The identified technical benefits 

helped to facilitate assessing cognitive processes in an 
ecologically available environment and improve the 
usability and robustness of rehabilitative approaches. 
From a therapeutic perspective, this further enabled a 
holistic understanding of cortico-peripheral coupling 
and possibly opened new avenues for developing novel 
neuro-rehabilitation methods. Future research should 
explore the possibility of evaluating somatosensory 
processes that could allow for personalized propriocep-
tive training and novel rehabilitation routines. Further-
more, incorporating current technological advances in 
hardware and signal processing is essential for enhanc-
ing usability and complex multimodal data analysis.

Addressing these challenges is essential for advancing 
the development and eventual clinical application of 
combined motion capture and functional neuroimag-
ing approaches, which can provide insights into corti-
cal mechanisms during movement, guide rehabilitation 
practices, and serve as a tool for assessment and ther-
apy in neurorehabilitation.
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