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Abstract 

Background In stroke rehabilitation, wearable technology can be used as an intervention modality by providing 
timely, meaningful feedback on motor performance. Stroke survivors’ preferences may offer a unique perspective 
on what metrics are intuitive, actionable, and meaningful to change behavior. However, few studies have identified 
feedback preferences from stroke survivors. This project aims to determine the ease of understanding and movement 
encouragement of feedback based on wearable sensor data (both arm/hand use and mobility) for stroke survivors 
and to identify preferences for feedback metrics (mode, content, frequency, and timing).

Methods A sample of 30 chronic stroke survivors wore a multi-sensor system in the natural environment 
over a 1-week monitoring period. The sensor system captured time in active movement of each arm, arm use ratio, 
step counts and stance time symmetry. Using the data from the monitoring period, participants were presented 
with a movement report with visual displays of feedback about arm/hand use, step counts and gait symmetry. A sur-
vey and qualitative interview were used to assess ease of understanding, actionability and components of feedback 
that users found most meaningful to drive lasting behavior change.

Results Arm/hand use and mobility sensor-derived feedback metrics were easy to understand and actionable. The 
preferred metric to encourage arm/hand use was the hourly arm use bar plot, and similarly the preferred metric 
to encourage mobility was the hourly steps bar plot, which were each ranked as top choice by 40% of participants. 
Participants perceived that quantitative (i.e., step counts) and qualitative (i.e., stance time symmetry) mobility met-
rics provided complementary information. Three main themes emerged from the qualitative analysis: (1) Motivation 
for behavior change, (2) Real-time feedback based on individual goals, and (3) Value of experienced clinicians for pre-
scription and accountability. Participants stressed the importance of having feedback tailored to their own person-
alized goals and receiving guidance from clinicians on strategies to progress and increase functional movement 
behavior in the unsupervised home and community setting.

Conclusion The resulting technology has the potential to integrate engineering and personalized rehabilitation 
to maximize participation in meaningful life activities outside clinical settings in a less structured environment.
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Background
The aging of the population in the United States have led 
to an increasing need for solutions to promote rehabili-
tation outside clinical settings [1]. Increasingly, wearable 
sensors have been recognized as a potential response 
to this growing need [2, 3], due to their capacity to cap-
ture functional movement behavior (both locomotion 
and arm and hand use) and provide timely, meaningful 
feedback to the user about motor performance. Under-
standing how stroke survivors perform in the home and 
community, within its unstructured and often unpredict-
able context, can be useful to guide personalized clini-
cal interventions [4]. Wearable technology can be used 
as both a contextually relevant assessment method and 
simultaneously an intervention modality to facilitate 
behavior change through provision of direct feedback 
to the user about their activity [5, 6]. Mobile applica-
tions can often be combined with wearable sensors to 
offer reminders, encouragement, education, or messages 
to indicate how many more steps/minutes of activity are 
needed to achieve personal activity goals. The benefit of 
wearable technology (i.e., digital therapeutic) for stroke 
rehabilitation include their unobtrusive nature (i.e., data 
can be captured without hindering everyday activities) 
and most importantly the possibility to deliver therapy in 
the context of an individuals’ everyday life [7, 8].

Feedback based on wearable sensor data can encour-
age health-promoting behaviors for stroke survivors, 
such as physical activity and the choice to engage 
functional behaviors (e.g., upper limb use, mobility 
activities) [2]. For stroke survivors, strong evidence 
supports the provision of extrinsic feedback to elicit 
motor learning processes and improve motor recov-
ery [9]. There is growing evidence that extrinsic feed-
back can positively influence motivation, self-efficacy, 
and compliance [10, 11]. Feedback based on wearable 
sensor data may include objective measures of activity 
(e.g., step or movement count, sedentary time, time in 
active movement for each arm), graphs of daily activ-
ity, or reminders/encouragement towards activity goals 
(e.g., encouragement to close your activity ring) [2, 
12]. Feedback frequency and timing (e.g., daily, weekly, 
on-demand, when someone is inactive for a prolonged 
period), mode (e.g., auditory, haptic, or visual), and 
content can vary from one system to another. However, 
while these attractive features of a wearable sensing 
system are all possible, it does not follow that they are 
all inevitable! On the contrary, a wearable sensing sys-
tem must be carefully designed to foster these desirable 

features and attributes. Moreover, due to the many 
options of feedback metrics (mode, content, frequency, 
and timing), it can be challenging to make informed 
design decisions on what may be best to drive behav-
ior change for an individual stroke survivor with their 
unique demographic, psychosocial and clinical profile.

To date, few studies have identified feedback prefer-
ences from stroke survivors. In a stakeholder survey of 
a wearable activity monitor for upper limb recovery, 
35% of stroke survivors preferred feedback via a combi-
nation of vibration and sound whereas 29% preferred a 
visual message [13]. In a systematic review on wearable 
sensors for upper limb rehabilitation across different 
health conditions, visual display was the most common 
way to provide feedback. Most systems attempt (either 
intentionally or intuitively) to indicate progress towards 
an understood skill or goal, an approach known in the 
field of psychology as Knowledge of Results [12]. To 
promote skilled motor recovery and maximize com-
munity participation, wearable sensors need to pro-
vide actionable feedback about movement quantity and 
quality that users can understand and implement to 
motivate activity and change behavior. Here, actionable 
feedback is defined as a movement performance metric 
that can be acted upon by stroke survivors in a way that 
increases the frequency of desired behavioral patterns 
in their daily life [14]. If the ultimate goal is to person-
alize the digital therapeutic, it is equally important to 
understand the feedback preferences from the user; in 
this case, community-dwelling stroke survivors.

This work is part of a larger project aiming to test the 
feasibility of the wearable technology, and to develop 
a data-driven and clinically informed behavioral inter-
vention strategy for a wearable sensor system that uses 
actionable feedback to maximize physical function 
after stroke [15, 16]. As an initial probe into the use of 
a wearable sensor system that can capture both upper 
and lower limb functional behavior in the community, 
we decided to provide terminal feedback to learn about 
preferences. By design, we chose not to provide concur-
rent feedback during the observation period, in part, to 
control for the likely possibility that the feedback would 
change stroke survivors’ behavior. Thus, we identified 
various terminal feedback metrics that are intuitive and 
relevant clinically from our in-lab validity and usability 
testing [15, 16], the literature [12], our scoping review 
that included an online consultation survey exercise 
with 37 experts [3] and the team’s clinical experience in 
stroke rehabilitation and motor learning.

Keywords Wearable electronic devices, Stroke, Rehabilitation, Feedback, Mobility, Upper extremity, Behavior change
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This project aims to: (1) determine the ease of under-
standing and movement encouragement of feedback 
based on wearable sensor data (both arm/hand use and 
mobility) for chronic stroke survivors, (2) identify stroke 
survivors’ preferences for feedback metrics (i.e., mode, 
content, frequency, and timing) that has the potential to 
drive health-supporting behavior change. We hypoth-
esized that the ‘Arm Use Ratio’ and the ‘Hourly Step 
Counts’ would be the preferred metrics, as both meas-
ures are simple and intuitive.

Methods
Study design
This study used a mixed-methods convergent design 
[17] to identify feedback preferences of stroke survivors. 
This design consists of collecting and analyzing quanti-
tative and qualitative data separately, then merging those 
data for the omnibus discussion where an interpretation 
is presented. We used a quantitative survey to identify 
ease of understanding and actionability of each feedback 
metric, whereas qualitative semi-structured interviews 
allowed a deeper understanding of users’ feedback pref-
erences needed to drive lasting behavior changes. The 
collection of qualitative and quantitative data allowed a 
rich, comprehensive, and actionable dataset to inform 
future development of a user-centered digital therapeutic 
intervention.

Participants
Community-dwelling stroke survivors aged > 18  years 
old, independent with home or community ambulation 
(with or without supervision) and fluent in English were 
included. We excluded participants with unilateral spa-
tial neglect, severe cognitive or language impairments or 
other medical condition that may interfere with partici-
pation. Communication facilitation strategies were used 
to allow participants with mild-moderate aphasia to par-
ticipate. The sample size was based on the concept of data 
saturation for the semi-structured interview data. It was 
estimated that a sample of 25–30 stroke survivors would 
be sufficient to reach saturation. Stroke survivors were 
recruited from the IRB-approved Registry for Healthy 
Aging Database (RARE). We also recruited a conveni-
ence sample of ten age-matched non-disabled neurotypi-
cal participants through contacts of the research team 
and email advertisement. Neurotypical participants were 
recruited, and their data was presented to the stroke sur-
vivor cohort so they would be able to compare and inter-
pret their performance relative to a non-disabled peer. 
All participants were fully informed of the procedures 
involved and provided informed consent. Study proce-
dures were approved by the Institutional Review Board at 

the University of Southern California (HS 19-00984 and 
HS 20-00015).

A total of 30 chronic stroke survivors (mean 7.6 years 
post-stroke) took part in this study (see Table 1 for partic-
ipant characteristics). The mean and standard deviation 
age was 58.6 ± 13.1  years. Participants had mild stroke 
severity on the National Institute of Health Stroke Scale 
(mean: 2.8 ± 2.0) [18] and mild-severe motor impair-
ments (Fugl-Meyer Assessment score: mean: 41.2/66). 
Most participants were independent in ambulation (60% 
with a Functional Ambulation Scale of 5) and the average 
self-paced gait speed was 0.75 ± 0.40 m/s.

Procedures
Stroke survivors wore a wearable sensor system (MiGo, 
Flint Rehabilitation Devices, Irvine, CA) for a 1-week, 
whereas neurotypical participants wore the system for 
24 h. The MiGo system consists of two wristwatches and 
a sensor strapped around each ankle. While the MiGo 
has feedback capability, feedback from the wristwatch 
was intentionally disabled during the monitoring period, 
as it had the potential to change behavior. We acknowl-
edge that this is somewhat artificial, but it was done in 
line with this being an initial probe into the use of these 
sensors remotely, embedded in the everyday life of 30 
stroke survivors. To facilitate donning/doffing, the wrist-
band on the less affected side was replaced by an elastic 
strap. Prior to the monitoring period, the research team 
collected demographic and clinical data and provided 
information on how to don/doff and charge the sensors. 
Participants were instructed to wear the sensors for 12 h/
day and continue their typical activities.

Each MiGo sensor contained a six degree-of-freedom 
inertial measurement unit (IMU) measuring acceleration 
and orientation. In stroke survivors with a wide range of 
motor impairments, the accuracy of the MiGo ranged 
from 85 to 88% to track time in active movements for 
each arm, 96% for step count and 90% for stance time 
symmetry [16]. The price of each sensor was approxi-
mately $200 USD. The system could be loaned to stroke 
survivors followed in rehabilitation by the institution 
or purchased by stroke survivors after the end of their 
rehabilitation.

Participants were given a cellular gateway (Tenovi 
Health, Irvine, CA) that automatically retrieved logs 
from the MiGo devices every 3 h and conveyed them to a 
secure, HIPAA compliant server accessible only to mem-
bers of the research team.

After the monitoring period, participants returned the 
equipment and met with a member of the research team 
in-person or remotely using the Zoom Meetings platform 
(Zoom Video Communications, San Jose, CA). Before the 
meetings, the team used a custom-built client application 
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to request data from the server and process it to generate 
individualized movement reports. (Fig. 1 and Table 2).

In the follow-up visit, participants were oriented to 
each graph on the movement report on a computer and 
reviewed the report with a research therapist. A 24-h 
movement report from an age- and gender-matched 
neurotypical participant was also presented as a com-
parison to assist participants in the interpretation of their 
individualized report and to begin a discussion about 
their goals. Once the participant understood the move-
ment report, they were asked to complete the movement 
report survey. We then conducted a 30-min semi-struc-
tured interview about feedback preferences (mode, con-
tent, frequency, and timing) with each participant.

Data acquisition from wearable sensors: Movement 
detection was based on the accelerometer data from 
three axes (x, y, z). We used a built-in algorithm on the 
wristwatch to automatically band-pass filter the raw 
accelerometry data, remove the effect of gravity, and con-
vert acceleration into time in active movement for the 
upper limb and step counts. For stance time, the sensor 
quaternion was used to detect heel stroke events. Stance 
time was estimated by measuring the time spent in stance 
phase of the gait cycle for both lower limbs. During the 

monitoring period, the watches logged upper limb active 
time and the ankle sensors logged both step counts, and 
the average percent of the gait cycle spent in the stance 
phase. Logs were saved every quarter hour. For upper 
limb active time and step count, logs recorded the cur-
rent daily total. For stance percent, the estimate was reset 
every 15 min and a new estimate was collected in every 
log period.

Feedback based on wearable sensor data: By design, we 
decided to offer terminal feedback in the form of a vis-
ual display at the end of the monitoring period for two 
reasons: (1) to avoid modifying stroke survivors’ behav-
ior during the monitoring period by providing real-time 
feedback, (2) mimic how clinicians would discuss out-
comes captured with wearable technology with their 
clients and set individualized goals. We selected metrics 
that were simple to understand, intuitive and frequently 
used in the literature [12, 13, 23, 24]. Data from the left 
and right sensors were color coded as blue and orange 
respectively and whenever possible data from the left and 
right sensors were shown on corresponding sides of the 
plots. Because the plots were intended for interpretation 
by the end users, more complicated features like error 
bars that might normally increase depth of interpretation 

Table 1 Participant characteristics

Characteristic Mean ± SD or n

Gender (%) Men: 18
Women: 11
Non-binary: 1

Age (years) 58.6 ± 13.1

Race (%) American Indian or Alaska Native: 0
Asian: 5
Black: 5
Native Hawaiian or Pacific Islander: 3
White or Caucasian: 11
More than one Race: 5
Not reported/unknown: 1

Ethnicity (%) Hispanic: 10
Non-Hispanic: 21

Time since stroke (years) 7.6 ± 4.5 (range: 1.0–21.2)

Hemisphere affected by the stroke (%) Left: 18
Right: 12

Stroke classification (%) Hemorrhagic: 7
Ischemic: 21
Not reported: 2

Limb concordance (%) 18

National Institutes of Health Stroke Scale (/42) 2.8 ± 2.0

Montreal Cognitive Assessment (/30) 24.7 ± 3.4

Fugl-Meyer Assessment Upper Extremity (/66) 41.2 ± 18.0 (Range: 18–66)

Functional Ambulation Category (%) 3:4
4:8
5:18

10-Meter Walk Test (m/s) Self-paced: 0.75 ± 0.40
Fast paced: 0.96 ± 0.53
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were omitted in favor of simplicity. For each participant, 
a daily and a weekly report were generated. For each 
report, we decided to limit the number of metrics to four, 
again in favor of simplicity. The upper limb daily report 
consisted of four upper limb metrics: Hourly arm use 
bar graph, Arm use ratio dial plot, Total active time bar 
plot and Use ratios (horizontal bar plot). The upper limb 
weekly report consisted of the same graphs, with the data 
averaged over a week. The daily mobility report consisted 
of the Hourly steps bar plot and the Time spent in stance, 
whereas the weekly report consisted of the Daily steps 
bar plot and the Stance % this week.

To estimate active time for the at-home portion of our 
experiment, we used a threshold filter. We computed 
the acceleration magnitude, removed the static 1 g offset 
from gravity, and applied a low pass filter (second order 
Butterworth with a cut-off of 3.8  Hz). For each sam-
ple, if the filtered magnitude was above a given thresh-
old (0.03 g), we incremented the active time by the delta 
time for that sample. This adheres closely to a standard 
approach used by most accelerometry studies [25–27]. 
Our specific filter parameters and threshold were deter-
mined by using particle swarm optimization to find 

values that minimized error in a training set of activi-
ties of daily living between the algorithm and active time 
measured by trained therapists annotating synchronized 
video data [16].

All upper limb metrics were generated from the avail-
able active time logs for a given participant on a given 
day. The difference from one log to the next was taken 
to determine the amount of active time in each 15-min 
bin. For each bin, we computed the ratios of the left and 
right arm active times to the total combined active time 
to obtain the normalized use ratio. For each day in the 
dataset, we resampled the data into 1-h bins and gener-
ated a report showing the hourly active time, the total 
active time for the day, the normalized active time ratio 
for the day, and the hourly active time ratio. We resam-
pled the data into one-day bins and generated a report 
for the entire week showing the total active time for each 
day, the average normalized use ratio for the week.

To detect heel strike events at the ankle, we used the 
sensor quaternion to obtain the pitch angle of the ankle 
in the global reference frame. To correct for postural dif-
ferences and small differences in sensor placement, we 
used a high pass (second order Butterworth) filter with 

Fig. 1 Example of daily movement reports: Example of two daily movement reports generated after a 1-week monitoring period for two 
representative participants with a right hemispheric stroke: one with severe motor impairments (A and C; Fugl-Meyer Assessment score of 28/66, 
Functional Ambulation Category of 3—supervision) and one with mild motor impairments (B and D; Fugl-Meyer Assessment score of 64/66, 
Functional Ambulation Category of 5—independent). Left (paretic) arm/leg movements are in blue (dark), and Right (less paretic) arm/leg 
movements are in orange (light). A and B The top graphs represent the daily upper limb, movement report with an hourly arm use bar graph (top), 
a dial plot (bottom left), a daily active time bar graph (bottom center) and an arm use ratio horizontal bar plot (bottom right). C and D The bottom 
graphs represent the daily mobility movement report with the hourly step counts on the left and the time spent in stance on the right
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a cut-off of 0.1 Hz to remove the offsets from the ankle 
pitch measurements. Pitch was defined as positive when 
the leg was in an extended position and negative when 
it was in a flexed position. We then used peak detec-
tion algorithms to detect the peak and trough events 
in the pitch data. Heel strike events occurred when the 
ankle was at its maximum pitch angle, and toe-off events 
occurred just after pitch angle trough events. To estimate 
stance time, we measured the time between consecutive 
peaks and troughs.

Similar to the upper limb metrics, the client applica-
tion generated reports for mobility. For each day, the 
daily movement report showed the hourly step count 
and the average stance percent estimates for both legs. 
The weekly report showed the daily step counts and the 
stance percent estimates for each day. Stance percent 
estimates from logs containing less than 25 steps in a 
15-min period were excluded from the reports.

Quantitative: Participants completed the Montreal 
Cognitive Assessment [28] and the National Institutes of 
Health Stroke Scale [18], as descriptive measures of cog-
nitive function and stroke severity, respectively. Arm and 
hand motor impairments were characterized using the 
Fugl-Meyer Assessment upper extremity (severe: 0–28, 
moderate: 29–42, mild: 43–66) [29]. Walking ability was 

categorized using the Functional Ambulation Category 
(3: walk with supervision; 4: walk independently on 
ground level; 5: walk independently anywhere) [30] and 
the 10-m walk test [31].

Stroke survivors answered a movement report sur-
vey, which consisted of 19 visual analogue scales on a 
10-cm line representing their ranking. They graded their 
responses based on ease of understanding (from very 
difficult to very easy) and movement encouragement 
(strongly disagree to strongly agree) for all arm/hand and 
mobility metrics. We used the term ‘movement encour-
agement’ as a proxy for actionability, to facilitate com-
prehensibility for stroke survivors with lower education 
levels, cognitive or language impairments. However, we 
acknowledge that the term ‘movement encouragement’ is 
not as comprehensive as the term ‘actionability’. Higher 
scores indicated greater ease of understanding or move-
ment encouragement. Participants were also asked to 
rank what they would prefer to see in the future by num-
bering each metric from 1 (highest) to 4 (lowest). Scores 
were derived from the visual analogue scales by measur-
ing with a ruler the distance in millimeters between the 
participant’s mark and the 0.

Qualitative: Semi-structured interviews were con-
ducted in a closed room and were audio-recorded to 

Table 2 Detailed description of each metric in the movement report

Metric Description Rationale for selection

Upper limb metrics

 Hourly arm use bar graph This vertical bar plot indicated the total active time 
of each arm at each hour (from 8am to 11 pm). A green 
and a red arrow indicates the hour with the most 
or the least activity

To illustrate arm use activity throughout the day [12]

 Arm use ratio dial plot This dial plot displayed the percentage of time in active 
movement between the right and left arms/hands 
on a half-circle

To quickly see the symmetry of arm/hand movements 
[12, 19]

 Total active time bar plot This vertical bar plot indicated the total active time 
of each arm over the entire day

To provide an overall measure of the activity of each arm/
hand [12, 19]

 Use ratios (horizontal bar plot) This horizontal bar plot displayed the average arm use 
ratio for each hour. The vertical dotted lines indicated 
a potential target for symmetrical use of both arms

To visualize movement symmetry throughout the day
We anticipated that this plot may be harder to under-
stand for stroke survivor [12]

Mobility metrics

 Hourly steps bar plot This vertical bar plot displayed the total number 
of steps taken by this participant every hour from 8am 
to 11 pm. A green and a red arrow indicates the hour 
with the most or the least steps

To show the frequency at which the steps are accrued 
throughout the day [2, 20]

 Time spent in stance This vertical plot displayed the time spent in stance 
on the right and left legs, averaged over the day

To offer gait quality metric
This may be relevant for clinicians and potentially, stroke 
survivors [21]

 Daily steps bar plot This vertical bar plot displayed the total number of steps 
for each day of the week. A green and a red arrow indi-
cates the day with the most or the least steps

To show the walking volume and offer insights 
as to whether this outcome is consistent or variable 
between days [2, 22]

 Stance % this week This vertical plot displayed the time spent in stance 
on the right and left legs, averaged over the day

To offer gait quality metric and offer insights 
as to whether this outcome is consistent or variable 
between days [21]
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facilitate verbatim transcription. Interview questions 
were based on an interview guide and structured to iden-
tify feedback preferences, usefulness of the movement 
report, and how feedback would be used in daily activi-
ties (see the Interview Guide in the Supplementary file). 
The main ideas expressed during the interview were 
summarized at the end of each interview for member 
checking (i.e., the process of soliciting feedback from a 
participant about their data and interpretations [32]).

Data analysis
Quantitative Descriptive statistics were used to charac-
terize our sample. We compared the mean ‘ease of under-
standing’ and ‘movement encouragement’ score of each 
feedback metric to identify any differences, using Fried-
man’s tests. When the Friedman test yielded a significant 
main effect, we performed post-hoc pairwise compari-
sons using the Wilcoxon signed-rank tests and p-values 
are adjusted using the Bonferroni multiple testing cor-
rection method. All statistical analyses were performed 
in JASP version 0.16.4, with a significance level set at 
p < 0.05.

Qualitative Interviews were transcribed verbatim. Two 
independent researchers (MD and AC) used inductive 
thematic content analysis to interpret meaning from the 
context of textual data [33]. The Braun & Clark frame-
work [34] was followed and a detailed code book listing 
all the codes and definitions was developed to facilitate 
thematic content analysis. The initial coding was initiated 
after the first five participants were collected and per-
formed until data saturation was reached. Data saturation 

was determined when no new codes emerged, and the 
ideas were repeated among participants. Repeated dis-
cussions occurred between the two coders to clarify 
interpretation of the data. A third reviewer (CJW) par-
ticipated in the discussion related to refining the themes 
and data interpretation. Qualitative data analysis was 
performed using the NVivo software (QSR International 
Pty Ltd, Melbourne, Australia). Any disagreement was 
resolved by discussion and an audit trail was kept for the 
rationale behind every decision.

Integration of qualitative and quantitative data Quan-
titative and qualitative data about feedback preferences 
were integrated once data analysis was completed to 
identify metrics that are intuitive, actionable, and mean-
ingful to drive positive behavior change.

Results
Quantitative
Overall, the arm/hand and mobility metrics were easy 
to understand and encouraged movements (see Fig.  2 
for the average scores). For the arm/hand metrics, there 
was a difference between the ratings of the four metrics 
for the ‘ease of understanding’ (χ2(3) = 10.500; p = 0.015), 
but not for ‘movement encouragement’ (χ2(3) = 4.324; 
p = 0.229). Pairwise Wilcoxon signed rank test revealed 
statistically significant differences in the ‘ease of under-
standing’ scores of Use ratios 2D histograms and the 
Hourly arm use bar plot (Z = 3.169; p = 0.013); and 
the Use ratios 2D histograms and Total active time bar 
plot (Z = 3.104; p = 0.015). The Friedman’s test revealed 
no difference between mobility metrics (‘ease of 

Fig. 2 Rating of ease of understanding and movement encouragement of each feedback metric: The average scores were rated out of 10 for ease 
of understanding and movement encouragement from the visual analogue scales on the movement report survey. Ease of understanding scores 
are in dark blue, and movement encouragement scores are in light blue for each (A) arm/hand and (B) mobility metric. The * denotes a pairwise 
significant difference between the Hourly arm use bar plot and the use ratios, and the Total active time bar plot and the Use ratios for the ‘Ease 
of understanding’ scores
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understanding’: Z = 3.900; p = 0.272; ‘movement encour-
agement’: Z = 3.327; p = 0.344). When participants were 
asked to rank preferences for arm/hand ‘movement 
encouragement’, the Hourly arm use bar plot (Fig.  1A 
and B) was ranked the highest by 40.0% of participants 
followed by the Daily arm use bar plot (Fig.  1A and B; 
26.7%) and the Arm use ratio (Fig. 1A and B; 23.3%). For 
Mobility, Hourly steps bar plot (Fig. 1C and D) was pre-
ferred by 40.0% of participants, followed by Daily steps 
bar plot (36.7%) and Stance % this week (13.3%; see Fig. 3 
for ranking preferences). These results reject our hypoth-
esis that the ‘Arm use ratio’ and the ‘Hourly step counts’ 
would be the preferred metrics, as no clear preferences 
were obtained.

Qualitative
Three main themes emerged from the qualitative data 
analysis: (1) Motivation for behavior change, (2) Need 
for real-time feedback based on individual goals and (3) 
Value of guidance from experienced clinicians for pre-
scription and accountability. In the next section, each 
emergent theme is summarized along with exemplar 
quotes from each individual participants (i.e., S#).

Theme 1: Motivation for behavior change: This theme 
encompassed the perceived benefits of the wearable tech-
nology to encourage healthier movement behavior. The 

wearable technology was perceived as motivating and as a 
complement to rehabilitation care. Participants reported 
that the feedback metrics were easy to understand after 
they were oriented to each metric, with mobility metrics 
being easier to understand than the arm/hand metrics.

S44: ‘The report is very clear and easy to understand.’
S17: ‘[The mobility graphs] were more understand-
ing [sic] than the arm graphs.’

While the feedback capability was deactivated dur-
ing the data collection period, motivation for behavior 
change and the prospect to track one’s progress was iden-
tified as a potential benefit of the wearable technology. 
Participants were encouraged to see their motor perfor-
mance on the movement report. For some, it validated 
their own performance assessment, while others were 
surprised about their daily performance and indicated 
that it was encouraging.

S03: ‘Knowing how much movement you do during 
the day and the week is very helpful and kind of gets 
you to want to do a little bit more. [The sensors] are 
a tool to find out how you’re doing. That’s motiva-
tion.’
S12: ‘I liked the graphs. They were very encouraging 
because I didn’t know I was moving that much.’

Fig. 3 Ranking preferences for each feedback metric: Ranking preferences (1 is the most preferred and 4 is the least preferred) for ease 
of understanding (A and B) and movement encouragement (C and D) for arm/hand (A and C) and mobility (B and D) metrics
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S09: ‘I didn’t even know [my paretic arm] was mov-
ing that much. I’m very happy.’

Participants with severe motor impairments perceived 
that they were already using their paretic upper limb at 
their maximum capacity. They indicated that receiving 
feedback would have limited usefulness, as they did not 
have enough function of their paretic limb to use it more. 
They did not intuit a way that they could act on the pro-
vided feedback. Improving capacity or problem-solving 
with participants on how the more affected arm can be 
incorporated in daily activities may be more useful for 
participants with severe motor impairments.

S18: ‘I don’t think any report about using my arm 
would do anything, because I use my arm as much 
as I can.’

Theme 2—Real-time feedback based on individual 
goals: The lack of real-time feedback delivery was iden-
tified by many participants as a limitation of our study 
design, as participants preferred to get something out of 
the wearable technology. Participants discussed the rele-
vance to receive personalized feedback when needed (i.e., 
self-controlled feedback). For some participants, a daily 
summary sent by email was judged sufficient, while most 
preferred to receive feedback in real-time, directly on the 
watch or a companion application.

S22: ‘I liked what I saw. I would just want it sooner, 
so at the end of the day, you could see: “Oh, I haven’t 
moved”.’
S37: ‘An app would be really good, because I usu-
ally always have my phone with me. I could kind of 
look and say ‘Oh, you didn’t move too much today. 
Maybe, you need to move a little bit more’.’

Participants valued personalized goals. Most expressed 
wanting to receive feedback related to the accomplish-
ment of their own goals and embed new goals as they 
progress.

S06: ‘For me, it would be more like, convincing me 
more. Like you’re giving me a certain [number] of 
steps that I will do. It challenges me.’
S05: ‘I set myself goals that I do 12,000 steps a day, 
and I have to reach that goal.’

Theme 3—Value of experienced clinicians for prescrip-
tion and accountability: Despite the potential of wear-
able technology to provide useful feedback directly to its 
users, participants reported that they would value meet-
ing with experienced clinicians to help them set goals, to 
guide their progression and to help them problem solve 
ways to improve their upper extremity use habits. Many 
stroke survivors also reported that having goals and 

frequent meetings with therapists to monitor behavior 
was ideal to promote behavior change, foster account-
ability and offer strategies to facilitate movement during 
daily activities.

S12: ‘[Wearable technology] would be huge along 
with what I received in therapy. This would be huge. 
That would be a powerful tool in rehabilitation.’
S17: ‘I have to ask [therapists] questions. It’d be nice 
if I can meet with somebody.’
S31: ‘The therapist would actually see how you’re 
walking and stuff and give you tips.’

Quantitative and qualitative
While stroke survivors valued feedback on motor perfor-
mance (i.e., time in active movement, arm use ratio, step 
counts or stance time symmetry), a single metric was 
not consistently identified in the surveys or interviews 
as being best for movement encouragement. For mobil-
ity, both quantitative and qualitative metrics were seen as 
useful and provided complementary information about 
gait. Visual feedback was appreciated by participants 
and a few reported that it could be enhanced by provid-
ing haptic or auditory feedback when a goal was met or 
to remind the participant to move. However, there was 
no consensus on whether people preferred positive (e.g., 
you’re doing great!) or negative (e.g., you haven’t moved 
in a while) feedback.

Discussion
This study aimed to identify stroke survivors’ preferences 
for feedback metrics. Multiple sensor-derived metrics 
were identified as easy to understand and encouraging 
both arm/hand movements and mobility. Participants 
perceived that real-time feedback and daily summaries 
may be useful to induce behavior change. Stroke sur-
vivors stressed the importance to provide feedback in 
the context of individual goals to motivate engagement. 
Meeting with experienced clinicians in conjunction with 
wearable technology was valued to foster accountability 
and offer strategies to facilitate movement during daily 
activities. Sensor-derived feedback from wearable tech-
nology is a new area of research just as the use of weara-
ble sensors are an evolving area of translational research. 
The novelty of this work is the use of both qualitative and 
quantitative methods with a diverse sample of stroke sur-
vivors to inform graphical terminal feedback design of 
wearable technology.

Individual preferences are important to consider in the 
design of an intervention [35]. Our results demonstrate 
that many different visual plots may be intuitive and 
encourage movement. Since data from wearable technol-
ogy can be used by both stroke survivors and clinicians, 
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the balance between ease of understanding for stroke 
survivors and the amount of information to guide indi-
vidualized treatment is delicate. A companion applica-
tion for stroke survivors and clinicians could be a viable 
solution to allow users to access their preferred visual 
plot with advanced options for clinicians. Applications 
offer many possibilities to encourage health-promoting 
behavior. Application features and characteristics may 
include activity data visualization, self-monitoring, per-
sonalized goal setting, general or tailored education, 
reminders, and social support via social media or a com-
munity forum [36]. Simple metrics such as percentage of 
paretic arm use, step counts or stance time symmetry, 
identified as being actionable to stroke survivors, could 
be displayed directly on an activity watch and accessed 
when needed. Qualitative methods with experienced cli-
nicians could be a future research direction to explore to 
complement our findings.

Consistent with the findings from Wang et  al. [12], 
visual displays were valuable and could be combined 
with auditory or haptic feedback to draw attention to 
specific behavior (i.e., long periods of inactivity or goal 
achievement). Self-controlled feedback (i.e., ability to 
access information when desired) [37] was preferred by 
our participants. In the motor learning literature, evi-
dence supports the use of self-controlled feedback to 
enhance motor learning [11]. Self-controlled feedback 
may encourage intrinsic motivation, support for auton-
omy and competence, as the individual takes charge of 
their own learning [11, 38, 39]. Our results also highlight 
the need to offer feedback in the context of individual 
goals. Goal setting is an integral part of stroke rehabilita-
tion [40, 41]. Specifically, individualized goal setting may 
enhance motivation, adherence and autonomy, positively 
influence stroke survivors’ perceptions of participation, 
and improve recovery and performance [42]. Consistent 
with the growing efforts for precision medicine in health-
care [43–46], personalized approaches to stroke recovery 
are needed to account for the heterogeneity of impair-
ments and disability after stroke.

While wearable technology enables stroke survivors to 
track their progress, feedback alone was not sufficient to 
drive behavior change. Interventions should be carefully 
designed due to the complexity of behavior change. Sim-
ple feedback based on wearable sensor data alone (e.g., 
step counts) is not sufficient to change physical activity 
behavior of community-dwelling stroke survivors [47–
49]. This emphasizes the importance to develop inter-
ventions using wearable technology that are grounded 
in strong theoretical foundations. Wearable technology 
should be integrated in clinical care to augment, not 
replace clinicians. Clinicians play a crucial role to offer 
personalized education. They also work collaboratively 

with stroke survivors to identify strategies to encourage 
movement performance and prescribe exercises. Patient-
therapist interaction and therapeutic alliance were shown 
to increase treatment adherence and satisfaction, and is 
directly linked to positive rehabilitation outcomes [50].

Finally, more work is needed to identify the charac-
teristics of stroke survivors most likely to benefit from 
interventions using wearable technology. For stroke sur-
vivors with severe arm motor impairments, feedback 
may need to better adjust to suit their specific needs in 
a manner that is actionable to them. Previous work indi-
cates that there might be a minimal threshold in motor 
capacity for stroke survivors to incorporate their paretic 
arm in daily activities [51–53]. For example, Chen et al. 
[53] demonstrated that a score of approximately 50 on 
the Fugl-Meyer Assessment upper extremity may be a 
significant cut-off point for engaging unimanual paretic 
movements in the unsupervised home environment. The 
predominant upper limb spontaneous movements that 
are seen in patients with Fugl-Meyer scores lower than 
50 involve bimanual tasks for which the paretic limb acts 
as an assist to the less-impaired side [53]. If this thresh-
old can be replicated in a larger sample, it may suggest 
that feedback be used to encourage bimanual movements 
for those below a score of 50 on the Fugl-Meyer motor 
assessment and unimanual paretic movements for those 
above a score of 50 on the Fugl-Meyer.

Limitations
A limitation to this study is that the participants were 
recruited from a database of survivors of stroke who 
volunteered to participate in research, limiting the gen-
eralizability of the results to the general stroke popula-
tions. These individuals may be more motivated to use 
the MiGo sensors and may respond more favorably to 
them. Therefore, we cannot exclude the possibility of a 
social desirability bias. By design, we did not assess the 
perceptions of stroke survivors for concurrent haptic or 
auditory feedback. These feedback modes will be seri-
ously considered for our future intervention study. We 
also noticed a discrepancy between the visual analogue 
scale and the ranking (i.e., some participants gave high 
scores on a given plot on the visual analogue scale but 
ranked them low in the ranking preferences). This may 
show a lack of understanding of the movement report 
survey. Despite these limitations, the qualitative methods 
that are used during the study provided a more in-depth 
understanding of the participants’ preferences of the 
metrics on the movement report. Moreover, we limited 
the number of visual plots we presented to participants 
to avoid exhausting them or biasing their interpreta-
tion of other plots. This limited our ability to test more 
complex plots that could be useful to clinicians. It should 
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also be noted that the feedback preferences identified by 
stroke survivors may not directly translate to improved 
motor performance in daily activities, as we did not pro-
vide real-time feedback to our participants. Moreover, 
our study design only allowed us to test terminal feed-
back in the form of knowledge of results. In future stud-
ies, stance percent should be averaged over longer time 
intervals and samples from short bouts of steps should be 
excluded from the averages.

Conclusions
Using the movement report as a starting place, we iden-
tified that stroke survivors found sensor-derived metrics 
intuitive and encouraging to incorporate their paretic 
arm/hand into daily activities and increase walking 
behavior (amount and symmetry). Our findings under-
score the potential of using wearable sensors along with 
personalized goals to motivate engagement outside the 
clinical environment. Wearable technology could be 
introduced earlier in the rehabilitation process as a com-
plement to clinical care, as therapist-patient interaction 
is crucial to foster accountability and motivation from 
the beginning. This work will establish the groundwork 
for the development of a robust personalized interven-
tion strategy that leverages technology in the unsuper-
vised setting to foster lasting behavior change in stroke 
survivors. Future work should assess whether feedback 
provided directly on the activity watch, by email or a 
companion application is effective for maximizing func-
tional movement behavior.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12984- 023- 01271-z.

Additional file 1: Interview guide.

Acknowledgements
We want to acknowledge the contributions of Courtney Koleda and Justine 
Buenaventura for their assistance with verbatim transcription and data 
verification.

Author contributions
MD: conception and design, collection of data, analysis and interpretation 
of data, manuscript preparation-writing; AC: collection of data, analysis and 
interpretation of data, manuscript preparation-reviewing and editing; LB: 
conception and design, collection of data, manuscript preparation-reviewing 
and editing; TG: analysis and interpretation of data, manuscript-writing; 
JBR: conception and design, technology development, technical support, 
analysis and interpretation of data, manuscript preparation-reviewing and 
editing; DKZ: conception and design, technology development, analysis 
and interpretation of data, manuscript preparation-reviewing and editing; 
CJW: conception and design, supervision, analysis and interpretation of data, 
manuscript preparation-reviewing and editing. All authors read and approved 
the final manuscript.

Funding
This study was supported by the Southern California Clinical and Translational 
Science Institute (SC CTSI) Voucher program and the NIH R41 Small Business 
Technology Transfer funds (# HD104296) to JBR and CJW. MD was supported 
by the Fonds de la Recherche en Santé du Québec and the Division of 
Biokinesiology and Physical Therapy, University of Southern California. TG was 
supported by the DIA JumpStart program, University of Southern California. 
The support for the REDCap platform was provided by the National Center 
for Advancing Translational Science (NCATS) of the NIH (#UL1TR001855 and 
#UL1TR000130).

Availability of data and materials
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
All participants were fully informed of the procedures involved and provided 
informed consent. The study complies with standards of the Declaration of 
Helsinki. Study procedures were approved by the Institutional Review Board at 
the University of Southern California (HS 19-00984 and HS 20-00015).

Consent for publication
Not applicable.

Competing interests
CJW is a member of the data safety and monitoring board for Enspire DBS 
Therapy, Inc (DBS is Deep Brain Stimulation) and Brain Q (Syntactx); she 
receives an honorarium for her services. She is a member of the external advi-
sory board for MicroTransponder, Inc., MedRhythm, Inc., and Axem Neurotech-
nology, Inc.; she receives payment for her consulting. She is an Editor of the 
6th edition of Motor Control and Learning, published by Human Kinetics, Inc 
and receives royalty payments. She is an Editor for the 2nd Edition of Stroke 
Recovery and Rehabilitation, published by DemosMedical Publishers and 
receives royalty payments. JBR is a full-time employee of Flint Rehabilitation 
Devices, LLC. DKZ is a full-time employee and co-owner of Flint Rehabilitation 
Devices, LLC.

Author details
1 Division of Biokinesiology and Physical Therapy, Herman Ostrow School 
of Dentistry, University of Southern California, Los Angeles, CA, USA. 2 School 
of Rehabilitation, University of Montreal, 7077 Ave. du Parc, Montreal, QC 
H3N 1X7, Canada. 3 Flint Rehabilitation Devices, Irvine, CA, USA. 4 Department 
of Neurology, Keck School of Medicine, University of Southern California, Los 
Angeles, CA, USA. 

Received: 7 April 2023   Accepted: 23 October 2023

References
 1. Rodgers MM, Alon G, Pai VM, Conroy RS. Wearable technologies for active 

living and rehabilitation: current research challenges and future opportu-
nities. J Rehabil Assistive Technol Eng. 2019;1(6):2055668319839607.

 2. Lynch EA, Jones TM, Simpson DB, Fini NA, Kuys SS, Borschmann K, et al. 
Activity monitors for increasing physical activity in adult stroke survivors 
(Review). Cochrane Database Syst Rev. 2018;(7).

 3. Torriani-Pasin C, Demers M, Polese JC, Bishop L, Wade E, Hempel S, et al. 
mHealth technologies used to capture walking and arm use behavior in 
adult stroke survivors: a scoping review beyond measurement properties. 
Disabil Rehabil. 2022;44(20):6094–106.

 4. Winstein C, Varghese R. Been there, done that, so what’s next for arm and 
hand rehabilitation in stroke? NeuroRehabilitation. 2018;43(1):3–18.

 5. Larsen RT, Wagner V, Korfitsen CB, Keller C, Juhl CB, Langberg H, et al. 
Effectiveness of physical activity monitors in adults: systematic review 
and meta-analysis. BMJ. 2022;26: e068047.

https://doi.org/10.1186/s12984-023-01271-z
https://doi.org/10.1186/s12984-023-01271-z


Page 12 of 13Demers et al. Journal of NeuroEngineering and Rehabilitation          (2023) 20:146 

 6. Walsh JC, Groarke JM. Integrating behavioral science with mobile 
(mHealth) technology to optimize health behavior change interventions. 
Eur Psychol. 2019;24:38.

 7. Demers M, Winstein CJ. A perspective on the use of ecological momen-
tary assessment and intervention to promote stroke recovery and 
rehabilitation. Top Stroke Rehabil. 2021;28(8):594–605.

 8. Moon NW, Baker PM, Goughnour K. Designing wearable technologies for 
users with disabilities: accessibility, usability, and connectivity factors. J 
Rehabil Assistive Technol Eng. 2019;6:205566831986213.

 9. Subramanian SK, Massie CL, Malcolm MP, Levin MF. Does provision of 
extrinsic feedback result in improved motor learning in the upper limb 
poststroke? A systematic review of the evidence. Neurorehabil Neural 
Repair. 2010;24(2):113–24.

 10. Annesi JJ. Effects of computer feedback on adherence to exercise. Per-
cept Mot Skills. 1998;87(2):723–30.

 11. van Vliet PM, Wulf G. Extrinsic feedback for motor learning after stroke: 
what is the evidence? Disabil Rehabil. 2006;28(13–14):831–40.

 12. Wang Q, Markopoulos P, Yu B, Chen W, Timmermans A. Interactive 
wearable systems for upper body rehabilitation: a systematic review. J 
NeuroEng Rehabil. 2017;

 13. Lee SI, Adans-Dester CP, Grimaldi M, Dowling AV, Horak PC, Black-Schaffer 
RM, et al. Enabling stroke rehabilitation in home and community settings: 
a wearable sensor-based approach for upper-limb motor training. IEEE J 
Transl Eng Health Med. 2018;6:1–11.

 14. Larson EL, Patel SJ, Evans D, Saiman L. Feedback as a strategy to change 
behaviour: the devil is in the details. J Eval Clin Pract. 2013;19(2):230–4.

 15. Demers M, Bishop L, Cain A, Saba J, Rowe J, Zondervan D, et al. Wearable 
technology to capture arm use of stroke survivors in home and commu-
nity settings: feasibility and insights on motor performance. Phys Therapy. 
2023. https:// doi. org/ 10. 1101/ 2023. 01. 25. 23284 790v1.

 16. Rowe J, Demers M, Bishop L, Zondervan D, Winstein C. Validity and usabil-
ity of a wearable, multi-sensor system for monitoring upper and lower 
limb activity in chronic stroke survivors in a community setting. 2021 
ASRN Virtual Annual Meeting. 5–9 April, 2021.

 17. Creswell JW, Plano-Clark VL. Designing and conducting mixed methods 
research. 3rd ed. Thousand Oaks: Sage Publications; 2018.

 18. Brott T, Adams HP, Olinger CP, Marler JR, Barsan WG, Biller J, et al. Measure-
ments of acute cerebral infarction: a clinical examination scale. Stroke. 
1989;20(7):864–70.

 19. Markopoulos P, Timmermans AAA, Beursgens L, Van Donselaar R, Seelen 
HAM. Us’em: The user-centered design of a device for motivating stroke 
patients to use their impaired arm-hand in daily life activities. Proceed-
ings of the Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society, EMBS. 2011;5182–7.

 20. Dobkin BH, Martinez C. Wearable sensors to monitor, enable feedback, 
and measure outcomes of activity and practice. Curr Neurol Neurosci 
Rep. 2018;18(12):87.

 21. Sackley CM, Lincoln NB. Single blind randomized controlled trial of visual 
feedback after stroke: effects on stance symmetry and function. Disabil 
Rehabil. 1997;19(12):536–46.

 22. Miller A, Collier Z, Reisman DS. Beyond steps per day: other measures 
of real-world walking after stroke related to physical health. J NeuroEng 
Rehabil (JNER). 2022;19(111):2–14.

 23. Whitford M, Schearer E, Rowlett M. Effects of in home high dose accel-
erometer-based feedback on perceived and actual use in participants 
chronic post-stroke. Physiother Theory Pract. 2020;36(7):799–809.

 24. Mansfield A, Wong JS, Bryce J, Brunton K, Inness EL, Knorr S, et al. Use of 
accelerometer-based feedback of walking activity for appraising progress 
with walking-related goals in inpatient stroke rehabilitation: a rand-
omized controlled trial. Neurorehabil Neural Repair. 2015;29(9):847–57.

 25. Urbin MA, Bailey RR, Lang CE. Validity of body-worn sensor acceleration 
metrics to index upper extremity function in hemiparetic stroke. J Neurol 
Phys Ther. 2015;39(2):111–8.

 26. Bailey RR, Klaesner JW, Lang CE. Quantifying real-world upper-limb activ-
ity in nondisabled adults and adults with chronic stroke. Neurorehabil 
Neural Repair. 2015;29(10):969–78.

 27. Uswatte G, Miltner WHR, Foo B, Varma M, Moran S, Taub E. Objec-
tive measurement of functional upper-extremity movement using 
accelerometer recordings transformed with a threshold filter. Stroke. 
2000;31(3):662–7.

 28. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Col-
lin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening 
tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.

 29. Woytowicz EJ, Rietschel JC, Goodman RN, Conroy SS, Sorkin JD, Whitall J, 
et al. Determining levels of upper extremity movement impairment by 
applying a cluster analysis to the fugl-meyer assessment of the upper 
extremity in chronic stroke. Arch Phys Med Rehabil. 2017;98(3):456–62.

 30. Mehrholz J, Wagner K, Rutte K, Meißner D, Pohl M. Predictive validity and 
responsiveness of the Functional Ambulation Category in hemiparetic 
patients after stroke. Arch Phys Med Rehabil. 2007;88(10):1314.

 31. Flansbjer UB, Holmbäck AM, Downham D, Patten C, Lexell J. Reliability of 
gait performance tests in men and women with hemiparesis after stroke. 
J Rehabil Med. 2005;37(2):75–82.

 32. Motulsky SL. Is member checking the gold standard of quality in qualita-
tive research? Qual Psychol. 2021;8(3):389–406.

 33. Hsieh HF, Shannon SE. Three approaches to qualitative content analysis. 
Qual Health Res. 2005;15(9):1277–88.

 34. Braun V, Clarke V. Using thematic analysis in psychology. Qual Res Psychol. 
2006;3(2):77–101.

 35. van Ommeren AL, Smulders LC, Prange-Lasonder GB, Buurke JH, Veltink 
PH, Rietman JS. Assistive technology for the upper extremities after 
stroke: systematic review of users’ needs. JMIR Rehabil Assistive Technol. 
2018;5(2): e10510.

 36. Mendiola MF, Kalnicki M, Lindenauer S. Valuable features in mobile health 
apps for patients and consumers: content analysis of apps and user rat-
ings. JMIR Mhealth Uhealth. 2015;3(2): e40.

 37. Chiviacowsky S, Wulf G. Self-controlled feedback: does it enhance learn-
ing because performers get feedback when they need it? Res Q Exerc 
Sport. 2002;73(4):408–15.

 38. Grand KF, Bruzi AT, Dyke FB, Godwin MM, Leiker AM, Thompson AG, 
et al. Why self-controlled feedback enhances motor learning: answers 
from electroencephalography and indices of motivation. Hum Mov Sci. 
2015;1(43):23–32.

 39. Sanli EA, Patterson JT, Bray SR, Lee T. Understanding self-controlled motor 
learning protocols through the self-determination theory. Front Psychol. 
2013;3(611):1–17.

 40. Winstein C, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, et al. 
Guidelines for adult stroke rehabilitation and recovery: a guideline for 
healthcare professionals from the American Heart Association/American 
Stroke Association. Stroke. 2016;47.

 41. Teasell R, Salbach NM, Foley N, Mountain A, Cameron JI, de Jong A, et al. 
Canadian Stroke Best Practice Recommendations: rehabilitation, recovery, 
and community participation following stroke Part One: rehabilitation 
and Recovery Following Stroke; 6th Edition Update 2019. Int J Stroke. 
2020;15(7):763–88.

 42. Sugavanam T, Mead G, Bulley C, Donaghy M, van Wijck F. The effects and 
experiences of goal setting in stroke rehabilitation—a systematic review. 
Disabil Rehabil. 2013;35(3):177–90.

 43. Bonkhoff AK, Grefkes C. Precision medicine in stroke: towards per-
sonalized outcome predictions using artificial intelligence. Brain. 
2022;145(2):457–75.

 44. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J 
Med. 2015;372:793.

 45. National Research Council. Toward Precision Medicine: Building a Knowl-
edge Network for Biomedical Research and a New Taxonomy of Disease. 
National Academies Press; 2011. 142 p.

 46. French MA, Roemmich RT, Daley K, Beier M, Penttinen S, Raghavan P, et al. 
Precision rehabilitation: optimizing function, adding value to health care. 
Arch Phys Med Rehabil. 2022;103(6):1233–9.

 47. Danks KA, Roos MA, McCoy D, Reisman DS. A step activity monitoring 
program improves real world walking activity post stroke. Disabil Rehabil. 
2014;36(26):2233–6.

 48. Lynch E, Jones T, Simpson D, Fini N, Kuys S, Borschmann K, et al. Do physi-
cal activity monitors increase physical activity in adults with stroke? A 
cochrane systematic review. Int J Stroke. 2018;13(1):9–10.

 49. Powell L, Parker J, St-James MM, Mawson S. The effectiveness of 
lower-limb wearable technology for improving activity and participa-
tion in adult stroke survivors: a systematic review. J Med Internet Res. 
2016;18:e259.

https://doi.org/10.1101/2023.01.25.23284790v1


Page 13 of 13Demers et al. Journal of NeuroEngineering and Rehabilitation          (2023) 20:146  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 50. Hall AM, Ferreira PH, Maher CG, Latimer J, Ferreira ML. The influence of the 
therapist-patient relationship on treatment outcome in physical rehabili-
tation: a systematic review. Phys Ther. 2010;90(8):1099–110.

 51. Han CE, Kim S, Chen S, Lai YH, Lee JY, Osu R, et al. Quantifying arm nonuse 
in individuals poststroke. Neurorehabil Neural Repair. 2013;27(5):439–47.

 52. Schweighofer N, Han CE, Wolf SL, Arbib MA, Winstein CJ. A functional 
threshold for long-term use of hand and arm function can be deter-
mined: predictions from a computational model and supporting data 
from the Extremity Constraint-Induced Therapy Evaluation (EXCITE) trial. 
Phys Ther. 2009;89(12):1327–36.

 53. Chen YA, Lewthwaite R, Schweighofer N, Monterosso JR, Fisher BE, Win-
stein C. Essential role of social context and self-efficacy in daily paretic 
arm/hand use after stroke: an ecological momentary assessment study 
with accelerometry. Arch Phys Med Rehabi. 2023;104(3):390–402.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Understanding stroke survivors’ preferences regarding wearable sensor feedback on functional movement: a mixed-methods study
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Background
	Methods
	Study design
	Participants
	Procedures
	Data analysis

	Results
	Quantitative
	Qualitative
	Quantitative and qualitative

	Discussion
	Limitations

	Conclusions
	Anchor 20
	Acknowledgements
	References


