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Abstract 

Background Electromyography (EMG) is a classical technique used to record electrical activity associated with mus‑
cle contraction and is widely applied in Biomechanics, Biomedical Engineering, Neuroscience and Rehabilitation 
Robotics. Determining muscle activation onset timing, which can be used to infer movement intention and trigger 
prostheses and robotic exoskeletons, is still a big challenge. The main goal of this paper was to perform a review 
of the state‑of‑the‑art of EMG onset detection methods. Moreover, we compared the performance of the most com‑
monly used methods on experimental EMG data.

Methods A total of 156 papers published until March 2022 were included in the review. The papers were analyzed 
in terms of application domain, pre‑processing method and EMG onset detection method. The three most commonly 
used methods [Single (ST), Double (DT) and Adaptive Threshold (AT)] were applied offline on experimental intramus‑
cular and surface EMG signals obtained during contractions of ankle and knee joint muscles.

Results Threshold‑based methods are still the most commonly used to detect EMG onset. Compared to ST and AT, 
DT required more processing time and, therefore, increased onset timing detection, when applied on experimental 
data. The accuracy of these three methods was high (maximum error detection rate of 7.3%), demonstrating their 
ability to automatically detect the onset of muscle activity. Recently, other studies have tested different methods 
(especially Machine Learning based) to determine muscle activation onset offline, reporting promising results.

Conclusions This study organized and classified the existing EMG onset detection methods to create consensus 
towards a possible standardized method for EMG onset detection, which would also allow more reproducibility 
across studies. The three most commonly used methods (ST, DT and AT) proved to be accurate, while ST and AT were 
faster in terms of EMG onset detection time, especially when applied on intramuscular EMG data. These are important 
features towards movement intention identification, especially in real‑time applications. Machine Learning methods 
have received increased attention as an alternative to detect muscle activation onset. However, although several 
methods have shown their capability offline, more research is required to address their full potential towards real‑time 
applications, namely to infer movement intention.
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Background
Electromyography (EMG) has been used as an inter-
face tool for human-robot interaction and rehabilitation 
systems [1]. In fact, EMG is a relevant biological signal 
to inform on the motion onset of the user and can be 
applied in different applications such as the control of 
robotic devices in rehabilitation, kinesiology, biomechan-
ics and motor control during several movements of the 
upper and lower extremities [2–7].

Muscle activation can be defined as the degree to 
which a muscle is excited, encompassing both the num-
ber of activated muscle fibers and the rate of their dis-
charge [8]. Therefore, muscle activation onset, which is 
commonly estimated from EMG, is a physiological vari-
able related to the beginning of contraction of a given 
muscle. As there is a latency between the onset time and 
the final movement that involves action on tendons and 
bones, there is a time window after detecting movement 
intention that allows actuation and control of wearable 
robots such as an exoskeleton. Therefore, accurate and 
fast detection of muscle onset time can potentially be 
used to identify movement intention [2, 9] and assist the 
user in real time.

The first method applied to detect muscle onset was 
the offline visual inspection by a trained user [10]. 
Although it is a subjective approach, visual inspection 
can be considered to provide accurate EMG onset detec-
tion values [10, 11]. On the other hand, visual inspection 
lacks reproducibility and can hardly be used in real-time 
applications [10]. In this context, computerized methods 
started to be developed and applied, and are currently the 
main solution to detect EMG onset in robotics and neu-
rofeedback fields.

Due to the stochastic nature of the EMG signal, detect-
ing onset of muscle activation is a challenging task, espe-
cially when EMG signals are weak [12]. Furthermore, 
despite the extensive literature devoted to detection of 
muscle contraction episodes, there is not a gold stand-
ard approach yet [13] and there is a degree of disparity 
across studies with regard to the definitions and parame-
ters applied in each algorithm. This leads to similar EMG 
onset detection methods, with different nomenclatures, 
making it difficult to identify the most appropriated 
method for a specific application [10, 11, 13].

Given the lack of agreement on a standardized method 
for EMG onset detection and its importance towards 
intuitive and natural EMG-based control systems, it is 
timely to explore methods for automatic EMG onset 
detection in this review and to compare the performance 
of some of the most commonly used ones towards online 
applications. Therefore, the main goal of this study was 
to review the state-of-the-art on EMG onset detection 
algorithms. This can boost the development of novel 

algorithms and finally create consensus towards a pos-
sible standardized method for EMG onset detection, 
which would also allow more reproducibility across stud-
ies. In fact, a recent international initiative called ’Con-
sensus for experimental design in electromyography’ 
(CEDE project), which aims to guide decision-making in 
recording, analysis, and interpretation of EMG data has 
been carried out. Results of our study can feed the CEDE 
project, as this initiate encompasses definitions for terms 
used in the EMG literature, basic principles for recording 
and analyzing EMG and electrode selection [8, 14].

The second goal of our study was to evaluate the per-
formance of the most commonly used onset detection 
methods [three threshold-based algorithms—single (ST), 
double (DT) and adaptive threshold (AT)] to determine 
muscle onset on experimental EMG data. This allowed 
us to to evaluate the potential of these methods towards 
the real-time control of wearable robots (e.g., robotic 
exoskeletons).

Literature review
This review was based on the papers retrieved from the 
Scopus database using the following query strings:

TITLE-ABS-KEY ((emg OR electromyograph*) AND 
(onset AND detection))

and
TITLE((emg OR electromyograph*) AND (onset OR 

muscle OR movement) AND (detection OR activation)).
The first search returned a total of 245 papers and the 

second search 171, for a total of 416 possible publica-
tions. This research considered papers published until 
March 2022.

We applied the following exclusion criteria for our 
review:

• papers aiming at detecting muscle fatigue;
• use of additional sensors (e.g., inertial measurement 

units).

A total of 156 full-text journal articles were selected 
for analysis. The papers were analysed in terms of their 
application domain, pre-processing method and EMG 
onset detection method.

In the application domain, papers were classified as 
follows: Robotics, Clinical, Research, and Others. Spe-
cifically, papers that used EMG onset detection in the 
robotics domain (e.g., to control a robotic device) were 
classified as Robotics. Papers that presented results on 
the application of EMG onset techniques for clinical pur-
poses or in the clinical setting were defined as Clinical. 
Research papers were those that proposed and/or tested 
a new technique of EMG onset detection. The remaining 
papers were classified as Others.
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Pre-processing methods used to improve the quality 
of EMG before the application of the onset method itself 
were also analyzed in detail. Each EMG onset detection 
method was included in one of the following categories: 
Visual Inspection, Threshold-based, Statistical, Machine 
Learning or Others.

Regarding the EMG source type, from the total of 156 
full-text journal articles selected for the analysis, 15 of 
them used intramuscular electromyography (iEMG) sig-
nals as the EMG source type where to test the perfor-
mance of their algorithms at, whereas 145 articles used 
surface electromyography (sEMG) as the main EMG 
source type. This means that 4 articles tested onset detec-
tion algorithms in both sEMG and iEMG.

Literature review results
Figure  1 presents the number of publications on EMG 
onset detection methods along the years. After analyzing 
all papers selected, the pre-processing and EMG onset 
detection categories were defined according to the meth-
ods used and their relevance in terms of papers in the lit-
erature that applied each of them.

Pre‑processing methods
Pre-processing methods, used to improve the qual-
ity of EMG signals towards the extraction of meaning-
ful information, usually add more computational time, 
which means a delay in real-time implementations. The 
pre-processing methods evaluated in this review were 
classified in the following categories: EMG Envelope, 
Teager-Kaiser Energy Operator (TKEO), Wavelet Trans-
form and Others, which included those that did not fit 
in none of these categories. Different pre-processing 
methods were applied 90 times in the papers reviewed. 
Calculating the EMG envelope was the method most fre-
quently used, followed by the TKEO method.

EMG envelope
According to the CEDE project, EMG envelope is a 
smooth curve that tracks changes in the amplitude of an 
EMG signal over time [8]. Calculating the EMG envelope 
is a pre-processing method that can be obtained in sev-
eral ways, as shown in Fig. 2.

To obtain the EMG envelope from raw signals, two 
main options are available: (1) low-pass filtering of the 
rectified signal; (2) root-mean-square (RMS) on raw 
EMG signal.

Low-pass filtering of the rectified signal One of the most 
common approaches to calculate the EMG envelope is to 
use a discrete version of traditional low-pass filters such 
as Butterworth or Chebyshev on the rectified EMG signal 
(obtained by computing the absolute value of the raw sig-
nal).. These filters can be considered as Infinite Impulse 
Response filters [15]. This approach was applied in: [16–
26], with the Butterworth being the most predominant 
filter used.

Moving average (MA) According to the CEDE project, 
MA is defined as a method to smooth EMG data, that 
acts as a low-pass filter, reducing random fluctuations in 
the rectified or squared EMG signal [8].

This method was first used in the context of EMG 
onset detection by Maple-Horvart and Gilbey in 1992 
[27]. After that, MA was applied to calculate EMG enve-
lopes for EMG onset detection in several other papers: 
[13, 28–41].

The MA is calculated with a series of averages from 
successive segments, with or without overlapping win-
dows. The consequence of its use is the attenuation of 
rapid variations through local averaging, but retention of 
slow variations [28], smoothing the signal and acquiring 
its envelope.

Root-mean-square (RMS) on raw EMG signal  This 
approach ([28, 33, 42–51]) computes the RMS value of 
the signal within a window that “moves” across the raw 
EMG signal.

The RMS value measures the square root of the sig-
nal’s power. Therefore, it has a physical meaning. RMS is 

Fig. 1 Number of publications on EMG onset detection methods 
per year reviewed in this study (period: 1978–2022; total articles: 156)

Fig. 2 Comparison of the most common approaches to obtain 
the EMG envelope from the raw EMG signal
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useful in many other applications [42]. EMG envelopes 
can be calculated from the RMS according to Eq. 1.

where xi is the EMG value in the ith sample and N is the 
number of samples.

Teager–Kaiser energy operator (TKEO)
The TKE operator method ([17, 25, 38–40, 48, 52, 53, 
53–67]) was first proposed by Teager in 1982 [68–70]. 
The results obtained in these studies suggested that the 
production of speech involved nonlinear processes. As a 
result, Teager derived the TKE operator in the discrete-
time domain to compute the energy of a sound. This 
method has been extended to cover other continuous sig-
nals such as EMG [53].

The discrete TKE operator ψ is defined in the time 
domain as:

where n is the sequence index and x the raw EMG signal. 
Considering a signal defined by Eq. 3:

where A is the amplitude, ω0(n) is the angular frequency, 
and θ is the initial phase, the energy operator can be 
rewritten as defined in Eq. 4:

Equation  4 shows that the TKEO is proportional to the 
instantaneous amplitude (A) and frequency ( ω0 ) of 
the input signal. Therefore, TKEO is usually applied on 
EMG signals to extract motor unit activity by making the 
action potential spikes sharper and narrower, enhancing 
the muscle activation points [53].

Several studies have demonstrated that pre-processing 
using TKEO can improve the EMG onset detection with 
respect to different pre-processing methods [17, 52, 53, 
57, 71].

Wavelet transform (WT)
Pre-processing of raw EMG using the wavelet transform 
was applied in the following papers: [32, 48, 52, 59, 62, 64, 
67, 72–78].

The WT is one of many time-frequency representations 
used in signal processing. These transforms deconstruct 
a time domain signal into a sum of signals of different 
scales and time shifts, to produce a time-frequency rep-
resentation of a time domain signal. WT is an effective 

(1)XRMS =
1

N

N

i=1

x2i

(2)ψd[x(n)] = x2(n)− x(n+ 1)x(n− 1)

(3)x(n) = Acos[ω0(n)+ θ ]

(4)ψd[x(n)] ≈ A2sin2(ω0)

tool to extract useful information from the EMG signal.
[79].

Other pre‑processing methods
The other pre-processing methods found in the litera-
ture were the Hilbert filter [9, 80–82], the Kalman fil-
ter [83], the Morphological Close Operator [38, 55], the 
Morphological Open Operator [38], the Multi Objective 
Optimization Genetic Algorithm [84], the Adaptative 
Linear Energy Detector [85], the use of an statistical cri-
terion based on the amplitude distribution of EMG signal 
[86], the Constant False Alarm Rate method [87] and the 
Empirical Mode Decomposition [82].

EMG onset detection methods
EMG onset detection methods are those that, when 
applied to the EMG signal (raw or pre-processed signal), 
allow the identification of the beginning of muscle acti-
vation. In the pasts, the onset of muscle activation could 
be detected using mainly the following methods: Visual 
inspection, Threshold-based and Statistical. Recently, 
other studies have tested different methods (especially 
Machine Learning based) to determine muscle activa-
tion onset, reporting promising results. In our study, all 
EMG onset detection methods that do not fit into none 
of the previously mentioned categories were classified as 
”Other EMG onset Detection Methods”. Figure  3 shows 
the number of papers that applied each of these catego-
ries within each different application domain (Robotics, 
Clinical, Research and Others). EMG onset detection has 
been applied in the application domain ’Research’ more 
than in all the other domains together.

Visual inspection
Visual inspection entails subjectivity and needs to be 
performed by an expert. There are no criteria estab-
lished on how to carry out the visual inspection 

Fig. 3 Number of publications included in each of the different EMG 
onset detection categories (Visual inspection—black; Threshold—
light gray; Statistical—dashed grey; Machine Learning—bold gray 
squares; and Others—dashed bold gray) within each different 
application domain. Application domains considered were Robotics, 
Clinical, Research and Others
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technique, although it is usually employed to detect the 
earliest rise in EMG activity above the steady-state (i.e., 
basal activity) [50, 88–94].

Despite being a subjective technique, visual inspec-
tion can be used to validate automatic EMG onset 
detection methods, serving as a gold-standard to 
develop computerized EMG onset detection methods. 
The visual detection of EMG onset has been widely 
referred in the literature: [11, 17, 21, 24–26, 32, 33, 36, 
43, 49, 52, 57, 60, 60, 73, 95–102].

Threshold‑based methods
The label ’THRESHOLD’ in Fig.  3 encompasses the 
use of one or more threshold-based methods, which 
are thoroughly described in this section, in each of the 
papers analyzed in this review. Threshold-based are the 
most common EMG onset detection methods found 
in the literature, being tested 253 times across the 156 
papers analyzed (i.e., several papers tested and/or com-
pared more than one different method based on EMG 
threshold).

In this approach, one attributes a threshold to dis-
criminate between baseline activity and muscle activa-
tion. Thresholding is widely used due to its simplicity, 
speed and reliability. The simplicity of thresholding 
lies in its straightforward implementation. Addition-
ally, thresholding is computationally efficient, making it 
suitable for real-time analysis of EMG signals and han-
dling large datasets. Regarding its reliability, threshold-
ing is a robust method that has been used in numerous 
studies in the literature. Although thresholding may not 
always provide the most accurate detection of EMG 
onset, it remains a popular choice in EMG signal pro-
cessing. Nonetheless, there is lack of agreement among 
researchers on a standardized threshold method for 
EMG onset detection [46].

Cavanagh et  al. were the first to propose the use of a 
threshold-based method [103]: authors investigated the 
dependence of electromechanical delay in the human 
elbow flexor group upon selected initial conditions at the 
time of muscle activation. Most common strategies fol-
lowed to set threshold values are based on the baseline 
amplitude characteristics of the EMG signal, such as the 
mean or standard deviation. Some researchers name this 
strategy as the Shewhart protocol [16, 30, 104].

Some of the signal characteristics that can be consid-
ered to select the threshold are the following:

• Standard Deviation (SD);
• Period of time;
• % Maximum Voluntary Contraction;
• % Maximum EMG Amplitude.

Threshold-based methods can be classified in three 
different categories: Single Threshold (ST), Double 
Threshold (DT) and Adaptive Threshold (AT).

Single threshold (ST) ST method is the most predomi-
nant EMG onset detection method found in the liter-
ature: [2, 11, 13, 16–19, 22–24, 27, 29–32, 35–41, 43, 
45–48, 51–53, 55–57, 59, 60, 63, 66, 67, 74, 77, 81–84, 
86, 95, 96, 99, 103, 105–133].

ST compares the amplitude of the EMG signal (raw 
or EMG envelope) with a previously selected threshold. 
The onset is detected when the EMG amplitude is big-
ger than the threshold.

This method can be considered the most intuitive and 
standard computer-based method of time-locating the 
onset of muscle contraction activity [2].

ST can be useful to overcome some of the problems 
related to visual inspection. However, results of apply-
ing ST strongly depend on the choice of the threshold 
[134], which can lead to false positives in noisy signals. 
In theses cases, it is advisable to work on the EMG 
envelope, which smooths the signal and improves the 
onset detection.

Double threshold (DT): The DT method was applied 
in the following studies: [2, 10, 19–21, 24, 33, 34, 42, 
51, 55, 65, 73, 82, 83, 87, 94, 95, 100, 115, 119–121, 123, 
127, 128, 135–151].

To overcome some of the problems associated with 
ST, Lidierth et  al. introduced the DT method in 1986 
[135]. This method adds a second threshold to deter-
mine the muscle activation onset time, with the final 
goal of avoiding false positives and enhance EMG onset 
detection precision. A common strategy when apply-
ing DT method is to define an amplitude threshold, 
similar to what is done in ST. If the signal amplitude is 
higher than this threshold for a certain amount of time 
or samples (second threshold), then muscle activation 
is detected with DT. Due to the stochastic characteris-
tics of the EMG signal, it is normally necessary to use 
a pre-processing method to obtain the signal envelope 
and then apply the second threshold.

Adaptive threshold (AT) The AT method can be 
applied directly on the raw EMG signal. AT segments 
the signal using the signal-to-noise (SNR) [61] or the 
energy value [85] to adapt the threshold of muscle acti-
vation by windows. As the SNR is the relative power 
of wanted EMG to unwanted signal components that 
are contained in the overall signal [8], this threshold 
method can be considered as an improvement of ST 
method, as it adapts its threshold value according to 
the EMG window being analyzed, which might enable 
a more precise EMG onset detection over time. AT was 
applied in the following works: [11, 52, 54, 55, 85, 97, 
118, 121, 152–156].
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Statistical methods
The onset of muscle activation can be detected by 
evaluating the statistical properties of the EMG signal 
before and after a possible change in model parameters 
[115]. Two main statistical approaches can be identi-
fied in the literature: the Approximated Generalized 
Likelihood Ratio (AGLR) and the Cumulative Sum 
(CUSUM).

Approximated generalized likelihood ratio (AGLR): The 
AGLR method was applied in the following publications: 
[10, 17, 37, 52, 57, 58, 67, 72, 77, 83, 93, 94, 100, 115, 121, 
128, 157–160].

Sometimes also referred to as “Maximum Likelihood 
Estimator”, this method was first proposed as a change 
detection algorithm, with its first use in the context of 
muscle activity detection being presented in Hogan et al., 
in 1980 [157]. In short, the AGLR algorithm calculates an 
estimate of muscle activity as a function of the mean and 
variance of the activity level [121].

By using a log-likehood ratio test g(k) [66], the AGLR 
method detects if there is muscle contraction or not.

The log-likelihood ratio test is defined by the following 
equation:

where ln represents the natural logarithm, Y(n) repre-
sents the series of EMG samples, k the index of the prod-
uct, r is the total length of the series, p1 and p0 represent 
the probability density function corresponding to the 
alternative hypothesis H1 (i.e., there are changes in the 
statistical properties of the EMG sequence) and the null 
hypothesis H0 (i.e., there are no changes in the statistical 
properties of the EMG sequence), respectively.

If the log-likelihood g(k) value is smaller than a pre-
defined threshold, it indicates that the muscle is relaxed, 
whereas EMG onset is detected if g(k) value exceeds the 
threshold.

Cumulative sum (CUSUM): This method was used in: 
[67, 72, 95, 109]. CUSUM was first proposed by Ella-
way in 1978 [161] with applications on the analysis of 
histograms.

The first study to propose the use of CUSUM to detect 
EMG onset was Chanaud et al., in 1991 [109], which used 
this method to determine how the different regions of the 
biceps femoris activated in a cat during a broad range of 
limb movements.

The CUSUM method works as follows [161]: a refer-
ence level (k), dependent on the task to be performed 
and selected in a previous training phase, is sub-
tracted from each of the series of points on the signal 
(x1,  x2,  ...,  xi,  ...,  Xn). The result of these subtractions, 

(5)g(k) = ln

(

r
∏

k=1

p1(Yn|H1)

p0(Yn|H0)

)

shown in Eq.  6, is a new series of points (Si) which are 
formed by adding up these differences consecutively.

The CUSUM chart is defined as the sequential plot of the 
values of Si, expressed by the Eq. 7:

The CUSUM technique has a smoothing action on the 
data [161] and the EMG onset detection is determined by 
a previous threshold, which can be defined by a training 
phase (see [72] for more details).

Other statistical methods Other statistical methods 
were also used in the following papers: [25, 49, 50, 60, 61, 
75, 145, 147, 160, 162, 163].

Machine learning methods
Machine learning (ML), which is a discipline within 
the field of Artificial Intelligence, has recently gained 
increasing popularity due to the ability to extract pat-
terns and information from complex and high-dimen-
sional datasets. In the context of EMG onset detection, 
ML algorithms can automatically learn and adapt to the 
characteristics of the EMG signals, enabling the develop-
ment of highly accurate and efficient detection methods. 
Machine learning-based algorithms were found in [33, 
65, 164, 165].

Di Nardo et  al. [165] evaluated a novel machine-
learning-based approach (DEMANN) for detecting 
muscle activation onset/offset timing from sEMG sig-
nals. The study trained a neural network and evaluated 
DEMANN’s performance on simulated and real sEMG 
signals. DEMANN was validated against different refer-
ence algorithms, including the DT method. The study 
found that DEMANN provided a reliable prediction of 
muscle onset/offset and was minimally affected by SNR 
variability.

Trigili et al.[164] presented a ML-based algorithm able 
to detect users’ motion intention based on EMG signals 
and assessed its applicability towards the control of an 
upper-limb exoskeleton for people with severe arm dis-
abilities. The algorithm was able to detect the onset 
of muscle activation before the actual movement, and 
its computational load was compatible with real-time 
applications. The study concluded that the proposed 
algorithm was promising for controlling upper-limb exo-
skeletons in real-time applications, and for assisting peo-
ple with severe arm disabilities in performing functional 
tasks.

Dow et al. [33] presented the development of an algo-
rithm to detect inspiratory events from EMG signals. A 

(6)
S1 = (x1− k)

S2 = (x1− k)+ (x2− k)

(7)Si =
∑

(xi − k)
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state-machine was utilized for classification and inspira-
tions were detected with   98% accuracy in anesthetized 
and awake rats. The proposed algorithm can be explored 
in humans, as it may be useful for individuals requiring 
assisted ventilation.

Ghislieri et  al. [65] introduced and validated a new 
approach to detect muscle activation intervals from 
sEMG signals using long short-term memory (LSTM) 
recurrent neural networks. The performance of the pro-
posed LSTM-based muscle activity detector was com-
pared with two other widely used approaches: TKEO and 
DT method. The study included simulated and real sEMG 
signals from healthy individuals, orthopedic patients, and 
neurological patients. Results showed that the LSTM 
outperformed the other approaches. The proposed algo-
rithm overcomes the main limitations of other tested 
approaches and works directly on sEMG signals without 
the need for background-noise and SNR estimation.

Despite the growing interest in using ML techniques 
for EMG onset detection, there is currently no consensus 
on a reference method. As noted by Di Nardo et al. [165], 
a standardized approach for evaluating and comparing 
the performance of ML algorithms for EMG onset detec-
tion is still lacking. While several studies have proposed 
different ML approaches and achieved promising results, 
the absence of a reference method makes it challenging 
to classify these methods.

Other EMG onset detection methods
Other methods can be classified as: Energy-based meth-
ods [34, 85, 92], Entropy-based methods [12, 25, 38, 125, 
146], Mathematical/numerical techniques [9, 16, 55, 166, 
167], Computer Vision [127], Slope / discontinuities 
detectors [51, 62, 76] and External stimulation [168, 169].

Experimental protocol
The second goal of this study was to compare the per-
formance of the three most commonly used methods 
for EMG onset detection, having in mind their potential 
towards online control of robotic exoskeletons for gait 
assistance or rehabilitation. As shown in Fig. 3, Thresh-
old-based methods are the most commonly used in all 
application domains (Robotics, Clinical, Research and 
Others). For this reason, ST, DT and AT were tested on 
real data (iEMG and sEMG signals) obtained during 
motor tasks involving knee and ankle joints. This was 
done through simple tasks that could be used as a para-
digm for comparison (such as knee and ankle flexion-
extension), rather than gait, to minimize the influence of 
possible external factors (e.g., mechanical artifacts) on 
the evaluation of these methods. Furthermore, knee and 
ankle flexion-extension are important tasks during gait 
[170–173].

Participants
Three healthy subjects participated in this study. All 
procedures were approved by a local Ethics Commit-
tee (“Ethics Committee of Clinical Research with Medi-
cines of the Hospital Complex of Toledo”), as well as by 
the Spanish Agency of Medicines and Medical Devices 
(AEMPS)—record 721/19/EC. All subjects volunteered 
to participate in the study, were informed about the 
procedures and possible adverse effects, and signed the 
informed consent to participate.

Data collection
EMG data were recorded while participants performed 
ankle dorsiflexion-plantarflexion and knee flexion-exten-
sion movements, using an EMG amplifier (Quattrocento, 
OT Bioelettronica, Torino, Italy) and a sampling fre-
quency of 10,240 Hz. sEMG and iEMG were recorded 
from Tibialis Anterior (TA) and Vastus Lateralis (VL). 
For sEMG recordings, bipolar electrodes (Ag-AgCl, 
Ambu Neuroline 720, Ambu, Ballerup, Denmark) were 
used. For iEMG recordings, intramuscular thin wire elec-
trodes (Fi-Wi2, Spes Medica, Genova, Italy) were used. 
More information on the protocol can be found in [174].

The selected number of muscles was kept to a mini-
mum to simplify the procedure due to the invasiveness 
of the iEMG electrodes. On the other hand, testing the 
feasibility and performance of different threshold-based 
controllers can be carried out with such reduced number 
of EMG signals, as demonstrated in our previous study, 
where EMG-based controllers were used online to trigger 
the beginning of walking steps while healthy volunteers 
walked with an exoskeleton [175]. And, finally, these two 
muscles have an important role during gait [174].

Data processing
EMG onset was automatically detected offline using 
each of the three threshold-based methods (ST, DT and 
AT) on the EMG data recorded from each muscle (TA 
and VL) and participant, during knee and ankle flexion-
extension trials. Threshold values were determined indi-
vidually for each subject and task, and were based on the 
standard deviation (SD) of the baseline activity of each 
EMG recording through visual inspection.

Threshold values were defined between 1 and 3 times 
the SD of the EMG baseline, according to a training 
phase performed with each subject (see Table 1).

The DT method has to be performed on the EMG 
envelope due to the variation of the EMG amplitude over 
time (the second threshold). EMG envelopes were calcu-
lated using a Butterworth low-pass filter of second-order 
with a cut-off filter of 6 Hz [15]. The time required to 
ascertain muscle activation onset with DT method was 
2.50 ms, i.e., EMG envelopes needed to stay above the 
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first threshold for at least 2.5 ms in order for muscle acti-
vation to be detected offline.

The windows used in AT had a duration of 1/N of the 
total recording, where N is the number of movement 
cycles performed by the subject.

To analyze the performance of each method, the num-
ber of false/positive EMG onset detection events, the 
detection time and the processing time of each method 
were compared. The analysis of false positives/negatives 
was visually performed offline: any event labeled as the 
onset of EMG activation by a given method was consid-
ered as a false positive when an expert did not perceived 
it as a true onset of muscle activation; on the other hand, 
false negatives were those events labeled by an expert 
(offline, when assessing data visually) as an onset of mus-
cle activation, but these were not detected by a given 
method. Furthermore, the difference between the onset 
timing calculated by each threshold-based method and 
the visual inspection (which was used as reference) was 
calculated for each cycle, task and subject. The mean dif-
ference was calculated for each method and subject. For 
this step, the first and last cycle of movement in both 
knee and ankle task performance were not considered, to 
exclude possible transients in the signal. Processing times 
required by each method were also calculated.

Results
The mean processing times needed by the computer 
(2,7 GHz Intel Core i7 processor) to compute the three 
threshold-based methods (ST, DT and AT), for each cycle 
of movement, are shown in Table 2.

DT method required more processing time (almost 10 
times more) than the other two methods. The lengthy 
process required by DT to calculate EMG oset is due to 
the use of a pre-processing method (EMG envelope).

ST and DT methods obtained one false positive in 
a total of 124 cycles, which corresponds to 0.8% of 
detection error. AT obtained 9 false positives, which 

corresponds to a 7.3% of error detection. Table  3 rep-
resents the performance of the different threshold-
based algorithms. This was done by assessing the mean 
time differences that each automatic method needed 
to detect muscle activation onset from both sEMG and 
iEMG signals, compared to the visual inspection.

Considering the global performance of each thresh-
old-based method, higher time precision was achieved 
using AT, which detected the onset of muscle activa-
tion, on average, 0.30  s after the visual inspection. ST 
and DT detected activation onset, on average, 0.33  s 
and 0.43 s after the visual inspection, respectively. Fig-
ure 4 shows an example of the detection timing for each 
of the three threshold-based methods assessed, which 
were applied on iEMG data from TA during one cycle 
of ankle dorsiflexion-plantarflexion task. Although the 
iEMG presented in Fig. 4 is very selective and presents 
clear individual action potentials, the iEMG signal was 
not always detected at the level of individual motor 
units, making a signal decomposition into individual 
motor unit action potentials not a viable option.

Table  4 presents differences in terms of detection 
times when applying each of the threshold-based meth-
ods on sEMG and iEMG recordings. Muscle activation 
onset was detected before in iEMG signals for all sub-
jects, using the three threshold-based methods, with 
the exception of DT in subject 02. On average, ST, DT 
and AT methods detected muscle activation 0.17, 0.02 
and 0.16  s before in iEMG than in sEMG recordings, 
respectively.

Table 1 Values of EMG onset threshold used for ankle and knee 
tasks, for the three methods (ST, DT, AT)

The threshold values were based on the standard deviation (SD) of the baseline 
activity presented by each subject, for the two different tasks. S01 - Subject 1. 
S02 - Subject 2. S03 - Subject 3

Method Task S01 S02 S03

ST Ankle 2 SD 2 SD 1 SD

Knee 2 SD 1.5 SD 2 SD

DT Ankle 1 SD 2.5 SD 1 SD

Knee 3 SD 2.5 SD 3 SD

AT Ankle 2 SD 2 SD 1.5 SD

Knee 2 SD 2.5 SD 1 SD

Table 2 Mean ± SD processing time spent per cycle and its 
standard deviation, for each EMG onset detection method: ST, DT 
and AT

Method Processing 
time/ cycle 
[ms]

ST 1.250 ± 0.23

DT 14.302 ± 4.65

AT 1.905 ± 0.14

Table 3 Comparison of the mean ± SD detection times 
between ST, DT and AT methods with respect to visual 
inspection, in both sEMG and iEMG recordings

All values are positive, which means that automatic detection was always done 
with a delay with respect to the visual inspection

Method Subject 01 [ms] Subject 02 [ms] Subject 03 [ms]

ST 245.92 ± 116.81 332.10 ± 249.13 424.42 ± 261.03

DT 210.31 ± 180.10 502.47 ± 245.90 574.57 ± 192.89

AT 233.08 ± 132.52 336.67 ± 306.40 347.63 ± 63.21
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Discussion
EMG has been increasingly applied in the research field 
as part of intuitive and natural control in human-robot 
interaction and rehabilitation systems for restoration of 
human movement and control of external devices from 
recordings of neural activity. One key component of 
these systems is the detection of movement intention 
(i.e., the onset of muscle activity). Given the lack of agree-
ment on a standardized method for EMG onset detection 
and its importance towards intuitive and natural EMG-
based control systems, it is timely to explore methods 
for automatic EMG onset detection. The first goal of our 
study was to review the state-of-the-art on EMG onset 
detection algorithms.

A total of 156 papers published until March 2022 were 
included in the review. The papers were analyzed in 
terms of application domain, pre-processing method and 
EMG onset detection method.

Regarding the application domain, EMG onset detec-
tion has been applied in the ’Research’ field more than 
in all the other domains together (i.e., Robotics, Clini-
cal and others). This highlights the need of a standard-
ized method for EMG onset detection, which may boost 

the translation from bench to bedside so that the onset 
of muscle activity could be used in more Clinical and 
Robotics applications, for example.

A total of 40% of all papers reviewed used a pre-pro-
cessing technique before applying an onset detection 
method. Fast computational pre-processing methods 
are important to improve the quality of the EMG signal 
towards the extraction of information related with move-
ment intention. EMG envelope was the most frequently 
applied pre-processing method across the reviewed 
papers. Although other authors have considered the 
EMG envelope and the TKEO as EMG onset detection 
methods [60], we have classified them as pre-processing 
methods, as previously done by others [53].

Threshold-based methods were found to be the most 
commonly used methods for EMG onset detection, for 
all application domains. Thresholding is a widely used 
method for detecting EMG onset due to its simplic-
ity, speed and reliability. Recently, other studies have 
tested different methods (especially Machine Learning 
- ML - based) as an alternative to detect muscle activa-
tion onset, reporting promising results. One of the main 
advantages of ML-based methods is their ability to learn 
patterns from a dataset without the need for explicit 
feature extraction, which can otherwise be difficult and 
time-consuming. This can lead to more robust and gen-
eralizable models that can be applied to a wider range 
of datasets. Additionally, ML algorithms can adapt to 
changes in the data over time, allowing for the develop-
ment of more adaptive and personalized systems. There 
are, on the other hand, some limitations of ML-based 
methods. One potential concern is the risk of overfitting, 
where the algorithm may learn the specific characteris-
tics of the training data notably that it prevents it to gen-
eralize well to new data. This can, however, be mitigated 
through the use of appropriate validation methods and 
careful selection of training data. Additionally, ML-based 
methods can be computationally expensive and may 
require significant amounts of data to train. In this sense, 
more research is required to address the full potential 
of ML towards real-time applications, namely to infer 
movement intention.

We consider that our study fills a gap in the literature 
by providing a comprehensive classification framework 
for EMG onset detection methods. This framework not 
only enables a better understanding of the existing meth-
ods but also offers a practical tool for researchers and 
practitioners to easily navigate the field and select appro-
priate techniques for their specific requirements. This 
can also boost the development of novel algorithms and 
finally create consensus towards a possible standard-
ized method, which would also allow more reproducibil-
ity across studies. Previously, 19 papers reviewed onset 

Fig. 4 Individual example of EMG onset detection using four 
different methods (visual inspection (dashed line), ST (dotted line), DT 
(spaced dotted line) and AT (bold)) on iEMG recordings from Tibialis 
Anterior (TA) during ankle flexion‑extension. Methods were applied 
offline. ST—Single Threshold. DT—Double Threshold. AT—Adaptive 
Threshold

Table 4 Comparison of the mean ± SD EMG onset detection 
times between iEMG and sEMG for ST, DT and AT methods

Positive values indicate that muscle activation onset was detected earlier in 
iEMG signals than in sEMG signals (for the same muscle and task), while negative 
values indicate the opposite, i.e., muscle activation onset was detected earlier in 
sEMG signals than in iEMG signals (also for the same muscle and task)

Method Subject 01 [ms] Subject 02 [ms] Subject 03 [ms]

ST 115.15 ± 297.19 233.67 ± 152.21 163.11 ± 261.77

DT 46.86 ± 524.71 − 7.35 ± 68.01 26.93 ± 83.99

AT 157.92 ± 364.06 293.94 ± 323.81 21.31 ± 297.51
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detection methods [10, 11, 19, 34, 36, 49, 53, 54, 57, 60, 
71, 77, 83, 95, 96, 115, 119, 121, 128], although none of 
them has performed an extensive classification and def-
inition of the available methods. From these 19 papers, 
only 3 of them had the review of onset detection methods 
as their main goal [10, 54, 115].

The second goal of our study was to evaluate the per-
formance of the most commonly used onset detection 
methods (single (ST), double (DT) and adaptive thresh-
old (AT)) to determine muscle onset on experimental 
EMG data (sEMG and iEMG). This allowed us to evalu-
ate the potential of these methods towards the real-time 
control of wearable robots (e.g., robotic exoskeletons).

ST was the fastest of the three threshold-based meth-
ods to calculate EMG onset both in iEMG and sEMG 
data. This result can be explained by the low computa-
tional processing complexity required by ST, as well as 
the unnecessary employment of pre-processing meth-
ods, i.e., it can be applied on raw EMG data. On the other 
hand, ST is less precise than the other two threshold-
based methods, as it uses a fixed threshold for the entire 
EMG signal. This can increase the number of false posi-
tives/negatives in terms of onset detection events. In that 
case, the use of TKEO as a pre-processing method can 
improve the accuracy of onset detection compared to ST 
alone [71]. Taking into account the advantages and dis-
advantages of ST, we consider that ST suits simple tasks 
(such as EMG-based static rehabilitation) best, where a 
fast response of the system is more important than its 
precision, and false negatives/positives do not mean 
security problems to the user.

DT was the slowest of the three methods to calculate 
EMG onset. This is due to the need of calculating EMG 
envelope (in addition to the second threshold), which 
adds more processing time and, thus, can compromise 
its use in real-time applications, especially when a fast 
detection is required. DT is more precise that ST to cal-
culate EMG onset, as it uses two different thresholds 
(amplitude andd time) to detect the onset of the muscle 
activation. Therefore, it can be a robust solution to pro-
cess EMG recordings offline [19].

Considering the global performance of each threshold-
based method, higher time precision was achieved using 
AT, which detected the onset of muscle activation, on 
average, 0.30 s after the visual inspection. AT adapts the 
threshold of onset detection by segmenting the whole 
signal into small windows, allowing a more precise detec-
tion of muscle activation. AT can be a good option for 
real-time applications that need more precision and rela-
tively fast processing times in terms of detection of mus-
cle activation [153].

In summary, the choice of the most appropriate 
EMG onset detection method depends on the type of 

application and its requirements. A trade-off between 
processing speed, accuracy and time precision should be 
taken into account before defining which onset method 
best fits the application in question.

Muscle activation onset was detected before in iEMG 
signals for all subjects, using the three threshold-based 
methods, with the exception of DT in subject 02. Given 
that early detection of muscle contraction can be criti-
cal for real-time applications, iEMG signals should also 
be considered as an alternative to be used as input for 
human–machine interfaces [9], e.g., for the intuitive con-
trol of robotic exoskeletons, where timing is crucial for 
an efficient control strategy. Additionally, iEMG signals 
present higher SNR and less cross-talk, when compared 
with sEMG signals [174].

Conclusions
EMG can be used to infer movement intention and trig-
ger exoskeletons and prostheses. However, determining 
the onset of muscle activation from EMG activity is not a 
trivial task. The first conclusion of this paper is that there 
is still no agreement on a standardized method for EMG 
onset detection (neither offline nor online), which hin-
ders reproducibility across studies. Therefore, this study 
organized and classified the existing EMG onset detec-
tion methods in an attempt to bring additional interest to 
the field and create consensus towards a possible stand-
ardized method for EMG onset detection, which would 
also allow more reproducibility across studies. Despite 
the lack of standardized methods, the research interest 
has been growing along the years, with a soaring number 
of publications in the field.

A total of 156 papers published until March 2022 were 
analyzed in terms of application domain (Robotics, Clini-
cal, Research and Others), pre-processing method and 
EMG onset detection method. Pre-processing methods 
are used to improve EMG quality towards the extrac-
tion of meaningful information, although this adds more 
computational time and might be a drawback towards 
real-time applications. EMG envelope, which represents 
the average activation of the EMG signal, was found to 
be the most used pre-processing method before applying 
algorithms aiming at detecting onset of muscle activity.

Threshold-based methods were found to be the most 
commonly used methods for EMG onset detection. On 
the other hand, Machine Learning (ML) methods have 
recently received increased attention as an alternative 
to detect muscle activation onset, reporting promising 
results. However, more research is required to address 
the full potential of ML towards real-time applications, 
namely to infer movement intention.

This study also evaluated the performance of the most 
commonly used onset detection detection methods 
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(single (ST), double (DT) and adaptive threshold (AT)) 
to determine muscle onset on experimental EMG data. 
This allowed us to to evaluate the potential of these 
methods towards the real-time control of wearable 
robots. Results showed that DT required more process-
ing time, which led to increased average onset timing 
detection compared to the other two methods, while 
ST and AT were faster in terms of EMG onset detec-
tion time, especially when applied on iEMG data. These 
are very important features towards movement inten-
tion identification. In that sense, this opens the window 
to further explore these methods in real-time applica-
tions such as the intuitive control of exoskeletons. In 
any case, the choice of the most appropriate EMG onset 
detection method depends on the type of application 
and its requirements. A trade-off between processing 
speed, accuracy and time precision should be taken 
into account before defining which onset method best 
fits the application in question.

One limitation of this study is its reduced sample size 
(n = 3 healthy subjects), which affects the likelihood of 
obtaining statistical differences and, thus, the general-
izability of the results. However, data collected served 
the purpose of achieving the secondary goal of this 
study, allowing us to assess the advantages and limita-
tion of each of the most used methods for EMG onset 
detection.
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