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Abstract 

Background Upper limb impairments in a hemiparetic arm are clinically quantified by well-established clinical 
scales, known to suffer poor validity, reliability, and sensitivity. Alternatively, robotics can assess motor impairments 
by characterizing joint dynamics through system identification. In this study, we establish the merits of quantifying 
abnormal synergy, spasticity, and changes in joint viscoelasticity using system identification, evaluating (1) feasibility 
and quality of parametric estimates, (2) test–retest reliability, (3) differences between healthy controls and patients 
with upper limb impairments, and (4) construct validity.

Methods Forty-five healthy controls, twenty-nine stroke patients, and twenty cerebral palsy patients participated. 
Participants were seated with the affected arm immobilized in the Shoulder-Elbow-Perturbator (SEP). The SEP is a 
one-degree-of-freedom perturbator that enables applying torque perturbations to the elbow while providing varying 
amounts of weight support to the human arm. Participants performed either a ‘do not intervene’ or a resist task. 
Elbow joint admittance was quantified and used to extract elbow viscosity and stiffness. Fifty-four of the participants 
performed two sessions to establish the test–retest reliability of the parameters. Construct validity was assessed by 
correlating system identification parameters to parameters extracted using a SEP protocol that objectifies current 
clinical scales (Re-Arm protocol).

Results Feasibility was confirmed by all participants successfully completing the study protocol within ~ 25 min 
without reporting pain or burden. The parametric estimates were good with a variance-accounted-for of ~ 80%. A 
fair to excellent test–retest reliability was found ( ICC = 0.46− 0.98 ) for patients, except for elbow stiffness with full 
weight support ( ICC = 0.35 ). Compared to healthy controls, patients had a higher elbow viscosity and stiffness during 
the ‘do not intervene’ task and lower viscosity and stiffness during the resist task. Construct validity was confirmed 
by a significant (all p < 0.03 ) but weak to moderate ( r = 0.36− 0.50 ) correlation with parameters from the Re-Arm 
protocol.

Conclusions This work demonstrates that system identification is feasible and reliable for quantifying upper limb 
motor impairments. Validity was confirmed by differences between patients and controls and correlations with other 
measurements, but further work is required to optimize the experimental protocol and establish clinical value.
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Introduction
Upper limb motor impairments in hemiparetic limbs 
such as after stroke and cerebral palsy (CP) are currently 
assessed by a set of well-established clinical scales aim-
ing to quantify, among others, muscle weakness, abnor-
mal synergy, spasticity and changes in joint viscoelasticity 
[1]. These include tests like the Brunnstrom Fugl-Meyer, 
Modified Ashworth Scale (MAS), and Modified Tardieu 
Scale (MTS). The motor impairments identified using 
these tests assist in selecting a treatment approach and 
are used to monitor improvement. However, the tests 
have several known limitations, which include their 
poor validity, reliability, and sensitivity [2–6]. Whereas 
the need for objective and reliable assessment of motor 
impairments is widely recognized [7, 8], no tests have yet 
successfully replaced traditional clinical scales.

Robotics can objectively quantify the motor impair-
ments of muscle weakness, abnormal synergy, spastic-
ity, and changes in joint viscoelasticity [9–11]. Recently, 
a robotic device was developed and validated to assess 
these four impairments using one single device (the 
Shoulder-Elbow-Perturbator—SEP) [12]. By using the 
SEP to mimic current clinical tests, an earlier finding was 
confirmed that upper limb synergy can be quantified by 
the change in elbow range of motion (ROM) when gradu-
ally reducing arm weight support [13]. Likewise, spastic-
ity and viscoelasticity can be objectively quantified by 
imposing passive joint movements at low and high speeds 
[9, 14, 15]. The robotics used in the aforementioned 
studies leveraged the accurate recording of joint angles 
and torques to provide a reliable way to quantify motor 
impairments during passive and active joint movements.

Motor impairments can also be quantified with 
the help of robotics by applying external mechanical 
perturbations while participants perform either a ‘do not 
intervene’ (DNI) or resist task [16, 17]. These tasks imply 
the participant is fully relaxed (DNI task) or attempts 
to maintain a constant joint angle or torque (resist task) 
while the joint is rotated within a small ROM (e.g., root 
mean square rotation of 0.5–1°). Recordings of the joint 
angle and joint torque are subsequently scrutinized using 
system identification techniques to characterize the joint 
dynamics. System identification enables us to quantify 
both the intrinsic (non-neural) and reflexive (neural) 
contribution to the joint dynamics [18, 19], captured in 
the joint’s inertia, viscosity, and stiffness parameters. 
These parameters can be translated to clinically described 
phenomena such as synergy (i.e., aberrant elbow stiffness 
when lifting the arm), spasticity (i.e., enhanced reflexive 

activity), or changes in viscoelasticity (i.e., increased 
intrinsic joint viscosity and stiffness).

In this study, we aim to establish the merits of quantify-
ing abnormal synergy, spasticity, and changes in joint vis-
coelasticity using system identification. This is achieved 
by (1) confirming the feasibility to perform a system 
identification protocol and quality of parametric esti-
mates, (2) establishing the test–retest reliability for the 
system identification parameters, (3) comparing obtained 
parameters between healthy controls and patients with 
upper limb impairments and (4) test construct validity by 
comparing the system identification parameters for each 
motor impairment with parameters obtained using four 
tests as part of a recently proposed robotic assessment 
protocol (Re-Arm) [12].

Methods
Participants
We recruited adult patients from the outpatient clinic of 
the Rijndam Rehabilitation Center that presented upper 
limb motor impairments due to stroke and CP. Patients 
were only included if they: (1) had a clinically-confirmed 
upper limb impairment, (2) were able to achieve active 
shoulder abduction (up to 80°), (3) were able to achieve 
visible active elbow extension, and (4) had a minimal 
passive range-of-movement for shoulder abduction of 
80° and horizontal shoulder adduction of 45°. Exclusion 
criteria were: (1) hemiplegic shoulder pain, (2) a history 
of pre-existing neuromuscular disorders affecting upper 
limb function, (3) fixed upper limb contractures, and (4) 
the inability to understand verbal instructions. We only 
included stroke patients when they were considered 
chronic, suffering the stroke at least six months before 
study inclusion.

For comparison, we recruited a group of age-matched 
healthy controls without a known history of neurologi-
cal or orthopedic disorders. The study was approved by 
the Medical Ethics Committee of the Erasmus Medical 
Center, Rotterdam, (protocol number NL64660.078.18), 
and conducted following the declaration of Helsinki.

Experimental setup
Shoulder elbow perturbator
The Shoulder-Elbow-Perturbator (SEP—Hankamp 
Rehab, Enschede, The Netherlands) was used to assess 
participants’ elbow dynamics. The design of the SEP 
enables independent manipulation of elbow angle and 
weight support of the human arm [12]. A direct-drive 
servo motor (HIWIN TMS3C, Offenburg, Germany) 
attached to a lever supporting the lower arm controlled 
the elbow angle by aligning its axis to the medial 
epicondyle of the humerus (Fig.  1). A computer with 
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Etherlab and MATLAB Simulink was used to control the 
SEP and capture elbow torque and angle with a sample 
rate of 1 kHz.

Measurement protocol
All ninety-four participants underwent the same meas-
urement protocol. Fifty-four participants performed the 
measurement protocol twice, separated by at least 7 days, 
to assess the test–retest reliability of the extracted param-
eters from each task.

Participant profiling
Before the SEP experiments, the age, sex, dominant arm, 
and side of the paretic arm were registered and body 
mass and length were measured. For stroke patients, the 
date and type of stroke were obtained from their medi-
cal records. For CP patients, the level of the Gross Motor 
Function Classification System (GMFCS) and the Man-
ual Ability Classification (MACS) were obtained from 
their medical records [21, 22]. Finally, for each patient, 
synergy was quantified by either the score on the upper 
limb section of the Fugl-Meyer assessment (for stroke 
patients) or the Test of Arm Selective Control (TASC, for 
CP patients) [23, 24]. Spasticity was quantified using the 
MTS. All clinical tests were performed by an experienced 
assessor (LL).

SEP measurements
Participants were seated next to the SEP on a custom-
made chair. Straps were used to limit torso displacement 
by immobilizing the torso against the back of the chair. 
The chair and the height of SEP were adjusted to achieve 
80° shoulder abduction and 30° horizontal adduction. To 
ensure the axis of the servo motor remained aligned with 
the medial epicondyle of the humerus, the lower arm and 
wrist were fixed to the SEP lever using Velcro straps and 
a custom clamp mechanism with safety pins. The wrist 
remained in a ± 10° dorsiflexion position throughout the 
experiment using a cock-up cast. Before commencing the 
tests, the SEP ROM limits for the arm were determined 
manually.

Each participant was measured according to the ‘Re-
Arm protocol’ [12] and the ‘System identification proto-
col’. All performed tests were presented in random order 
to avoid an order effect. Moreover, a 5-min rest period 
was adopted between each test to prevent fatigue.

System identification protocol A system identification 
protocol was used as an all-encompassing way to quantify 
upper limb impairments using an active and passive 
elbow perturbation task. Participants were instructed 
to maintain the 80° shoulder abduction angle during 
the recordings during either a DNI or a resist task while 
receiving continuous torque perturbations to the elbow. 
The DNI task was performed once for five different arm 
weight support levels (100%, 75%, 50%, 25%, and 0% 

Fig. 1 The Shoulder Elbow Perturbator (SEP), a robotic device to quantify multiple upper limb impairments. a Participant positioned in the SEP 
with the shoulder abducted in 80°, the forearm strapped (1) to the lever arm of the SEP, and the medial epicondyle of the humerus aligned with 
the motor rotation axis. b Internals of the SEP showing that the motor (4) transmits a torque through the torque link (3), allowing elbow rotation 
(2). c Internals of the SEP showing the shoulder abductor manipulation mechanism. The sarrus linkages (5) allow vertical displacement of the 
arm, and the arm is supported by two springs (6) with an upward force. With the cable routing and pulley configuration, the upward force can be 
manipulated independently of the linkage position (7). (Modified – with permission from [20])
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support). In contrast, the resist task was performed only 
once at two weight support levels (100 and 0% support) 
to limit fatigue and participant burden. The 100% weight 
support level was determined by gradually increasing 
the upward force of the support mechanism until the 
participant could fully relax the arm while the support 
surface remained at the same height. To aid participants 
in minimizing elbow movements during the resist task 
conditions, a vertical bar was mounted to the SEP near the 
hand to highlight the reference position where the hand 
had to be kept. Each trial lasted 55 s.

The torque perturbation signal was designed as a 
random-phase multisine torque signal (i.e., the sum of 
several sinusoids with random phase) to challenge the 
sensorimotor system with a frequency content relevant 
to study the dynamics of the elbow (natural frequency 
of the elbow is ~ 1–2 Hz). The period of the disturbance 
signal was set to 5 s to accommodate low frequencies but 
still enable sufficient periods in the given measurement 
time. All frequencies between 0.2 and 12  Hz were 
included in the perturbation signal (frequency resolution 
of 1/5  s = 0.2  Hz). The perturbation was scaled such to 
result in a root mean square elbow rotation during a trial 
of ~ 0.03  rad for each participant. Hence, each 55  s trial 
consisted of 11 consecutive periods of a perturbation 
period. The recorded elbow angle and torque were used 
to quantify elbow dynamics (Fig. 2).

To quantify protocol feasibility, for all participants, 
the total time required for the system identification 
protocol was noted and afterwards participants were 
asked to rate the pain of the protocol on a 0–10 scale 

(zero representing ‘no pain’). Moreover, forty participants 
(20 stroke patients and 20 healthy controls) were asked 
to rate the burden of the protocol on a 0–10 scale (zero 
representing ‘no burden’).

Re‑Arm protocol The results of the system identification 
protocol were compared with results obtained using 
the Re-Arm protocol presented previously [12, 20] 
to establish the construct validity of the system 
identification parameters. The Re-Arm protocol was 
designed to objectify manual performed clinical tests, 
thereby obtaining a comprehensive description of four 
characteristics that describe upper limb function: muscle 
weakness, abnormal synergy, spasticity, and viscoelasticity 
of the elbow. Three are used in this study:

1. To quantify abnormal synergy, participants were 
positioned to start at maximum elbow flexion and 
instructed to actively and slowly extend the elbow as 
far as possible. This was done once for five different 
levels of arm weight support (100%, 75%, 50%, 25%, 
and 0% support).

2. To quantify spasticity, participants were instructed 
to fully relax their arm and shoulder while the SEP 
passively moved their arm from maximum flexion to 
maximum extension at 100°/s. This was performed 
three times under full weight support of the arm and 
with a 5 s rest between repetitions.

3. To quantify viscoelasticity, participants were 
instructed to fully relax their arm and shoulder while 
the SEP passively moved their arm from maximum 

Fig. 2 The torque perturbation signal in a frequency—and b time-domain was composed of frequencies between 0.2–12 Hz. c Typical elbow 
torque and d elbow angle throughout a single 5 s recording period
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flexion to maximum extension and back at 6°/s. This 
was performed three times under full weight support 
of the arm and with a 5-s rest between repetitions.

Data analysis
System identification analysis
Data from the system identification protocol was first 
analyzed using a non-parametric analysis to estimate 
elbow admittance (i.e., the resistance of the elbow to an 
external torque and thereby the inverse of impedance). 
The elbow admittance is represented by a frequency 
response function calculated by dividing the cross-spec-
tral densities between the elbow angle ( θ ) and elbow 
torque ( T  ) with the perturbation torque ( d):

Cross-spectral densities Sdθ f  and SdT
(
f
)
 were esti-

mated using Welch’s method [25] with a rectangular 
window corresponding to the length of the period in the 
perturbation signal (5  s). Before calculating the elbow 
admittance, the cross-spectral densities were smoothed 
using 3-point frequency averaging to reduce the variance 
of the estimations [26]. In addition to the elbow admit-
tance, the coherence γ̂ 2

θ (f ) for the elbow angle was esti-
mated following estimation of the auto-spectral densities 
Sθθ

(
f
)
 and Sdd

(
f
)
:

The coherence indicates whether the relation between 
perturbation torque and elbow angle is linear and 
noise-free.

Physiological meaningful parameters were obtained by 
fitting a neuromuscular model. This model represents the 
mechanical elbow admittance and the contact dynamics, 
i.e., dynamics associated with the interface between the 
lower arm and robotic lever. Therefore, the neuromuscu-
lar model is described by:

where I is the lower arm inertia, b the elbow muscle vis-
cosity, k the elbow stiffness, bc the contact viscosity and 
kc the contact stiffness. The best model fit to the data was 
sought by minimizing the following criterion function 
[27]:

HTθ

(
f
)
=

Sdθ
(
f
)

SdT
(
f
)

γ̂ 2
θ

(
f
)
=

∣∣Sdθ
(
f
)∣∣2

Sdd
(
f
)
·Sθθ

(
f
)

Helbow(s) =
1

Is2 + bs + k
+

1

bcs + kc

where we only included frequencies that had power in 
the perturbation signal following 3-point frequency aver-
aging. A least-squares criterion with a logarithmic differ-
ence was used because of the large range in magnitude 
of the frequency response function. Moreover, the least-
squares criterion was weighted with the coherence to 
limit the effect of the less reliable frequencies and with 
(1+ f )−1 to prevent emphasis on higher frequencies [27, 
28]. Hence, both the DNI and resist conditions were fit-
ted simultaneously with the same inertia. In addition, 
the contact dynamics were considered independent of 
the arm weight support level but different between the 
DNI and resist task conditions. For the DNI task, con-
tact viscosity was taken as bc = 2Ns/m while contact 
stiffness was kc = 340N/m , while for the resist task a 
contact viscosity of bc = 4Ns/m and contact stiffness 
of kc = 500N/m were used. These values provided an 
appropriate fit of the contact dynamics for all partici-
pants. In total, 15 parameters were estimated. Table  1 
summarizes all model parameters to be estimated in this 
study.

Following fitting the neuromuscular model and extract-
ing the system identification parameter values, two addi-
tional parameters, bslope and kslope, were determined by 
performing a first-order polynomial least squares fit to 
the estimated elbow viscosity and stiffness across all 
weight support levels during the DNI task.

The goodness of the fit of the neuromuscular model, 
and thus quality of parametric estimates, was expressed 
using the variance-accounted-for (VAF) between the esti-
mated and measured elbow angle. The estimated angle 
was calculated by multiplying the estimated mechanical 

L(p) =
∑ γ̂ 2

θ (f )

1+ f

∣∣∣∣∣ln
(

HTθ

(
f
)

Helbow(f )

)∣∣∣∣∣

2

Table 1 System identification parameters to be estimated

The subscripts indicate the percentage of arm weight that is supported (e.g. 
100% is full arm weight support) and the task condition (DNI: ‘do not intervene’; 
res: resist)

Parameter Unit Parameter Unit

Inertia

I Nm·s2/rad

Viscosity Elasticity

b100,DNI Nm·s/rad k100,DNI Nm/rad

b75,DNI Nm·s/rad k75,DNI Nm/rad

b50,DNI Nm·s/rad k50,DNI Nm/rad

b25,DNI Nm·s/rad k25,DNI Nm/rad

b0,DNI Nm·s/rad k0,DNI Nm/rad

b100,res Nm·s/rad k100,res Nm/rad

b0,res Nm·s/rad k0,res Nm/rad
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admittance model with the perturbation torque in fre-
quency domain, and subsequently taking the inverse Fou-
rier transform. Any individual conditions were excluded 
from further analysis when the VAF < 0%, indicating a 
poor model estimate. When a participant had two or 
more missing DNI levels or a VAFs < 0%, the participant 
was excluded from further analysis.

Re‑Arm protocol analysis
Data and results from the Re-Arm protocol  were pre-
sented previously [20]. Here, we used the same data 
processing pipeline to extract synergy, spasticity, and vis-
coelasticity and thereby establish validity of the system 
identification technique:

1. To quantify abnormal synergy, the maximum elbow 
extension angle was determined for each level of 
weight support. The extension angle at 100% weight 
support was defined as zero. Subsequently, a linear 
regression line was estimated to relate weight sup-
port level to the maximum extension angle. The slope 
of the regression line was adopted as a measure of 
synergy, with 0 indicating an absence of synergy. A 
negative slope of the regression line would indicate 
the presence of synergy, since that would represent 
that the maximum elbow extension angle decreases 
with decreased arm weight support [29].

2. To quantify spasticity, the maximum torque during 
the three passive elbow extension movements was 
averaged.

3. To quantify viscoelasticity, the mean elbow torque 
at ten evenly-spaced positions during the ROM was 
extracted. The relationship between elbow angle and 
torque data was parameterized by fitting a regression 
line, of which the slope was taken as a measure of 
elbow viscoelasticity.

Statistical analysis
The analysis was separated in four parts:

(1) Protocol feasibility and quality of  the parametric 
estimates: To establish feasibility of the system iden-
tification protocol and determine the quality of par-
ametric estimates in patients we compared the total 
test time, perceived burden, pain score and quality 
of parametric estimates (using the VAF) between 
healthy controls and patients using an independ-
ent t-test or Mann–Whitney Test when data was 
non-normally distributed or had unequal variances 
across groups. Groups were considered statistically 
significantly different when p < 0.05.

(2) Test–retest reliability of the system identification 
parameters: The test–retest reliability of the sys-
tem identification parameters was determined 
by exploring Bland–Altman plots with the lim-
its of agreement (LOA) (LOA = mean differ-
ence ± 1.96*standard deviation of the difference 
between the two measurements) and calculating 
intraclass correlation coefficients (ICCs). ICCs were 
calculated with two-way random effects, absolute 
agreement, single rater formula, ICC(2,1), where 
the ratio of the variance between participants to 
the variance between participants plus error vari-
ance was calculated. Values less than 0.4 indicated 
poor reliability, between 0.4 and 0.75, fair to good 
reliability, and higher than 0.75 are indicative of 
excellent reliability [30]. In addition to the ICC, the 
Smallest Detectable Change (SDC) was calculated 
as SDC = 1.96 ∗ SEM ∗

√

2 [31]. Different scores 
between two measurements larger than the SDC 
can be interpreted as true differences at an individ-
ual subject level.

(3) Healthy controls vs. patients: We performed an 
exploratory analysis to test differences between 
groups in the mean and variance of the extracted 
system identification parameters. All 15 system 
identification parameters, and the two slope param-
eters, were treated as independent variables. Nor-
mality and equality of variances  were  tested  using 
the Shapiro–Wilk test and Levene’s test for homo-
geneity of variances, respectively. Subsequently, 
a one-way ANOVA was performed to test for dif-
ferences between groups. In case a parameter was 
found to be not normally distributed or presented 
unequal variance between groups, a Kruskal–Wal-
lis test was performed. Any significant differences 
(p < 0.05) were further scrutinized using a (Dunn-)
Bonferroni post hoc test.

(4) Construct validity of system identification parame-
ters: Construct validity was tested by comparing the 
parameters of the system identification protocol to 
the parameters extracted from the Re-Arm proto-
col. We used Pearson correlations to assess whether 
parameters from both protocols can be related. The 
following comparisons were made: 

• Synergy: The system identification protocol does 
not involve any active movement, making a direct 
quantification of synergy by studying range of 
movement in different arm weight conditions as 
done routinely in clinical practice or during the 
Re-Arm protocol  difficult. However, we assume 
that the abnormal synergy patterns causing 
impaired arm extension when reducing the arm’s 
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weight support also results in a higher elbow vis-
cosity and stiffness. This is based on observations 
that when reducing the arm’s weight support 
elbow extension is limited. The reduced reaching 
workspace has been suggested to be caused by an 
altered passive joint stiffness [32, 33]. Therefore, 
we correlated the change in elbow viscosity and 
stiffness across weight support levels (bslope, kslope) 
with the slope of the regression line relating weight 
support level and maximum extension angle as 
obtained during the Re-Arm protocol.

• Spasticity: The system identification protocol does 
not administer fast passive elbow movements to 
quantify spasticity under full weight support of 
the arm. However, we assumed spasticity would 
become evident from the measures of elbow vis-
cosity and stiffness when the elbow is fully relaxed 
and arm weight is fully supported during the DNI 
task which imposes small elbow movements at 
varying velocities. This assumption is based on the 
observation that spasticity is primarily reported to 
limit passive movement [34], while full arm weight 
support removes the potential confounding effect 
of synergy. Therefore, we correlated the elbow 
viscosity and elbow stiffness during the DNI task 
under full arm weight support (b100,DNI , k100,DNI ) 
with the Re-Arm parameter of spasticity (maxi-
mum torque during fast passive elbow extension).

• Viscoelasticity: The system identification proto-
col separates viscoelasticity, determined during 
slow passive elbow movement during full arm 
weight support, in elbow viscosity and stiffness. 
We assumed changes in viscoelasticity would be 
reflected in both elbow viscosity and elbow stiff-
ness as determined during the DNI task under 
full arm weight support. Therefore, we corre-
lated both the elbow viscosity and elbow stiffness 
during the DNI task under full weight support 
(b100,DNI , k100,DNI ) with the Re-Arm parameter of 
viscoelasticity (slope of the regression line relating 
elbow torque and angle).

The correlations coefficients were calculated using the 
corrcoef function in MATLAB2020a with the significance 
threshold set at p < 0.05.

Statistical tests were conducted in SPSS version 25 for 
Windows (IBM, Armonk, NY, US) and values will be 
reported as mean (SD), unless stated otherwise.

Sample size estimation
Sample size estimation for the test–retest reliability
Following Walter, Eliasziw [35], we tested whether the 
expected ICC (ρ1) was equal (null hypothesis) or higher 
(alternative hypothesis) than the acceptable ICC (ρ0). A 
ρ0 value of 0.60 was used, based on the literature, and 
a ρ1 of 0.85 [3, 36]. The number of observations was 
fixed at 2. Using a significance level (α) of 0.05 and a 
power (1–β) of 0.80, a sample size of 21 participants per 
group (patient and healthy control group) is required. 
To account for an expected dropout of 10%, the current 
study aimed at sample sizes of 24–30 participants who 
participated twice.

Sample size estimation for healthy controls vs. patients
We based our sample size calculation on the test of 
whether stiffness at a 100% weight support level was 
equal (null hypothesis) or different (alternative hypoth-
esis) for the healthy controls and patients. Based on pre-
vious literature and preliminary findings we estimated 
the difference between the means to be 3Nm/rad with 
a standard deviation of 5Nm/rad . Using a significance 
level (α) of 0.05 and a power (1–β) of 0.80, a sample size 
of 44 participants per group (patient and healthy control 
group) is required. To account for an expected dropout 
of 10%, the current study aimed at sample sizes of 45–50 
participants.

Sample size estimation for the construct validity
We hypothesized that the system identification outcomes 
would correlate moderately (between 0.50 and 0.70) with 
their Re-Arm counterparts. Using a significance level (α) 
of 0.05 power (1–β) of 0.80 and an expected correlation 
coefficient of 0.50 a sample size of at least 29 participants 
per group (patient and healthy control group) is required. 
To account for an expected dropout of 10%, the current 
study aimed at sample sizes of at least 32 participants.

Results
Participants
In total, forty-five healthy controls, twenty-nine stroke 
patients, and twenty cerebral palsy patients participated. 
Twenty-five healthy controls, nine stroke patients, and all 
twenty cerebral palsy patients performed a second ses-
sion of the measurement protocol to establish test–retest 
reliability. The characteristics of all three groups are sum-
marized in Table 2.

Protocol feasibility and quality of parametric estimates
The system identification protocol part of the experimen-
tal session took ~ 25 min (healthy controls: 25 (7.8) min; 
patients: 26 (7.5) min)—and was not different between 
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the groups (U = 984.50, p = 0.37). The perceived burden 
of participation was scored similarly in 20 healthy con-
trols 3.9 (2.5) and the 20 stroke patients 5.3 (2.3) (t(39) =  
–1.86, p = 0.07). Pain for this protocol was also similar 
in the patients 1.5 (2.0) and healthy controls 0.7 (1.4) 
(U = 903.50, p = 0.09).

Figure  3 shows the magnitude and phase of the 
frequency response function and the coherence of a 
typical stroke patient for both the DNI and resist task and 
all levels of arm weight support used. In total, 9 of the 94 
participants were excluded from further analysis (healthy 
controls: 6; patients: 3) due to poor (< 0%) VAFs and/or 
inability to successfully complete two or more levels. For 
the first measurement session, the fitted models (dashed 
lines) explained the underlying data well as highlighted 
by the VAF. Overall, the VAF was 79.3% (15.4%) for 
all conditions and participants, with no significant 
differences between healthy controls: 78.8% (16.8%) and 
patients: 79.7% (13.9%) (U = 45,854.0, p = 0.84).

Test–retest reliability of the system identification 
parameters
The Bland–Altman plots show the differences between 
test and retest for the system identification parameters 
that are correlated with their corresponding Re-Arm 
parameters: k100,res , k100,DNI and kslope (Fig.  4). Overall, 
a fair to excellent test–retest reliability was found for the 
system identification parameters based on the ICC values 
(Table  3) for both healthy controls and patients. Poor 
reliability was found for elbow stiffness with full weight 
support in patients ( k100,DNI ), and the slope parameters 
together with elbow stiffness without weight support 

in healthy controls ( k0,DNI , kslope and bslope ). The SDCs 
(Table 3) are higher for the patients group than the healthy 
controls.

Differences between healthy controls and patients 
with upper limb impairments
Figure 5 shows an overview of the identified elbow iner-
tia, elbow viscosity, elbow stiffness, and the stiffness and 
viscosity slope for all participants. The complete statisti-
cal results of the Levene’s and Mann–Whitney tests are 
presented in Additional file  1. Shapiro–Wilk test 
indicated that all parameters (all p < 0.05 ) presented a 
non-normal distribution, apart from k0,res and k100,res . In 
addition, Levene’s test for homogeneity of variances indi-
cated inequality of variance across groups for 
b100,DNI , b50,DNI , b25,DNI , b0,DNI , k100,DNI , k75,DNI , k50,DNI ,

k25,DNI , k0,DNI , kslope and bslope with all p < 0.05 (Addi-
tional file 1: Table S1). A significantly higher variance was 
found in the patients compared to the healthy controls 
for all but one ( bslope) parameter (Additional file  1: 
Table S2). As a result, any differences between groups for 
each parameter were explored using a nonparametric 
Mann–Whitney test.

Table 2 Characteristics of the groups of participants

n number of subjects. CP Cerebral Palsy, SD standard deviation, MACS Manual 
Ability Classification System, GMFCS Gross Motor Function Classification System, 
IQR interquartile range, Q quality of muscle reaction (scale 0–5); MTS: Modified 
Tardieu Scale, UE-FM Upper Extremity—Fugl-Meyer assessment, TASC Test of 
Arm Selective Control; * Missing values for 20 subjects

Healthy Controls
(n = 45)

Patients (n = 49)

Stroke
(n = 29)

CP
(n = 20)

Gender (M/F) 15/30 23/6 9/11

Age (yrs) 51 (16) 64 (10) 40 (14)

Time post-stroke (months) – 70 (35) -

MACS level, median (range) – – II (I-V)

GMFCS level, median (IQR) – – II (I-V)

UE-FM scale, median (IQR) * – 20 (12–24) –

Partial TASC, median (IQR) – – 8 (5–8)

Modified Tardieu scale, quality 
of muscle reaction, median 
(range)

– 0 (0–5) 0 (0–5)

Fig. 3 Frequency response functions magnitude, phase, and 
coherence for a typical stroke patient. Each colored line highlights 
a different level of arm weight support. The black dashed lines 
represent the best parametric fit for each condition. For this stroke 
patient, a lower elbow admittance magnitude (higher elbow 
stiffness) was found with reduced levels of arm weight support 
during the ‘do not intervene’ (DNI) task conditions, indicative of the 
presence of a shoulder-elbow synergy. Moreover, elbow admittance 
is lower during the active resist task than the DNI task. The high (> 0.8) 
coherence demonstrates a highly linear relationship between elbow 
torque and angle, and a low noise contribution
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For the DNI task, elbow viscosity and stiffness where 
higher in the patients than the healthy controls in 
b100,DNI , b0,DNI , k100,DNI , k75,DNI , k50,DNI , k25,DNI and 
k0,DNI with all p < 0.05 (Additional file  1: Table  S3). 
Moreover, for all parameters during the resist task condi-
tions except b0,res we found a lower elbow viscosity and 
stiffness for the patients compared to the healthy controls 
(all p < 0.01 ). Finally, kslope was significantly higher in the 
patients than the healthy controls ( p < 0.01 ) whereas 
elbow inertia (I) and change in elbow viscosity across arm 
weight support levels (kslope) did not significantly differ 
between participant groups ( I : p = 0.06 ; kslope : p = 0.40).

Construct validity of system identification parameters
The Re-Arm parameters are visualized against the 
system identification and slope parameters of the 
same participants in Fig.  6. Firstly, no significant 
correlation was found between synergy and 
viscosity slope bslope (r = 0.06, n = 46, p = 0.69) , 

but a moderate positive correlation was found with 
stiffness slope kslope (r = 0.50, n = 46, p < 0.01) . 
Secondly, statistically significant, positive but 
moderate correlations were found between the 
spasticity parameter and elbow viscosity and stiffness 
(b100,DNI : r = 0.39, n = 44, p = 0.01; k100,DNI : r = 0.36,

n = 44, p = 0.02) . Finally, a moderate and significant 
correlation was found between viscoelasticity and 
the elbow viscosity and elbow stiffness during 
the DNI task under full arm weight support 
(b100,DNI : r = 0.35, n = 44, p = 0.02; k100,DNI : r = 0.46,

n = 44, p < 0.01).

Fig. 4 Bland–Altman plots for the parameters that are correlated with their corresponding Re-Arm parameters, including data from all participant 
groups. The mean and difference across a test and retest session for; a k100,DNI ; b k100,res ; and c kslope ; are visualized. The mean difference and limits of 
agreement  (meandifference ± 1.96*SDdifference) are indicated by the dashed horizontal lines
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Discussion
In this study, we aimed to establish the merits of 
quantifying abnormal synergy, spasticity and changes 
in joint viscoelasticity using system identification. 
Feasibility was confirmed by demonstrating that 
the experimental protocol could be completed by 
all participants in ~ 25  min without pain or burden. 
Moreover, the quality of the parametric estimates 
was good, with VAFs of ~ 80%. Test–retest reliability 
for most system identification parameters was fair 
to excellent ( ICC = 0.46− 0.98 ), for both healthy 
controls and patients, except for elbow stiffness with 
no weight support for the controls (ICC = 0.22) and 
full weight support for the patients ( ICC = 0.35 ). 
Moreover, the slope parameters describing the change 
in elbow stiffness or viscosity with reduced arm weight 
support showed a poor reliability for healthy controls 
(ICC − bslope = 0.29, kslope = 0.13) and fair reliability for 
patients 

(
ICC − bslope = 0.46, kslope = 0.58

)
. Overall, the 

system identification results demonstrate higher elbow 
viscosity and stiffness within patients than the healthy 
controls during the DNI task conditions, and lower elbow 
viscosity and stiffness during the resist task conditions. 
The system identification and slope parameters presented 
a weak to moderate, but significant, correlation with their 
matching parameters as determined using the Re-Arm 
protocol ( r = 0.36− 0.50 with p < 0.03 ). Taken together, 
this work demonstrates that system identification is a 

feasible and reliable way to quantify upper limb motor 
impairments. Validity was confirmed by differences 
between patients and controls and correlations with 
other measurements, but further work is required to 
optimize the experimental protocol and establish clinical 
value.

Feasibility of the system identification protocol
This study demonstrated the feasibility of obtaining 
data that enables quantifying upper limb impairments 
using system identification with a limited time interval 
of ~ 25  min and without significant pain or burden. 
Moreover, both for the healthy control and patient 
group, the parametric fits of the frequency response 
functions used to extract parameters describing the 
elbow joint dynamic proved to be of good quality with a 
VAF of ~ 80%. The time required to perform the system 
identification protocol is comparable to the time used to 
administer the Re-Arm protocol (~ 30  min), but longer 
than conventional clinimetry such as a combination 
of the upper extremity part of the FMA and the MAS 
(in total ~ 10  min). Whereas in the current study, only 
stroke and CP patients were included, the measurement 
setup does enable assessment of other patient groups, 
e.g., multiple sclerosis, and spinal cord injury, within the 
provided inclusion and exclusion criteria. Future work 
will need to establish whether it is possible to reduce 
the time required to obtain all data while retaining, and 
improving, the reliability and validity of the extracted 
clinical information.

Test–retest reliability of the system identification 
parameters
The major criticism towards clinical scales such as the 
FMA, MAS and Tardieu scale is their poor validity, reli-
ability, sensitivity, and inability to isolate concomitant 
phenomena like spasticity and change in viscoelastic 
properties. Yet, for well-trained assessors, the inter- and 
intra-rater reliability is fair to excellent with ICCs ranging 
from 0.7–0.8 [3, 5]. Generally, fair to excellent intrasu-
bject reliability can also be achieved for system identifi-
cation parameters [16, 37, 38], although this was mostly 
explored in small populations of healthy participants. 
The order of magnitude of these ICCs is like those 
obtained with comparable measurements in joints other 
than the elbow ( ICC = 0.64 − 0.91)[15, 39]. In this study, 
the test–retest reliability of the viscosity and stiffness, the 
primary parameters we use to quantify the motor impair-
ments, ranges from poor to excellent ICC = 0.22− 0.93 
with poor reliability only found for the slope parameters 
and k0,DNI in healthy controls and k100,DNI in patients.

Specifically for the measures used to evaluate synergy 
(kslope) and spasticity ( k100,DNI ) , the reliability was poor to 

Table 3 ICCs and SDCs for the system identification and slope 
parameters. ICC values less than 0.4 indicated poor reliability, 
between 0.4 and 0.75, fair to good reliability, and higher than 
0.75 are indicative of excellent reliability

Parameter ICChealthy SDChealthy ICCpatients SDCpatients

I 0.98 0.008 0.94 0.014

b100,DNI 0.80 0.19 0.58 0.44

b75,DNI 0.73 0.51 0.69 0.69

b50,DNI 0.82 0.41 0.71 0.61

b25,DNI 0.91 0.27 0.63 0.70

b0,DNI 0.69 0.54 0.72 0.59

b100,res 0.93 0.52 0.59 1.88

b0,res 0.92 0.48 0.89 0.72

bslope 0.29 0.17 0.46 0.16

k100,DNI 0.55 2.24 0.35 22.10

k75,DNI 0.57 7.98 0.77 22.60

k50,DNI 0.80 8.91 0.82 24.78

k25,DNI 0.73 8.65 0.63 34.35

k0,DNI 0.22 28.26 0.83 22.27

k100,res 0.77 36.56 0.79 48.46

k0,res 0.86 26.75 0.80 37.14

kslope 0.13 7.99 0.58 6.61



Page 11 of 15van de Ruit et al. Journal of NeuroEngineering and Rehabilitation           (2023) 20:67  

fair. Evaluation of the presence of synergy is performed 
by a linear fit of elbow stiffness across all weight support 
levels of the arm. This ‘slope’ parameter presented a fair 
reliability (ICC = 0.58), which is lower than the reliability 
found for the synergy score obtained using the Re-Arm 
protocol (ICC = 0.78). The difference may be caused by 
inappropriate task performance or fatigue which is more 
likely during the 55  s trials performed in this study. No 
other studies have reported test–retest reliability using 
the ICC of a measure for upper limb muscle synergies. 
Spasticity was quantified using the elbow stiffness when 
the elbow is fully relaxed and arm weight is fully sup-
ported ( k100,DNI ) . This measure had a poor reliability 
( ICC = 0.35 ) for patients, in contrast to the excellent 
reliability (ICC = 0.95) found for the spasticity measure 
using the Re-Arm protocol. For spasticity, other robotic 
measurement instruments also reported higher ICCs 
between 0.66–0.95 in stroke patients [39–41].

Hence, the lowest reliability in patients was found for 
the tasks where the full weight of the arm was supported. 
This suggests the patients have greater difficulty consist-
ently controlling the elbow joint without having to worry 

about supporting their weight by actively lifting the arm. 
Although this was not directly evident when the experi-
ments were performed, this should be considered in 
future studies. The reliability of the system identification 
parameters may improve by collecting additional data 
within a participant, now limited to 55 s of data per arm 
weight support level, but this comes at the cost of patient 
comfort and protocol duration.

Differences in elbow dynamics between healthy controls 
and patients with an upper limb impairment
Upper limb impairments are often associated with sig-
nificantly higher joint resistance to movement, which 
may be caused by changes in both active and passive 
muscle properties [39, 42]. The resistance can be quan-
tified by measuring the resistive torque during passive 
movement and can be separated into contributions from 
changes in viscosity and stiffness. In this study, we fur-
ther support previous findings of changes in joint resist-
ance, using system identification to reveal an increased 
viscosity and stiffness during the passive DNI task con-
ditions and decreased viscosity and stiffness during the 

Fig. 5 a Estimated elbow inertia; b estimated viscosity; and c estimated stiffness, for both tasks and all conditions, separated for healthy controls 
and patients. Joint inertia was kept constant across the tasks. d Change in viscosity ( bslope ); and e change in stiffness ( kslope ) across the ‘do not 
intervene’ conditions, separated by participant group. Each red or blue colored symbol marks one participant, whereas the black circle indicates the 
median and black dashes the 25th and 75th percentile.
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active resist task conditions for a subset of the stroke and 
CP patients.

Altered elbow dynamics may also be caused by muscle 
synergies and spasticity. Upper limb synergy is a com-
monly reported upper limb impairment and is character-
ized by an involuntary coupling of shoulder abduction 
and elbow flexion, resulting in reduced reaching capacity 
[13, 33, 43, 44]. We revealed an increase in elbow stiffness 
with reduced arm weight support in the patient group, 
not present in the healthy controls. This finding explains 
the reduced reaching capacity under the same task when 
reducing arm weight support as reported by others [13, 
32]. Spasticity, in our data may explain the enhanced 
elbow stiffness when the elbow is fully relaxed and arm 
weight is fully supported. An increased reflexive activity 
in upper limb impairments due to e.g. stroke and in CP 
[14, 45, 46], may result in an enhanced reflexive stiffness 
and thereby contribute to the an increased overall stiff-
ness. Together, the broad number of differences across 

different system identification parameters show the het-
erogeneity of the patient population, highlighting the 
importance of adequate quantification of the present 
impairments to successfully direct treatment.

Construct validity of the system identification parameters 
to quantify upper limb motor impairments
The adopted measures to quantify synergy, spasticity, 
and viscoelasticity of the elbow joint correlated 
moderately ( r = 0.35− 0.50) but significantly with their 
Re-Arm counterparts. Clinically, and in the Re-Arm 
protocol, synergy, spasticity, and viscoelasticity are 
determined while the participant’s elbow is passively or 
actively moving across its full ROM. In this study, the 
measures used to quantify synergy and spasticity are 
obtained during a passive postural task, and as a result, 
the moderate correlations may suggest that an active 
voluntary movement may not be necessary to quantify 
synergy or spasticity when the participant is unable 

Fig. 6 Correlation between parameters extracted using the Re-Arm and system identification protocol, only data from the include patients is 
used: a synergy vs. kslope ; b spasticity vs. k100,DNI and c viscoelasticity vs. k100,DNI. Significant, weak to moderate, correlations were found between the 
Re-Arm parameters and corresponding stiffness parameters extracted using system identification
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to perform these due to, e.g., pain. However, motor 
impairments such as synergies and spasticity may not be 
adequately revealed during a postural task at a single joint 
such as performed in the current study, and therefore 
correlations should be interpreted with care, especially 
since they are moderate and use a relatively small sample 
sizes.

During the system identification protocol, the joint 
dynamics are characterized while participants keep a 
fixed posture, and a torque perturbation results in small 
elbow rotations. Keeping a fixed posture for system iden-
tification is required to enable the application of time-
invariant system identification, as during movement, 
there is a profound modulation of intrinsic and reflexive 
properties [47–50]. A more complete image of how joint 
dynamics is modulated over the ROM can be obtained 
by performing the same postural task at multiple joint 
angles [51–54], but this does not reveal any impairments 
only expressed during active movement. Quantifying 
motor impairments during movement using system iden-
tification requires the application of time-varying system 
techniques [55]. Unfortunately, these techniques have 
yet to be applied in the study of motor impairments due 
to their complex data requirements and lack of clinical 
scope of their outcome parameters.

Specifically for spasticity, the use of a more extensive 
parametric model that also quantifies reflexive stiffness, 
rather than a compound measure of elbow stiffness, 
may be expected to have a stronger correlation with 
spasticity than the moderate correlation found. System 
identification enables separating joint stiffness in their 
intrinsic and reflexive contributions with or without 
recording electromyography from the muscles involved 
[18, 19]. Alibiglou, Rymer [51] did this but found no 
significant correlations between either intrinsic or 
reflexive stiffness and the MAS for stroke patients. In 
this study, reflexive stiffness was not quantified as the 
55 s of data collected is insufficient to obtain a reliable 
estimate for the reflexive stiffness. A different pertur-
bation signal, such as a pseudorandom binary sequence 
perturbation may be better suited to assess reflexive 
joint properties.

Conclusions
This work demonstrates that system identification is a 
feasible way to quantify upper limb motor impairments. 
By acquiring data during only two distinct tasks, one 
active and one passive task, system identification pro-
vides a complete description of the joint dynamics within 
half an hour. Pronounced differences between healthy 
controls and patients can be identified while the reliabil-
ity and validity of the extracted parameters is moderate. 
Changes in joint dynamics can be related to traditional 

motor impairments like synergy, spasticity, and viscoelas-
ticity. Even though robotics has enabled objective quan-
tification of upper limb impairments, the use of robotics 
for diagnosis has yet to make its way into routine clinical 
practice. An important reason for the lack of clinical use 
is that very few studies introducing new diagnostic meas-
ures obtained using robotics make their way past provid-
ing a correlation with current routine clinical scores or 
comparing patients and healthy controls [56]. The latter 
comparison may not be appropriate given motor impair-
ments are not always clearly defined and clinical scores 
may be unreliable and insensitive. More work is needed 
to provide evidence that measures such as extracted 
using system identification, provide clinically meaningful 
outcome measures that are more reliable and less time-
consuming than current clinical scales.
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