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Abstract 

Background  When developing new lower limb prostheses, prototypes are tested to obtain insights into the perfor-
mance. However, large variations between research protocols may complicate establishing the potential added value 
of newly developed prototypes over other prostheses.

Objective  This review aims at identifying participant characteristics, research protocols, reference values, aims, 
and corresponding outcome measures used during prosthesis prototype testing on people with a transfemoral 
amputation.

Methods  A systematic search was done on PubMed and Scopus from 2000 to December 2020. Articles were 
included if testing was done on adults with transfemoral or knee disarticulation amputation; testing involved walking 
with a non-commercially available prototype leg prosthesis consisting of at least a knee component; and included 
evaluations of the participants’ functioning with the prosthesis prototype.

Results  From the initial search of 2027 articles, 48 articles were included in this review. 20 studies were single-
subject studies and 4 studies included a cohort of 10 or more persons with a transfemoral amputation. Only 5 articles 
reported all the pre-defined participant characteristics that were deemed relevant. The familiarization time with the 
prosthesis prototype prior to testing ranged from 5 to 10 min to 3 months; in 25% of the articles did not mention the 
extent of the familiarization period. Mobility was most often mentioned as the development or testing aim. A total of 
270 outcome measures were identified, kinetic/kinematic gait parameters were most often reported. The majority of 
outcome measures corresponded to the mobility aim. For 48% of the stated development aims and 4% of the test-
ing aims, no corresponding outcome measure could be assigned. Results indicated large inconsistencies in research 
protocols and outcome measures used to validate pre-determined aims.

Conclusions  The large variation in prosthesis prototype testing and reporting calls for the development of a core set 
of reported participant characteristics, testing protocols, and specific and well-founded outcome measures, tailored 
to the various aims and development phases. The use of such a core set can give greater insights into progress of 
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developments and determine which developments have additional benefits over the state-of-the-art. This review 
may contribute as initial input towards the development of such a core set.

Keywords  Prosthetics, Development, Prototype, Testing, Protocol, Transfemoral, Evaluation, Design

Background
People using a lower limb prosthesis face additional chal-
lenges during daily life in comparison to able-bodied 
persons. Performing gait-related task requires more met-
abolic energy and cognitive effort, and their gait is less 
stable [1–7]. Gait-related tasks are specifically demand-
ing for people with a transfemoral amputation, due to 
the lack of an active knee joint. This requires people with 
a transfemoral amputation to enhance the control and 
power of other body parts during walking in compari-
son to people with a transtibial amputation [2, 8–10]. To 
assist persons with a transfemoral amputation in over-
coming these difficulties, significant progress has been 
made in the development of lower limb prostheses.

As with all new developments, it is essential to test 
the product on potential benefits before determining 
whether to pursue making it commercially available. Pro-
totype testing provides insights into the performance of 
the product and its potential added value for the patient 
over other state-of-the-art prosthesis. However, pres-
ently, there are no standardized methods on how to 
evaluate the performance and functionality of a pre-com-
mercial prosthesis prototype or prosthetic parts during 
walking. Consequently, researchers need to draft their 
own testing protocols to evaluate the aims set for the 
development of different types of prosthesis prototype. 
This could in turn lead to large variations between the 
testing protocols of the different prototypes. Large varia-
tions between testing protocols restricts comparing test-
ing results, which complicates interpreting the potential 
added value of the developed prototype over other pros-
theses (commercially as well as non-commercially avail-
able ones). The large variations in testing protocol and 
outcome measures has been demonstrated in efficacy 
testing of lower limb prostheses [11]. However currently, 
an overview is lacking of the study population and the 
testing protocols used to validate specific development or 
testing aims, the respective outcome measures of inter-
est, and the values to be used as a reference for evaluating 
prosthesis prototypes.

Therefore, this review aimed to provide a comprehen-
sive overview of participant characteristics reported, 
research protocols, reference values, and outcome meas-
ures that are used during prosthesis prototype testing on 
people with a transfemoral amputation. In addition, it 
will be evaluated whether the reported outcome meas-
ures corresponded to specific development or testing 

aims. The information provided by this review can be a 
starting point for future harmonization of prosthesis test-
ing and development of standardized testing methods, 
which allows for better comparison of research outcomes 
across studies and supports in quantifying the progress in 
lower limb prosthesis development.

Method
Search strategy
An electronic search was done via PubMed and Scopus 
from January 2000 to December 2020. Articles published 
before 2000 were excluded from the search to avoid 
inclusion of obsolete measurement technologies used 
during the evaluations or obsolete prosthesis prototypes 
being evaluated. The search strategy was based on the 
following three terms:

[1] (gait [tiab] OR walk* [tiab])
[2] (transfemoral [tiab] OR above-knee[tiab])
[3] (prosthes* [tiab] OR “artificial limb” [tiab] 

OR "Artificial Limbs"[Mesh] OR amput* [tiab] OR 
"Amputation"[Mesh])

As different terminology is used in scientific literature 
regarding the testing of non-commercial prototypes, the 
search strategy was not further specified in this aspect. 
As this is a scoping review the research protocol was 
not registered in a database of prospectively registered 
reviews.

Selection criteria
The first screening was done based on title and abstract 
of each individual study by two reviewers independently. 
Studies were included in the full text review when the fol-
lowing criteria were met:

(1)	 Testing was done on a non-commercially available 
prototype leg prosthesis (at time of testing) consist-
ing of at least a knee component.

(2)	 Testing was focused on adults with a transfemoral 
amputation or knee disarticulation.

(3)	 Testing was done at least during level walking 
(overground or on a treadmill).

(4)	 Testing results had to include evaluations of func-
tioning of the participant when walking with the 
prosthesis prototype.

If the full-text version of the article was available, an 
extended abstract of the same research was considered 
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a duplicate. If not, extended abstracts were included. 
Articles written in other languages than English were 
excluded. Full-text articles were assessed by two review-
ers independently using the same criteria.

Data extraction
Data extracted from the included studies included: par-
ticipant characteristics, prosthesis (prototype) speci-
fications, research protocol, reference value, outcome 
measures, and aims as defined by the article. Participant 
characteristics included: number of participants, sex, age, 
amputation level, reason of amputation, level of activity, 
and current prosthesis. For both the participants cur-
rent prosthesis and the prosthesis prototype it was noted 
whether the knee and ankle component were passive (P), 
micro-processor controlled (MPC), or powered (PW). 
For the research protocol, the familiarization method 
with the prototype prosthesis, the tasks executed dur-
ing testing, and the chosen walking speed were extracted, 
as well as the outcome measures and the reference value 
used to evaluate the prosthesis prototype. In addition, 
the aims set for both the development and testing of the 
prosthesis prototype with potential end-users were reg-
istered and categorized. Definitions of the aim categories 
are displayed in Table 1. The aims were categorized into 
the following categories: Subjective evaluation; Mobility; 
Energy consumption of participant; Energy handling of 
prosthesis prototype; Prosthesis control; Effect of pow-
ered prosthesis; and Prototype characteristics. Opera-
tionalization of the aim categorization can be found in 
Additional file 1: Table S1.

Likewise, outcome measures were assigned to 1 of 9 
separate self-defined categories: Clinical & qualitative 
measures; Spatiotemporal; Kinetic/kinematic; Metabolic 
energy; Muscle activity; Prosthesis control; Electrical 
(prosthesis) energy; Prototype characteristics; and Other.

A graphical overview was created showing develop-
ment and testing aims, and their corresponding outcome 
measures. For this purpose, the outcome measures of 
each article were linked to their respective aims. Remain-
ing outcome measures, which could not be linked to a 
development or testing aim, were added to a ‘miscellane-
ous’ category.

Article selection, data extraction and categorization 
were executed independently and in duplicate by two 
reviewers. Discrepancies were discussed until an agree-
ment was reached. Data were organized in tables accord-
ing to Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) extension for scoping 
reviews [12].

Results
Data selection
The initial search resulted in 2027 titles, of which 94 stud-
ies were selected for full-text screening (Fig. 1). Of these 
full-text articles, 36 articles were excluded because these 
did not concern adults with an amputation (e.g., used 
benchmark or able-bodied adaptor testing), six articles 
studied commercially-available prostheses, one article 
did not involve participants with a transfemoral ampu-
tation, one article did not test on level walking, and two 
articles were not available in full text. The remaining 48 
articles were included in this review [13–60].

Participant characteristics and research protocol
Data extracted from the articles on participant charac-
teristics and the research protocol are summarized in 
Additional file 2: Table S2. Of the 48 selected articles, 20 
studies were single-subject studies and 4 studies included 
a cohort of 10 or more persons with a transfemoral 
amputation. Additional measurements on able-bodied 
persons as reference values were conducted in 5 studies 

Table 1  Definition of the aim categories

Aim category Definition

Subjective evaluation Subjective aims regarding participant’s or physiotherapist’s perspective after user-trials, like an interview

Mobility Aims regarding mobility, for example walking ability or gait assessment

Energy consumption of participant Aims regarding metabolic cost and energy consumption of participants when walking with the prosthesis 
prototype

Energy handling of prosthesis prototype Aims regarding energy handling of the prosthesis prototype, for example battery life, battery recharge during 
gait, or energy efficiency

Prosthesis control Aims regarding the control algorithm of the prosthesis prototype, for example providing swing or stance 
phase control, control simplicity, intent recognition, algorithm accuracy, or delays

Effect of powered prosthesis Aims including the delivery and output of the required power of the prosthesis, for example power genera-
tion similar to an anatomical joint, providing power during climbing the stairs, or inject small amounts of 
power during the swing phase

Prototype characteristics Aims on the characteristics and properties of the prosthesis prototype, for example device weight, size, 
cultural, and aesthetic aspects, or production cost
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(n = 16), of which one study actually tested the prototype 
using an able-bodied adapter (n = 1). Of all participants 
(n = 152), 59% were identified as male (n = 89), 7% as 
female (n = 11), and sex was unspecified in 35% (n = 52). 
The age of the participants ranged from 15 to 75  years. 
Trauma was the most frequently reported reason for 
amputation (50 of 136 people with an amputation), 
while 32 articles did not report the reason for amputa-
tion (n = 65). Twelve of the 18 articles that reported the 
level of activity defined their participants as highly active 
(i.a. K3 or higher). The remaining six articles reported a 
lower level of activity (i.a., K1 or K2). Of the 48 included 

articles, 28 specified the current knee prosthetic part 
used by the participants, and 9 specified the current 
ankle prosthetic part.

In the research protocols, familiarization time was 
specified in 32 articles, whereas 4 articles did not report 
a specific duration, and 12 articles did not report whether 
participants were given any familiarization time. The 
familiarization time reported in the articles ranged from 
5 to 10  min to 3 months. A familiarization time of less 
than one day was reported in 19 articles, with the major-
ity (16 articles) reporting a familiarization time of less 
than one hour. For evaluating the prosthesis prototype, 

Fig. 1  PRISMA extension for scoping reviews flow diagram of the article selection process
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26 studies used walking overground as the experimental 
task, whereas treadmill walking was used in 24 studies; 
2 studies used both. Thirty studies used a self-selected 
comfortable walking speed, whereas multiple speed lev-
els were used in 16 studies. For comparing the outcomes 
of interest, 18 articles used reference values derived from 
recordings performed with the amputee’s current pros-
thesis, 11 articles used reference values from literature, 
and 8 articles used the intact limb of the amputee as a 
reference. Further comparisons were described between 
walking speeds (n = 5), between settings (n = 4), with 
measurements from able-bodied persons (n = 3), with 
desired trajectories (n = 4), and with sensor data (n = 1). 
Five articles reported results without any comparison of 
their outcome measures.

Article aims
From all articles, 145 development and testing aims 
were identified and categorized according to the defini-
tion in Table 1 (see Additional file 1). In the majority of 
the articles (80%), more than one development or test-
ing aim was identified. The development and testing aim 
of improving mobility was most often mentioned in the 
articles. This was the case in 63% and 60% of the 48 arti-
cles for the development and testing aims, respectively. 
Other frequently mentioned aims included the effect 
of powered prosthesis aim (35%) and prototype char-
acteristics aim (33%), both only mentioned as develop-
ment aim. Consecutively, the prosthesis control, energy 
consumption regarding participant, and energy han-
dling of prosthesis prototypes aims were mentioned in 
15–27% and 6–15% of the articles as the development 
and testing aims, respectively. Aims focusing on subjec-
tive evaluation (4% development aim, 6% testing aim) 
were minimally represented. Of all articles, 8% and 27% 
did not define any specific development or testing aim, 
respectively.

Outcome measures
Of all outcome measures (n = 270), kinetic/kinematic gait 
parameters were most often reported (50%), followed 
by the spatiotemporal gait parameters (11%). The most 
frequently reported outcome measure overall was the 
knee angle (degrees) displayed over the gait cycle (13%), 
mainly corresponding to the mobility aim.

The overview of the combined development and test-
ing aims with their corresponding outcome measures can 
be found in Fig. 2. Excluded from these figures were the 
aims where no corresponding outcome measure could be 
assigned. This was the case in 48 of the 145 aims stated 
(48% of the development aims, 4% of the testing aims). In 
addition, 45 (17%) of the 270 outcome measures reported 

could not be assigned to a corresponding aim and were 
added to the miscellaneous category.

The majority of the studies focused on the mobility aim 
with more than half of all identified outcome measures 
corresponding to this aim (51%); 83% of these outcome 
measures involved kinetic and kinematic parameters. For 
the prosthesis control aim, the most commonly reported 
outcome measures were the control parameters (33%); 
for the energy handling of prosthesis prototype aim this 
was the electrical power (25%); for the effect of powered 
prosthesis aim this were the maximal string power and 
motor current (both 17%); for the subjective evaluation 
aim this was the subject evaluation (25%); and for the 
energy consumption of the participant aim this was the 
heart rate (43%). For the prototype characteristics aim, all 
outcome measures were mentioned equally often (33%). 
The outcome measures in the miscellaneous category 
(i.e. where no corresponding aim was defined in the arti-
cle) included prosthesis control (26%), kinetic/kinematic 
(22%), electrical (prosthesis) energy (17%), other (15%), 
clinical & qualitative measures (7%), spatiotemporal (7%), 
and metabolic energy (7%) outcomes. The reference list 
in Additional file 3 (Table S3) shows which articles con-
tain the corresponding outcome measures for each of the 
aim categories.

Discussion
This review aimed to provide an overview of studies that 
reported on pre-commercial transfemoral prosthesis pro-
totype evaluations during walking. Given the continu-
ous development of new prosthesis prototypes and the 
desire to systematically assess their functional benefits, 
this review summarized the participant characteristics 
reported as well as the research protocols, reference val-
ues, and outcome measures used. In addition, results 
were presented in a graphical overview of the aims with 
their corresponding outcome measures.

Among the included articles, the participants’ char-
acteristics were reported to a highly varying extent. 
Notably, a mere 5 articles reported all our pre-defined 
participant characteristics; the characteristic that was 
least frequently reported was the specification of the 
participants’ prosthetic foot. The reported characteris-
tics indicated that a majority of participants were active 
males with a traumatic amputation, which is not repre-
sentative of the population of persons with an amputa-
tion at large [61, 62]. The age of the participants varied 
greatly, ranging from 15 to 75  years. Giving a thorough 
description of the study population is important for mak-
ing inferences on the external validity of the study find-
ings, i.e. to help judge whether the observed performance 
of a prosthesis prototype can be generalized to a larger 
population of persons using a lower-limb prosthesis. The 
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performance of a prosthesis prototype may be different 
for e.g., active persons with a traumatic amputation or 
less active persons with a vascular amputation. The use 
of a minimal reporting set of participant characteristics 
should therefore be agreed upon, which can be expanded 
depending on participant characteristic that are specifi-
cally related to development or testing aims.

In general, the research protocol was quite elabo-
rately described in the included articles, although 
in 25% of the articles there was no information given 
about the familiarization period to the prosthesis pro-
totype. In addition, in the studies that specified the 
familiarization period, there was a large variety in the 
reported duration of the familiarization period, which 
ranged from 5 to 10 min to 3 months. This large vari-
ation may (at least partly) be related to the develop-
ment stage of the prototype (technology readiness level, 
TRL) in which testing took place. In the current review, 
all stages of pre-commercial prosthesis prototype test-
ing were included. In early stages of development, a 
prosthesis prototype commonly lacks a CE (Conformité 
Européenne) or FDA (Food and Drug Administration) 

certification. The lack of such certification prevents its 
unsupervised use at home, which restricts extensive 
familiarization to fully adapt to the prosthesis proto-
type. Yet, when testing is done in the early TRL stages 
of a new prosthesis prototype, a limited familiariza-
tion period may suffice for evaluating the development 
aims, whereas it is conceivable that in later TRL stages, 
more extensive familiarization periods are required to 
allow for sound conclusions on the participants’ walk-
ing performance with the prosthesis prototype in daily 
life. Furthermore, the targeted study population may 
also influence the amount of adaptation time needed 
[63–65]. Familiarization time may therefore be adjusted 
to the study population, aims set for the testing as well 
as the TRL stage of the prosthesis prototype. How-
ever, it should be noted that limited literature is avail-
able on motor learning and adaptation when receiving 
a different prosthesis. Additional research is needed to 
adequately determine the required familiarization time 
to fully adjust to walking with a new prosthesis or pros-
thetic part, for instance taking into account age, level of 
activity and cause of amputation.

Fig. 2  Visual overview of the aims with their corresponding outcome measures and outcome measures categories. OM., amount of outcome 
measures in the aim; art., amount of articles with an outcome measure that corresponded to the aim. acc., acceleration; AUC, area under the curve; 
CGAM, combined gait asymmetry metric; CoM, centre of mass; CoP, centre of pressure; EMG, electromyography; GRF, ground reaction force; ROM, 
range of motion
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The reference values used for comparing the outcome 
measures varied across the included articles, which 
may also be related to the different TRL stages of the 
prosthesis prototype tested. The included articles most 
commonly used the amputee’s current prosthesis and 
literature values as a reference. During the initial design 
and development process of a prosthesis prototype, refer-
ence values as reported in the literature are typically used 
in defining the design. Therefore, using literature values 
for comparison of the testing results may suffice for vali-
dating the design in the early TRL stages. Yet, once the 
stage is reached that testing aims involve performance in 
daily life, it is important to study the potential benefits of 
the prosthesis prototype as compared to the participant’s 
own state-of-the-art prosthesis. Accordingly, the refer-
ence values, as well as outcome measures used may be 
adapted to the testing aims set by the researchers, with 
an increasing need towards assessing performance in 
daily life when the prototype is in a higher TRL stage.

Regarding the development and testing aims of the 
included articles, the mobility aim was most frequently 
mentioned. It was associated with the majority of the 
reported outcome measures, which might be inherent to 
the inclusion criteria of human-in-the-loop evaluations 
during gait. In the majority of the included articles, the 
reported outcome measures could be linked to the stated 
testing aims, whereas a large part of the development 
aims did not have associated outcome measures. From 
the descriptions in the included articles, it appears that 
the design and development of a new prosthesis proto-
type often include multiple aims, while the reported test-
ing results are often focused on one aim at a time [16–19, 
21, 22, 25, 26, 33, 37, 39, 40, 42–44, 46, 47, 57]. Nonethe-
less, other aims stated for the development of the pros-
thesis prototype may be tested and reported in follow-up 
articles, like in the case of CYBERLEG [13, 24–26, 66]. 
However, it should also be noted that a testing aim was 
not explicitly formulated in 27% of the articles, while a 
development aim remained unspecified in 8% of the arti-
cles. Formulating an explicit testing aim facilitates com-
paring the testing results to other research with similar 
testing aims.

Overall, the presented overview of the literature on 
transfemoral prosthesis prototype testing shows that 
there is large heterogeneity in research protocols and 
outcome measures used to evaluate the stated aims. No 
consistency could be found in the outcome measure(s) 
for evaluating certain aims. Especially for the mobility 
aim, a substantial number of different outcome measures 
were used. In addition, a justification of the selected out-
come measures was often not given in the articles, which 
complicates putting the results into perspective in com-
parison to those reported for other prosthesis prototypes 

or commercially-available prostheses. A justification of 
the selected outcome measures may help determine the 
added value of the innovative designs of the prosthesis 
prototypes over the state-of-the-art. Therefore, it is rec-
ommended that all articles regarding prosthesis proto-
type testing should clearly state the development aim of 
the prototype, the testing aim of the article, and which 
outcome measures were selected to evaluate defined test-
ing aim.

The field of transfemoral prostheses development and 
research is rapidly advancing, and this article presents 
the first comprehensive review summarizing the litera-
ture on prosthesis prototype testing that was published 
in the past two decades. As there was no established 
framework for the categorizing of testing and develop-
ment aims and their corresponding outcome measures, 
a structure was therefore proposed based upon exten-
sive discussions and expert opinion within the group of 
authors. Another limitation is that the justification of 
outcome measures was not always mentioned in the arti-
cles, such that the correspondence of aims and outcomes 
had to be inferred by the two reviewers, who indepen-
dently reviewed the papers in detail and discussed until 
consensus was reached. Yet, it cannot be excluded that in 
some cases, these inferences may have deviated from the 
researchers’ original intentions.

Conclusion
The current review on prosthesis prototype testing pro-
vides an overview of participant characteristics, research 
protocols, reference values, outcome measures, and how 
the outcome measures correspond to certain develop-
ment or testing aims. Considerable heterogeneity was 
observed in the use of research protocols and outcome 
measures to validate the stated aims. For future harmo-
nization, ‘benchmarks’ may be developed for evaluation 
and testing of transfemoral prosthesis prototypes. A core 
set of reported participant characteristics, testing pro-
tocols, and specific and well-founded outcome meas-
ures may be established, tailored to the various aims and 
development phases. The use of such a core set can give 
greater insights into progress of developments and deter-
mine which developments have additional benefits over 
the state-of-the-art. The overview provided in this review 
may contribute as initial input towards the development 
of such a core set.
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