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Abstract
Background  To evaluate the relationship between measures of neuromuscular impairment and limb accelerations 
(LA) collected during sleep among individuals with chronic spinal cord injury (SCI) to provide evidence of construct 
and concurrent validity for LA as a clinically meaningful measure.

Methods  The strength (lower extremity motor score), sensation (summed lower limb light touch scores), and 
spasticity (categorized lower limb Modified Ashworth Scale) were measured from 40 adults with chronic (≥ 1 year) 
SCI. Demographics, pain, sleep quality, and other covariate or confounding factors were measured using self-
report questionnaires. Each participant then wore ActiGraph GT9X Link accelerometers on their ankles and wrist 
continuously for 1–5 days to measure LA from movements during sleep. Regression models with built-in feature 
selection were used to determine the most relevant LA features and the association to each measure of impairment.

Results  LA features were related to measures of impairment with models explaining 69% and 73% of the variance 
(R²) in strength and sensation, respectively, and correctly classifying 81.6% (F1-score = 0.814) of the participants 
into spasticity categories. The most commonly selected LA features included measures of power and frequency 
(frequency domain), movement direction (correlation between axes), consistency between movements (relation to 
recent movements), and wavelet energy (signal characteristics). Rolling speed (change in angle of inclination) and 
movement smoothness (median crossings) were uniquely associated with strength. When LA features were included, 
an increase of 72% and 222% of the variance was explained for strength and sensation scores, respectively, and there 
was a 34% increase in spasticity classification accuracy compared to models containing only covariate features such 
as demographics, sleep quality, and pain.
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Background
Wearable accelerometers are commonly used in clini-
cal research as an inexpensive and unobtrusive means 
of measuring an individual’s movements, mobility, and 
physical activity, both within and outside of clinical set-
tings. Specifically, for people with spinal cord injury 
(SCI), accelerometers have been used to assess physical 
activity and energy expenditure among wheelchair users, 
[1, 2] assess sleep, [3] predict in-lab versus at-home activ-
ities, [4] and count steps during inpatient physical ther-
apy sessions [5].

A variety of time and frequency domain features can be 
extracted from wearable accelerometer data to provide 
diverse characteristics of an individual’s movement. We 
have defined limb accelerations (LA) as features calcu-
lated from an individual’s limb movements while asleep 
at night, which may capture accelerations from periodic 
limb movements (PLM), spasms, positional shifts, roll-
ing, and turning. These movements are free of biases that 
daytime activities may introduce secondary to an indi-
vidual’s occupation, exercise routines, and leisure time 
activities. LA have previously been shown to provide 
rich, descriptive information that was related to func-
tional ambulation among a sample with chronic, motor 
incomplete SCI [6].

While asleep, an individual likely moves mostly sub-
consciously for comfort, pressure relief, temperature, or 
in response to other sensations [7, 8]. These movements 
encompass aspects of sensation to cue the individual 
to move and strength to perform the movement. For 
example, it is expected that more complex voluntary or 
subconscious movements, such as rolling or substantial 
repositioning movements, would require greater muscle 
strength than simpler movements, such as subtly moving 
a limb. Further, someone with better sensation may have 
more of these complex movements than someone with 
poorer sensation since they may have increased cues to 
reposition [7, 8]. Since these more complex movements 
would likely produce larger accelerations and longer 
completion times than simpler movements, we would 
anticipate that individuals with better strength and sen-
sation would have higher amplitude and duration LA 
than individuals with limited strength and sensation.

Although more intense spasms may result in larger 
amplitude and duration movements, most spastic move-
ments are relatively small in amplitude and duration [9]. 
Further, clinical assessments of spasticity, such as the 

Modified Ashworth Scale (MAS), define the most severe 
spasticity scores as considerable increase in muscle tone 
causing movement to be difficult (score of 3) or a rigid 
joint (score of 4 out of 4) [10]. It is anticipated that 
an individual with more severe spasticity may experi-
ence more resistance to movement and this may result 
in lower amplitude and shorter duration movements 
[11, 12]. It has been shown that supine positioning may 
increase spasticity, thus, spasticity and other involuntary 
movements may be more prevalent while laying down 
to sleep at night [13, 14]. Thus, we believe that features 
of LA measured during sleep can capture the unique 
attributes of an individual’s movement patterns and are 
related to clinical measures of strength, sensation, and 
spasticity among individuals with SCI.

The primary objective of this study was to provide 
quantitative evidence of validity of LA as a measure of 
impairment among individuals with SCI. Construct 
validity is the demonstrated relationship that a mea-
surement is comparable to a different measure assessing 
a similar concept and unlike dissimilar concepts [15]. 
Concurrent validity quantifies the relationship between 
the novel measure and another previously validated 
measure of the intended construct [15]. We aimed to 
establish the construct and concurrent validity of LA as 
a clinically meaningful metric by evaluating the relation-
ship between LA and summative standard clinical mea-
sures of lower limb strength, sensation, and spasticity 
among a population with chronic SCI. We hypothesized 
that features of LA related to amplitude and duration of 
movements would be the features most strongly related 
to each clinical outcome. Further, we anticipated that 
better strength, sensation, and spasticity would be asso-
ciated with larger amplitude and longer duration move-
ments. As a supplemental analysis to provide additional 
evidence of construct validity, we aimed to quantify the 
unique information provided by LA as compared to 
models consisting of possible covariate measures such as 
pain and sleep quality.

Methods
All participants provided informed consent as approved 
by the VA Pittsburgh Healthcare System Institutional 
Review Board. Individuals with chronic (≥ 1 year), motor 
complete and incomplete SCI were included in this 
analysis, although individuals with motor complete SCI 
were recruited in smaller numbers in order to mitigate 

Conclusion  LA features have shown evidence of having construct and concurrent validity, thus demonstrating that 
LA are a clinically-relevant measure related to lower limb strength, sensation, and spasticity after SCI. LA may be useful 
as a more detailed measure of impairment for applications such as clinical prediction models for ambulation.
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bias in the impairment score distribution. Participants 
were excluded if they had a medical diagnosis of a con-
dition that may affect sleep (e.g., sleep apnea), were 
unable to wear limb accelerometers, or had an injury to 
the legs that would significantly impair ambulation (e.g., 
amputation).

Data collection was consistent with methods described 
in detail in prior work investigating LA among individu-
als with incomplete SCI [6]. In brief, participants were 
recruited at adaptive sporting events and from a research 
registry from 2018 to 2021. Participants completed ques-
tionnaires that assessed personal, psychosocial, and 
environmental factors such as demographics, [16, 17] 
pain, [18–20] and sleep quality [21]. Participants com-
pleted a sleep and activity log for each night of the col-
lection which reported activities that could affect sleep, 
fatigue and sleep quality ratings, and if the participant 
considered that night “typical” of how they normally 
sleep [18, 19, 22–26]. Participants also had their strength, 
sensation, and spasticity in their upper and lower limbs 
assessed by one of two trained clinicians following the 
International Standards for Neurological Classification 
of Spinal Cord Injury and MAS guidelines, except that all 
participants were assessed in a seated position. Partici-
pants then wore ActiGraph GT9X Link accelerometers 
for 1–5 days on their bilateral ankles and non-dominant 
wrist. The duration of collection was limited for some 
participants by logistical constraints, including the short 
time frame of the adaptive sporting events.

Data analysis
Input variables: LA and covariates
Only nights that the participant reported as “typical” to 
how they normally sleep were included in the analysis 
so that the LA analyzed were most representative of the 
participant’s normal movements and abilities. Sixty-one 
LA features were extracted from each ankle movement 
measured with the accelerometers, and the median and 
interquartile range of each feature (and maximum of one 
feature) were calculated across all movements per “typi-
cal” night. Using the ankle and wrist accelerometers, 10 
additional features were computed per night such as the 
time asleep and proportions of movements that involved 
each limb. One final set of features per participant was 
determined by calculating the median for each feature 
across all nights of the collection [6]. This resulted in a 
final set of 133 LA features that captured changes in posi-
tioning, movement directions, frequency, smoothness, 
temporal characteristics, signal stability, and intensity 
(Supplementary Appendix 1 provides additional descrip-
tions of the features) [6, 27–48].

Since the impairment outcomes were measured cross-
sectionally, the measurement of both impairment and LA 
could be affected by factors such as demographics, pain, 

sleep quality, exercise, sleep medication, or consumption 
of caffeine or alcohol (24 covariate features, Supplemen-
tary Appendix 2) [16–26]. As a supplemental analysis, 
we evaluated how much unique variance in impairment 
was explained by adding selected LA features to models 
made using only covariates. All features were scaled by 
the minimum and maximum across participants to a 0–1 
scale.

Output variables: strength, sensation, and spasticity
Strength was quantified by the lower extremity motor 
score which sums the manual muscle test motor scores 
from the L2-S1 myotomes across both lower limbs for a 
score between 0 (total paralysis) to 50 (normal). Lower 
limb sensation score was similarly calculated by summing 
the individual light touch scores from each dermatome 
across the lower limbs for a total score between 0 (no 
sensation) and 20 (full sensation) [49].

Spasticity was measured by the MAS for the knee flex-
ors and ankle plantarflexors of both lower limbs. MAS 
had a skewed distribution in our sample with many par-
ticipants having no spasticity, only two participants hav-
ing a MAS score of 3, and no participants having a score 
of 4 in any of the areas assessed. To address this imbal-
ance in scores and to improve clinical interpretability of 
lower limb spasticity, the MAS scores were categorized 
into 3 groups: no, mild, and moderate spasticity. Par-
ticipants were categorized as “no spasticity” if they had 
a MAS = 0 for all areas assessed, “mild spasticity” if they 
had some spasticity (MAS > 0) recorded but all MAS 
scores were < 2, or “moderate spasticity” if any MAS 
score was ≥ 2.10

Analysis models
To select a subset of LA features, the least absolute 
shrinkage and selection operator (LASSO) implemented 
with least angle regression (LARS) and multinomial 
logistic regression with ℓ1 regularization algorithms were 
utilized for the numerical (strength and sensation) and 
categorical (spasticity) outcomes, respectively. While 
the LASSO LARS and logistic regression with ℓ1 regu-
larization algorithms have much in common with linear 
regression and logistic regression, respectively, they are 
preferred in this instance due to their ability to perform 
feature selection as part of the model building process, 
making them more efficient for high dimensional data 
[50–52].

For the supplemental analysis, covariate features were 
selected using the LASSO LARS and logistic regression 
with ℓ1 regularization algorithms. Baseline performance 
using only the selected covariate features were then 
determined using linear and logistic regression models 
for the numerical and categorical outcomes, respectively. 
Selected LA features were then added to the covariates 
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to assess the unique variance explained (strength/sensa-
tion) or improvement in classification (spasticity) from 
the addition of LA. All analyses used 10-fold block cross-
validation among the randomized participant feature sets 
in the selection of the optimal features and all available 
samples in the final regression models.

Model evaluation
For the strength and sensation LA models, the primary 
evaluation metric was R² which represents the variance 
in the outcome explained by the selected input features. 
When comparing the explained variance between mod-
els, it is important to account for the number of features 
included in the model, as models with more features likely 
have greater explained variance. Therefore, the adjusted 
R², which applies a correction to R² for the number of 
features in the model, was used as the primary evalua-
tion metric for the supplemental analysis for strength and 
sensation when comparisons were made between mod-
els containing only covariates or with covariates and LA 
[52]. Statistical significance of the change in the strength 
and sensation linear regression models when LA features 
were added to covariates was assessed using the change 
in the F-statistic and p < 0.05. For both the primary and 
supplemental analyses, other evaluation metrics included 
mean absolute error, mean squared error, and root mean 
squared error. Cohen’s f 2 was used to evaluate effect size 
from the adjusted R² with 0.02, 0.15, and 0.35 indicative 
of small, medium, and large effects, respectively [53].

The overall classification accuracy (OCA), precision, 
recall, and F1-score were used to describe the spasticity 
model performance. OCA represents the percentage of 
participants who were correctly classified. Precision rep-
resents the accuracy of the true classifications (i.e., posi-
tive predictive value) while recall represents the fraction 
of the correctly identified positive classifications (i.e., true 
positive rate). The F1-score is the weighted average of 
precision and recall [54, 55]. The log-likelihood ratio was 
used to assess for statistically significant change from the 
addition of LA to the covariates logistic regression mod-
els in the supplemental analysis.

Evaluation of validity
Construct validity was determined by evaluating the 
features chosen by each model and the clinical interpre-
tation in relation to the impairment outcome. Further 
evidence of construct validity was also provided by deter-
mining the variance in each impairment outcome that 
was uniquely explained by LA, in the presence of other 
factors that could potentially represent similar informa-
tion to LA or affect the measurement of LA or the impair-
ment outcomes. This provided confirmation that LA are 
truly a measure of impairment and not simply a surrogate 
measure of other factors, like sleep quality. Concurrent 

validity was measured by the variance explained/classifi-
cation accuracy of the models using LA and the standard 
clinical assessments.

Results
Participants
Thirty-six participants with motor incomplete SCI and 
13 with motor complete SCI completed the data collec-
tion. Eight participants were excluded from the analy-
sis because they self-reported that they had no “typical” 
nights recorded during the collection period. One addi-
tional participant was excluded because the accelerom-
eters were likely removed overnight. Data collection was 
completed for two participants before the spasticity mea-
sures were added to the study, so the spasticity analysis 
had 38 total participants included, while the strength and 
sensation analyses had 40 participants. A post hoc power 
analysis showed that > 88% power was achieved for all 
linear regression models given the sample size, number 
of predictors, α = 0.1, and effect size (f 2) [56]. Partici-
pants were primarily male, non-Hispanic/Latino White, 
Veterans with paraplegia who used a manual wheelchair 
as their primary mode of mobility (Table 1). Examples of 
ankle acceleration plots are shown in Fig. 1.

Strength
Sixteen LA features were selected which explained 68.7% 
of the variance in lower limb strength (Table 2). The fea-
tures with the greatest association with higher strength 
scores were larger variations in energy (Wave Approx- 
IQR), fewer variations in the similarity between recent 
movements (Num Cross Corr Peaks- IQR), greater varia-
tion in local dynamic stability (variations in the response 
to perturbations, Lyapunov Exp- IQR) and faster rota-
tional movements (Angle Rate Change- Med, Tables  3 
and 4). When LA features were combined with covari-
ates, an additional 35.5% of the variance in strength 
could be explained (adjusted R2 = 0.847, 72% increase, 
p = 0.021), as compared to the model with only covariates 
(Supplementary Appendices 3 and 4).

Sensation
A model containing 15 LA features explained 73.3% of 
the variance in lower limb sensation. Having a less vari-
able time between movements (Time Since Prev- IQR), 
more consistent movement directions (Corr YZ- Med), 
and lower frequency movements (Dom Freq 1- Med) 
were most strongly associated with more intact sen-
sation. When added to covariates, LA explained an 
additional 49.2% of the variance in sensation (adjusted 
R2 = 0.714, 222% increase, p = 0.001).
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Table 1  Participant demographics and impairment outcomes
Categorical Demographics Motor Incomplete

n (% of group)
Motor Complete
n (% of group)

Total
N (%)

Sex

Female 4 (13.3) 2 (20.0) 6 (15.0)

Male 26 (86.7) 8 (80.0) 34 (85.0)

Race/Ethnicity

Non-Hispanic/Latino White 14 (46.7) 6 (60.0) 20 (50.0)

Non-Hispanic/Latino Black 10 (33.3) 3 (30.0) 13 (32.5)

Non-Hispanic/Latino Other Race 3 (10.0) 0 (0.0) 3 (7.5)

Hispanic/Latino (Any Race) 3 (10.0) 1 (10.0) 4 (10.0)

Veteran

Not Veteran 5 (16.7) 0 (0.0) 5 (12.5)

Veteran 25 (83.3) 10 (100) 35 (87.5)

Annual Household Income

<$25,000 9 (30.0) 2 (20.0) 11 (27.5)

$25,000-$49,999 3 (10.0) 5 (50.0) 8 (20.0)

$50,000-$74,999 5 (16.7) 2 (20.0) 7 (17.5)

≥$75,000 9 (30.0) 1 (10.0) 5 (12.5)

Decline to Answer or Unknown 4 (13.3) 0 (0.0) 4 (10.0)

Education

High School Diploma/GED 17 (56.7) 2 (20.0) 19 (47.5)

Associate’s Degree 7 (23.3) 4 (40.0) 11 (27.5)

Bachelor’s Degree 4 (13.3) 2 (20.0) 6 (15.5)

Graduate Degree 2 (6.7) 2 (20.0) 4 (10.0)

SCI Injury Level

Paraplegia 19 (63.3) 9 (90.0) 28 (70.0)

Tetraplegia 11 (36.7) 1 (10.0) 12 (30.0)

SCI American Spinal Injury Association Impairment Scale (AIS) Classification (Calculated)

A 0 (0.0) 6 (60.0) 6 (15.0)

B 0 (0.0) 4 (40.0) 4 (10.0)

C 15 (50.0) 0 (0.0) 15 (37.5)

D 15 (50.0) 0 (0.0) 15 (37.5)

Data Collection Location

Local 8 (26.7) 0 (0.0) 8 (20.0)

Adapted Sporting Event 22 (73.3) 10 (100) 32 (80.0)

Primary Mode of Mobility

Walk 5 (16.7) 0 (0.0) 5 (12.5)

Manual Wheelchair 20 (73.5) 8 (80.0) 28 (70.0)

Power Wheelchair/Scooter 4 (8.8) 2 (20.0) 6 (15.0)

Equally Walk and Wheel 1 (3.3) 0 (0.0) 1 (2.5)

Categorical Impairment Outcomes Motor Incomplete
n (% of group)

Motor Complete
n (% of group)

Total
N (%)

Spasticity (Lower Limb Categorized MAS)

No Spasticity (MAS = 0) 13 (46.4) 2 (20.0) 15 (39.5)

Mild Spasticity (MAS all < 2) 9 (32.1) 5 (20.0) 14 (36.8)

Moderate Spasticity (≥ 1 area MAS ≥ 2) 6 (21.4) 3 (30.0) 9 (23.7)

Numerical Demographics Motor Incomplete Mean ± SD (Range) Motor Complete Mean ± SD (Range) Total
Mean ± SD (Range)

Age 54.0 ± 10.5 (25–70) 52.9 ± 14.2 (34–77) 53.7 ± 11.4 (25–77)

Body Mass Index (BMI) 28.2 ± 5.4 (18.5–38.7) 24.4 ± 3.7 (18.7–30.4) 27.2 ± 5.2 (18.5–38.7)

Years Since Injury 18.8 ± 12.5 (3.0-48.7) 16.0 ± 9.5 (5.6–28.9) 18.1 ± 11.8 (3-48.7)

Number of Nights Collected 2.6 ± 1.3 (1–5) 2.0 ± 0 (2–2) 2.5 ± 1.2 (1–5)

Number of Typical Nights 2.0 ± 1.1 (1–5) 1.9 ± 0.3 (1–2) 2.0 ± 1.0 (1–5)

Numerical Impairment Outcomes Motor Incomplete Mean ± SD (Range) Motor Complete Mean ± SD (Range) Total
Mean ± SD (Range)

Strength (Lower Extremity Motor Score) 26.9 ± 15.0 (2–49) 0.0 ± 0.0 8.2 ± 8.1 (0–49)

Sensation (Lower Limb Light Touch) 10.9 ± 6.5 (0–20) 3.8 ± 6.6 (0–20) 9.1 ± 7.2 (0–20)
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Spasticity
Spasticity categories had an OCA of 81.6% using 7–10 
selected LA features (weighted average F1-Score = 0.814). 
No participants were falsely classified as having moder-
ate spasticity (precision = 1), but the highest recall (0.933) 
was for the no spasticity category, indicating that those 
without spasticity were most likely to be correctly clas-
sified. The features most associated with having no 
spasticity included moving in less consistent directions 
(Corr YZ- Med), more variable movement symmetry 
(Skewness- IQR), less power at the second dominant 
frequency (Power Dom Freq 2- Med), and more variable 
recent movements (Close Cross Cov/Corr Peak- IQR). 

LA features associated with moderate spasticity include 
less variable movement entropy (Wave Entropy- IQR), 
more movements per hour (Move/hour), less variable 
symmetry of movements (Skewness- IQR), and lower 
and less variable energy (Fig.  1c). When combined, the 
LA + covariates model achieved 89.5% accuracy in clas-
sifying spasticity categories, including an increase in 
the weighted average F1-score of 0.186 (26% increase, 
p < 0.001, p = 0.275, and p < 0.001 for no, mild, and mod-
erate spasticity models, respectively) as compared to the 
model using only covariates.

Table 2  Strength, sensation, and spasticity model results
Impairment Model Number of Features 

Selected
R² Adjusted R² f 2 Mean Abso-

lute Error
Mean Squared 
Error

Root 
Mean 
Squared 
Error

Strength 16 0.687 0.469 0.88 9.17 93.56 9.67

Sensation 15 0.733 0.566 1.31 2.91 13.32 3.65

Predicted Spasticity Category
Actual Spasticity 
Category

Number of Features 
Selected

No Spasticity Mild 
Spasticity

Moderate 
Spasticity

F1-Score Precision Recall

No Spasticity 10 14 1 0 0.848 0.778 0.933

Mild Spasticity 7 3 11 0 0.786 0.786 0.786

Moderate Spasticity 10 1 2 6 0.800 1.000 0.667

Macro Average 0.811 0.854 0.795

Weighted Average 0.814 0.833 0.816

Fig. 1  Example of acceleration vector magnitude vs. time plots from one ankle across one night for 3 participants with corresponding demographics and 
impairment outcomes. Figure 1c includes a zoomed section for additional detail of likely spastic or other involuntary movements
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Discussion
We have provided evidence of construct and concurrent 
validity for LA as a measure of impairment by demon-
strating that regression models consisting of only LA fea-
tures were able to explain the majority of the variance in 
strength and sensation and correctly classify the major-
ity of participants into spasticity categories. Since LA 
features are continuous, LA may provide variability and 
detailed information about impairment that clinical mea-
sures currently lack and, thus, may be useful in provid-
ing increased resolution compared to existing measures. 
Further, in the supplemental analysis, LA accounted for 
additional variance beyond what can be attributed to 

covariates alone, thus, supporting the construct validity 
that LA features uniquely capture aspects associated with 
each impairment outcome and not related measures like 
sleep quality.

It was hypothesized that LA features such as those 
measuring amplitude and duration of movements would 
be most related to the measures of impairment with 
larger amplitudes and durations being associated with 
better impairment outcomes, which had mixed support 
from the findings. Movement duration was not selected 
for any of the models, and therefore was not directly 
among the most important LA features in relation to 
each outcome. However, other features that may indi-
rectly contain movement duration information, such as 
the percentage of movements that meet the criteria for 
PLM (PLM %) and PLM per hour (PLM Index), were 
selected in nearly all models. By definition, PLM must 
be short duration movements that occur in series [41, 
44]. Therefore, having a higher percentage of movements 
that meet the criteria for PLM being related to greater 
strength, better sensation, and less spasticity provides 
support that movement duration, in combination with 
the other characteristics that define a movement as part 
of a PLM series, may be an important aspect of LA in 
relation to impairment.

As shown in Tables  3 and 4, features evaluating the 
spectral power in the frequency domain and wave-
let energy bands (signal characteristics such as Power 
Dom Freq 2- Med, Power Dom Freq 1/Total- IQR, Wave 
Approx- IQR) of movements were often some of the most 
strongly related features to each measure of impairment 
and were selected for each impairment outcome. Both 
the statistical and frequency domain features consist of 
similar information about the intensity of movements, 
but the statistical features are with respect to time while 
features like power and energy are with respect to fre-
quency or both time and frequency. Therefore, it makes 
intuitive sense that higher power and energy movements 
may be associated with greater strength and less severe 
spasticity. Likewise, more impaired sensation was associ-
ated with higher and less variable frequency (Dom Freq 
1- Med/IQR) and more powerful movements (Power 
Dom Freq 2- Med) suggesting a lack of motor control to 
vary and regulate movements based upon sensory feed-
back. Therefore, the hypothesis that larger amplitude 
movements would be associated with improved out-
comes was indirectly supported for strength and spastic-
ity. The hypothesis was not supported for sensation since 
higher power movements with lower frequency were 
associated with poorer sensation. Similar features have 
also been found to be related to lower limb rehabilitation 
[36] and gait among various populations, [34] further 
indicating the clinical relevance of these measures.

Table 3  Number (percentage) of selected LA features for 
each impairment outcome by category, with darker shading 
representing a higher proportion of features selected
LA Feature 
Category

Strength Sensation Spasticity
None Mild Moderate

Change in 
angle of 
inclination 
(Ang)

1 (6.3%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Correlation 
coefficients 
between 
axes (CC)

2 (12.5%) 2 (13.3%) 1 
(10.0%)

1 
(14.3%)

1 (10.0%)

Change in 
gravitational 
acceleration 
(CGA)

0 (0%) 1 (6.7%) 0 (0%) 1 
(14.3%)

0 (0%)

Frequency 
domain 
(Freq)

3 (18.8%) 5 (33.3%) 2 
(20.0%)

2 
(28.6%)

3 (30.0%)

Limb 
movement 
percentages

0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Median 
crossings 
(MC)

1 (6.3%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Periodic limb 
movements 
(PLM)

1 (6.3%) 1 (6.7%) 1 
(10.0%)

0 (0%) 1 (10.0%)

Relationship 
to recent 
movements 
(RRM)

4 (25.0%) 3 (20.0%) 3 
(30.0%)

2 
(28.6%)

0 (0%)

Signal char-
acteristics 
(SC)

2 (12.5%) 2 (13.3%) 2 
(20.0%)

0 (0%) 3 (30.0%)

Statistical 
(Stat)

1 (6.3%) 0 (0%) 1 
(10.0%)

0 (0%) 1 (10.0%)

Timing 
(Time)

1 (6.3%) 1 (6.7%) 0 (0%) 1 
(14.3%)

1 (10.0%)

Velocity and 
distance

0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Total LA 
features 
selected

16 15 10 7 10
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Movement consistency was found to be related to all 
impairment outcomes through the consistency of move-
ment directions (correlation coefficients between axes) 
and consistency between movements (PLM, relationship 
to recent movements, timing). For example, more consis-
tently timed movements were related to greater strength 
(Num Cross Corr Peaks- IQR, Time Since Prev- IQR), 
better sensation (Time Since Prev- IQR, Num Cross Cov/
Corr Peaks- IQR, PLM Index), and less spasticity (No 
Spasticity: Close Cross Cov/Corr Peak- IQR, PLM %; 
Moderate Spasticity: Move/hour, PLM Index). Addition-
ally, moving in a larger variety of directions was associ-
ated with greater strength (Corr XY- IQR/Med) and less 
spasticity (Corr YZ- Med), but worse sensation (Corr YZ- 
Med, Corr XZ- IQR). Since moving in a variety of direc-
tions requires muscle activation from a greater number of 
locations, it makes sense that moving in more directions 
was related to greater strength. Additionally, it is logical 
to infer that participants with more frequent, consistent, 
repetitive movements may have more severe spasticity 
(or related involuntary movements such as myoclonus 
or PLM) while those with more variable, less consistent 
movements have little to no spasticity. Since about 40% of 
individuals with SCI may experience problematic spasms 
that affect their sleep, [57, 58] LA may be an unobtrusive 
way to evaluate spasticity and the effects of treatment.

Additional measures of movement consistency that 
were related to greater strength include having a wider 
range of responses to perturbations (higher Lyapu-
nov Exp- IQR), smoother movements (lower Num Med 
Crossings Norm- Med), and more negatively skewed 
movements (lower Skewness- Med). These findings 
are supported by previous studies that have shown the 
Lyapunov exponent to be related to improvements in 
lower limb rehabilitation [36] and ambulation [6] and 
that healthy controls generally had smoother movements 
and more negative skewness than individuals with Par-
kinson’s disease [34].

Limb movement percentages and velocity and distance 
features were not selected for any impairment outcomes. 
While velocity and distance information may be better 
represented by similar features such as those in the fre-
quency domain, limb movement percentages represented 
unique information that may not be as meaningfully 
related to strength, sensation, or spasticity.

Having faster rotational movements (i.e., rolling, Angle 
Rate Change- Med) and smoother movements (Num 
Med Crossings Norm- Med) were related to greater 
strength, but were not among the selected features 
for sensation or spasticity. The ability for certain cat-
egories of LA to be related to some measures of impair-
ment but not others, demonstrates the vast amount of 
diverse information that LA can detect which may pro-
vide increased resolution about an individual’s strength, 

sensation, and spasticity than current clinical measures. 
This may be particularly useful in the context of clini-
cal prediction rules, as models using common clinical 
assessments may be inadequate to accurately predict-
ing long-term functional ambulation among those with 
incomplete SCI [16, 59–61].

Our previous work found that LA improved the clas-
sification accuracy of categories of functional ambula-
tion among those with motor incomplete SCI [6]. This 
further supports the validity of LA and demonstrates that 
LA likely contain richer information than clinical mea-
sures of impairment alone. Future studies should evalu-
ate other lower limb functional tasks and how LA can be 
utilized for outcome prediction in a longitudinal sample 
with acute SCI.

Although LA features were specifically extracted to be 
clinically meaningful individually, they provide the most 
beneficial and comprehensive information when inter-
preted together [34]. Since all LA features are calculated 
using the same data set with minimal computational time 
to extract many features, one can obtain a versatile set of 
detailed features related to impairment with minimal col-
lection burden.

Limitations
Although only nights “typical” to how the participant 
normally sleeps were included in the analysis, this mea-
sure was self-reported by the participants and it is pos-
sible that even during typical nights, LA were affected 
by unusual sleep patterns. Factors that may affect the LA 
data collection such as exercising, consuming alcohol, 
and daily and overall sleep quality were included in the 
initial covariate models to ensure that these factors were 
accounted for in the supplemental analysis. Participants 
were excluded if they self-reported a medical diagnosis of 
a condition that affects sleep. Given the high proportion 
of individuals with chronic SCI who have sleep-disor-
dered breathing and the demographics of the sample, [62, 
63]. It is possible that participants were included in the 
sample that had an undiagnosed sleep disorder. Further 
research should examine the differences in LA between 
typical and atypical nights, as well as the effect of sleep 
disorders on LA.

Although participants were asked to report any medi-
cations that they took that may affect sleep, details such 
as when these medications were taken and if participants 
used any medications to decrease spasticity were not 
explicitly recorded. The sample population had a lower 
proportion of participants with moderate to severe spas-
ticity than expected. Although the results support LA 
being associated with up to moderate spasticity, future 
studies should assess the relationship between LA and 
severe spasticity and the effect of antispasmodic medica-
tions on LA.
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It is possible that the demographics of the sample are 
not sufficiently representative of the general SCI popula-
tion and differences in demographic factors could have 
affected the presented results. Additional analyses using 
a larger, representative sample of individuals with SCI 
should be explored to verify the current findings. Dif-
ferences in LA based upon participant demographics, 
such as sex and completeness of injury, should be also 
explored.

The clinical measures of strength, sensation and 
impairment have limitations and are not an ideal gold 
standard for comparison [10, 64–66]. However, using 
summed measures of strength and sensation over the 
whole lower limbs, a categorized measure of lower limb 
spasticity, and only two clinicians for all assessments 
should minimize the effect of the limitations in reliability 
and responsiveness seen in the individual measurements 
[66–68].

For prediction models, it is critical that the model is 
assessed using a separate, unseen test set to avoid results 
that appear favorable, but perform poorly in practice. 
However, we do not intend to use LA as a predictor of 
impairment, as this is not clinically useful nor a goal of 
the current analysis. Thus, holding out a separate test set 
of samples or using a computationally intensive analysis 
such as nested cross-validation to assess the model per-
formance on unseen data was not deemed necessary. 
Therefore, the results from this analysis are effective for 
estimating the relationship between LA and measures of 
impairment in our sample and demonstrating the valid-
ity of LA as a clinical measure. If prediction is a goal of a 
future analysis, then utilization of a larger sample and a 
strict validation method with an unseen test set would be 
required.

It is possible that the LASSO LARS and multinomial 
logistic regression with ℓ1 regularization algorithms that 
were used for feature selection were affected by noise 
in the input features and resulted in suboptimal feature 
selection or selection of redundant features. The use of 
10-fold cross-validation was intended to minimize this 
possibility. Further, additional steps were taken (targeted 
participant recruitment, collection of multiple nights 
when possible, etc.) to minimize the bias in the data and 
maximize the generalizability of the findings.

Conclusion
Finding that LA measured during sleep is uniquely 
related to standard clinical measures of strength, sensa-
tion, and spasticity has provided evidence of construct 
and concurrent validity among a sample with chronic 
SCI. This demonstrates that features derived from LA 
are clinically meaningful metrics related to neuromus-
cular impairment that could be useful in many future 

applications including clinical prediction rules for ambu-
lation after an acute SCI.
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