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Abstract 

Background: In neurorehabilitation, we are witnessing a growing awareness of the importance of standardized 
quantitative assessment of limb functions. Detailed assessments of the sensorimotor deficits following neurological 
disorders are crucial. So far, this assessment has relied mainly on clinical scales, which showed several drawbacks. Dif-
ferent technologies could provide more objective and repeatable measurements. However, the current literature lacks 
practical guidelines for this purpose. Nowadays, the integration of available metrics, protocols, and algorithms into 
one harmonized benchmarking ecosystem for clinical and research practice is necessary.

Methods: This work presents a benchmarking framework for upper limb capacity. The scheme resulted from a 
multidisciplinary and iterative discussion among several partners with previous experience in benchmarking meth-
odology, robotics, and clinical neurorehabilitation. We merged previous knowledge in benchmarking methodolo-
gies for human locomotion and direct clinical and engineering experience in upper limb rehabilitation. The scheme 
was designed to enable an instrumented evaluation of arm capacity and to assess the effectiveness of rehabilitative 
interventions with high reproducibility and resolution. It includes four elements: (1) a taxonomy for motor skills and 
abilities, (2) a list of performance indicators, (3) a list of required sensor modalities, and (4) a set of reproducible experi-
mental protocols.

Results: We proposed six motor primitives as building blocks of most upper-limb daily-life activities and combined 
them into a set of functional motor skills. We identified the main aspects to be considered during clinical evaluation, 
and grouped them into ten motor abilities categories. For each ability, we proposed a set of performance indicators 
to quantify the proposed ability on a quantitative and high-resolution scale. Finally, we defined the procedures to be 
followed to perform the benchmarking assessment in a reproducible and reliable way, including the definition of the 
kinematic models and the target muscles.

Conclusions: This work represents the first unified scheme for the benchmarking of upper limb capacity. To reach a 
consensus, this scheme should be validated with real experiments across clinical conditions and motor skills. This vali-
dation phase is expected to create a shared database of human performance, necessary to have realistic comparisons 
of treatments and drive the development of new personalized technologies.
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Introduction
Neurological damages following stroke, spinal cord 
injury, and other neurological or neurodegenerative 
disorders can result in severe impairment of sensori-
motor functions, affecting functional activities, inde-
pendence, and eventually the quality of life. This is 
particularly true for the upper extremities, which are 
fundamental to interact with the environment and per-
form activities of daily living [1].

In the context of neurorehabilitation, assessing upper 
limb movements is crucial to monitor and understand 
sensorimotor recovery [2]. Technology-aided assess-
ments could provide the clinicians with objective, accu-
rate, and repeatable measurements of a patient’s capacity, 
allowing them to monitor his/her progress objectively, 
evaluate the effects of the different treatments or adapt 
them to the specific patient’s needs [3]. Nevertheless, so 
far, the evaluation of limb functions and the assessment 
of the effectiveness of technology-assisted interventions 
have relied mainly on clinical scales [4, 5]. Clinical scores 
applied to the upper limbs have several drawbacks, such 
as relying on observer-based ordinal scales (e.g., Func-
tional Independence Measure), having poor inter-rater 
and intra-rater reliability, and floor and ceiling effects 
(e.g., Fugl-Meyer Assessment) [6–8]. Consequently, they 
also often fail to differentiate between improvements at 
motor recovery level and improvements due to alterna-
tive compensating strategies [9].

Many instrumented approaches, including kinemat-
ics, electromyography (EMG), or brain activity analysis, 
can be exploited to support the subjective evaluation 
performed by the clinician, enhance the understand-
ing of the patient’s improvement, and provide a better 
understanding of the relationship between the mecha-
nisms of cortical reorganization and motor recovery 
[10–12]. These measurements are commonly named 
biomarkers. Sensor-based approaches, considering, 
for example, optoelectronic systems, inertial measure-
ment units, or EMG sensors, have been shown to apply 
to various tasks [1, 7]. Recently, robotic devices, such 
as exoskeletons, have emerged as a novel solution for 
assessing movement behavior during an intervention, 
exploiting data acquired by the integrated sensors [13, 
14]. Robots allow recording and analyzing measures 
concurrently from multiple joints during a well-con-
trolled and highly repeatable task. Moreover, they can 
actively perturb the patient’s movement to investigate 
neuromuscular control and related dysfunctions [2].

In the last years, hundreds of studies have exploited 
biomarkers to evaluate limb capabilities, assess the effi-
cacy of rehabilitation interventions, or understand the 
implications of using robotic devices for rehabilitation. 
This resulted in a plethora of potentially helpful evalua-
tion methods and protocols [11, 15–18]. This variety of 
quantitative outcome metrics is particularly noticeable 
for the upper limb functions, being the target func-
tions more varied and complex than for the lower limb, 
where both gait protocols and sensors-based outcome 
measures are more established and recognized in clini-
cal and research contexts.

In recent years, we are observing a growing aware-
ness of the importance of benchmarking [19]. Bench-
marking can be defined as standardized evaluation. It 
consists in measuring the performance of a system with 
a set of metrics, which are then compared to a set of 
standards or points of reference, namely the bench-
marks. The adoption of benchmarking promotes the 
development and use of standardized and reproducible 
tests able to provide quantitative evaluation and com-
parison of systems [20]. So far, its application to the 
neurorehabilitation field is still missing [15].

Systematic benchmarking methodologies have been 
recently promoted by two European initiatives: the 
EUROBENCH project “European Robotic Frame-
work for Bipedal Locomotion Benchmarking” ([21], 
http:// www. eurob ench2 020. eu/), and the EU COST 
Action CA16116 “Wearable Robots for Augmentation, 
Assistance or Substitution of Human Motor Func-
tions” (https:// www. cost. eu/ actio ns/ CA161 16). The 
EUROBENCH project developed the first benchmark-
ing scheme for lower-limb exoskeletons and prostheses, 
creating a sustainable “benchmarking infrastructure” 
composed of a testing facility and a set of algorithms 
and metrics able to quantify a wide spectrum of motor 
abilities related to bipedal functions [19]. The EU 
COST Action triggered a European-wide discussion on 
the evaluation of the upper extremities in neurorehabil-
itation using technology [22]. Nevertheless, EU COST 
Action only provided general guidelines for the best 
practice regarding upper extremities evaluation with-
out proposing a real benchmarking procedure.

While for lower limb functions, some ongoing 
researches have already adopted or proposed bench-
marking methods [23–26], in the upper limb field, the 
benchmarking approach is still missing [3, 22, 27, 28].
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This work aims to develop the first benchmarking 
framework for evaluating upper limb capabilities in clini-
cal and research settings. The proposed scheme includes: 
(1) a taxonomy that identifies and classifies the relevant 
upper limb motor skills and motor abilities, (2) a selec-
tion of outcome measures and performance indicators 
able to quantify each motor ability, (3) the required sen-
sor networks to extract the outcome measures, and (4) a 
set of standardized protocols that should be followed to 
obtain comparable results. The potential application of 
this benchmarking scheme is twofold: (1) to perform an 
instrumented evaluation of the upper limb capabilities of 
a subject with a neurological or neurodegenerative dis-
order, and (2) to assess the effectiveness of rehabilitative 
interventions by analyzing patients’ motor performance 
at different checkpoints (e.g., before and after treatment).

Methods
This benchmarking scheme aims to evaluate neurologic 
and neurodegenerative disorders that cause upper limb 
impairments. It is focused on the upper extremity body 
parts, including shoulder, elbow, and wrist. It has been 
designed to be feasible, reproducible, transferrable, and 
clinically meaningful in order to be shared among the sci-
entific and clinical communities.

The decision-making process to create this scheme 
was based on a multidisciplinary and iterative discussion 
among six partners with direct experience in different 
areas. In particular, the starting point was an extensive 
literature analysis on benchmarking methodologies and 
upper limb evaluation in clinical settings. Starting from 
the literature, we put together previous effort and exper-
tise in benchmarking methodologies for human loco-
motion with medical knowledge and clinical experience 
in upper limb rehabilitation. In particular, this process 
involved 11 people from different institutions and more 
than 60 European entities participating as Beta Tester 
in the EUROBENCH Project, including roboticists, cli-
nicians, experts in benchmarking, users of upper limb 
technologies, and engineers. The benchmarking scheme 
process definition and the contribution of each partner 
are represented in Fig. 1.

Motor skills
The starting point of this benchmarking scheme is taxon-
omy. We adapted three existing taxonomies, i.e., the one 
proposed by Schambra and colleagues [29] for the defi-
nition of motor primitives, the one introduced by Magill 
and Anderson [30] for the definition of motor skill and 
motor abilities, and the one suggested by Gentile [31] for 
the classification of motor skills.

A motor skill can be defined as a “functional and goal-
oriented activity or task” [30]. Motor skills are diverse, 

given the variety of interacting objects and goals, e.g., 
“drinking from a glass” or “moving a book”. Neverthe-
less, they can be considered as a combination of a limited 
array of building block motions called motor primitives 
[29]. The segmentation of complex movements into 
motor primitives is widely adopted to analyze and assess 
movement quality in clinical settings [1, 32, 33]. It could 
allow more precise tracking of the neural organization 
after brain injuries, since motor control and learning are 
believed to be neurally mediated at the level of primitives 
[32]. Moreover, if the patient is unable to complete the 
entire functional movement, the assessment of primi-
tives can provide a more nuanced picture of the condi-
tion [29, 29]. The literature has highlighted that the main 
tasks performed in clinical settings for rehabilitative or 
evaluation purposes can be classified as tracking, point-
ing, and reach-to-grasp tasks [7, 9, 16, 35]. Starting 
from this basis, we combined motor primitives to create 
motor skills that fulfill the following requirements. Motor 
skills have to be functional [36], they must be suitable 
for patients from slight to severe impairments, and they 
should target movements usually performed in clinical 
settings and daily life activities [37].

In order to propose a scheme feasible also with robots, 
the motor skills proposed in this scheme are restricted to 
the sitting position and involve only one arm. We organ-
ized the motor primitives according to the Gentile’s tax-
onomy [31], classifying them according to two factors: (1) 
the environment, which includes the external disturbing 
elements interacting with the person during the execu-
tion of the motor primitive, and (2) the function, which 
specifies the functional goal of the movement [29].

Motor abilities
The term ability has been used differently in the litera-
ture. We relied on the taxonomy of Magill and Anderson 
[30], which defines ability as “the capacity of an individ-
ual that determines their achievement potential to per-
form a specific (motor) skill”.

Several motor abilities can describe upper limb func-
tionalities in neurological patients [9, 16, 35]. Neither 
consensus nor a common taxonomy has been proposed 
yet in the scientific literature or in the clinical domain. 
Based on different previous literature reviews [9, 16, 35], 
we selected a group of motor abilities that could be used 
to describe the performance of upper limb motor skills 
comprehensively. We defined new ones when we could 
not find any good candidates in the literature, e.g., in the 
case of motor abilities related to muscle activity.

Finally, we identified the most relevant outcome meas-
ures domain that should be used to quantify the pro-
posed motor abilities. For this choice, we based on the 
results of the survey of the EU COST Action CA16116 
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[22] and on the experience of the involved clinical cent-
ers. As a trade-off between evaluation completeness and 
set-up time, we selected the two outcome domains that 
obtained the higher consensus.

Performance indicators
of the third step of our benchmarking scheme involves 
the identification of performance indicators (Pis), defined 
as “outcome measures that allow the quantitative assess-
ment of a motor ability” [30]. For each motor ability iden-
tified, we selected from literature reviews the PIs that 
respected at least one of the following requirements: (1) 
are suitable to describe the cause of upper limb impair-
ments, (2) are correlated with standard clinical scales, or 
(3) have been used to assess the effect of rehabilitative 

interventions or for the control of upper limb devices. 
We included PIs that could be computed independently 
of the measurement system. Each PI was correlated to 
a motor ability. For each motor ability, we identified as 
“mandatory” the PIs that, according to the literature, 
have either the maximum correlation with the Fugl-
Meyer Assessment scale, which is the most adopted pri-
mary outcome of clinical studies in neurorehabilitation. 
These PIs should always be included in the evaluation. 
The others PIs were classified as “recommended”.

Benchmarking protocol
Establishing unified protocols is one of the major chal-
lenges and probably the primary goal in benchmarking 
research [19]. This last section deals with the definition 
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of standardized procedures to be followed to perform a 
reproducible and reliable benchmarking assessment.

Results
Motor skills
Inspired by the work of Schambra and colleagues [29], 
we defined six motor primitives: idle, stabilize, point-to-
point reach, reach for grasp, transport, and reposition 
(Table  1). The definition of these motor primitives was 
based on the decomposition into constituent primitives 
of activities of daily life activities, whose validity and 
reliability were previously assessed on healthy subjects 
and post-stroke patients [29]. We deviated from Scham-
bra’s work [29] for what concerned the motor primitive 
“reach”. In particular, we distinguished between point-
to-point reach, i.e., reaching a target point with the hand 
without contact with any object, and reach for grasp, i.e., 
if the subject is asked to grasp an object in the conclu-
sive part of the task. Indeed, it has been demonstrated 
that the reaching movement is different depending on the 
type of movement foreseen after the reaching phase and, 
according to the specific goal to be achieved, the action 
planning and the kinematics patterns are different [39, 
40]. In this work, we considered only the palmar grasp-
ing of an object of cylindric shape, as will be detailed in 
“Benchmarking protocol” section. We neglected the vari-
ety of possible grasping strategies which can affect the 
arm motor plan, given that this aspect is beyond the goal 
of the present study.

The identified motor primitives were combined to 
define the following three main motor skills, which rep-
resent the most common activities considered in clini-
cal evaluation [9, 16, 35, 41]: anterior reaching, moving 
objects, and hand to mouth. A detailed description of 
motor skills is provided in Sect. 3.4.

We adapted Gentile’s taxonomy to classify the six 
motor primitives. Considering the environment, the 
main discriminant is the execution of the movement in 

the presence or not of gravity [42]. We classified the envi-
ronment into micro-gravity (i.e., when tasks are executed 
with the arm suspended or supported by any tool, or per-
formed on the plane considering negligible friction) and 
gravity (i.e., when tasks are performed without the aid of 
external support systems). Each environment category 
contains both upwards and downwards movements. 
Each one is then subdivided into two subcategories based 
on the absence or presence of a disturbance. Examples of 
disturbances could be a payload, a cognitive dual-task, or 
external forces. The disturbance might be defined accord-
ing to a specific clinical/scientific question but must be 
quantitatively specified before applying the protocol, and 
it must be replicable.

As for the function, we distinguished between upper 
limb stability, if the goal is to maintain the arm location 
unchanged for more than 1 s, and upper limb transport 
otherwise [29]. This time interval corresponds to the 
mean duration of upper limb ADLs [37]. Each one was 
in turn subdivided into two categories: without object 
manipulation and with object manipulation.

The identified motor primitives can be represented as 
in the schema shown in Fig. 2.

Motor abilities
We defined a set of ten motor abilities (Table  2): accu-
racy, efficacy, efficiency, movement amplitude, muscular 
effort, intra-limb coordination, planning predictability, 
power, smoothness, and speed. Power and muscular effort 
abilities, as well as their definitions, were introduced for 
the first time in this work. The other abilities and relative 
definitions were, instead, identified from the literature [9, 
16, 35]. We did not consider abilities for bilateral tasks 
since this scheme addresses only one limb. For the sake of 
conciseness, we included temporal abilities (i.e., tempo-
ral posture and temporal efficiency) in other more gen-
eral categories (intra-limb coordination and efficiency, 
respectively), and we unified precision and accuracy into 
one motor ability (i.e., accuracy).

Each ability could be associated with upper limb 
impairment. In particular, accuracy and efficacy could 
quantify the paresis, efficiency, intra-limb coordination, 
and movement amplitude could be correlated to a loss 
or regain of fractionated movements, planning predict-
ability could be associated with a loss or regain of soma-
tosensation, and, finally, muscular effort, power, speed, 
and smoothness could reflect the muscle tone [9, 38].

Finally, the outcome measures domains included 
in this scheme were kinematics and electromyogra-
phy. Indeed, according to the results of the EU COST 
Action CA16116 [22], these were the two domains that 
obtained the higher consensus by both clinicians and 

Table 1 Upper limb motor primitives

Motor Primitive Definition

Idle Holding the upper limb in a stable position 
without contact with any object

Stabilize Holding a target object still. There is the grasp of 
a target object throughout the minimal-motion

Point-to-point reach Reaching a target point without contact with 
any object

Reach for grasp Reaching a target object and make contact with 
it through grasping

Transport Moving a target object in space

Reposition Moving away from the target object toward the 
idle position, without contact with any other 
object
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researchers as essential to be included in the assessment 
procedures. Kinematic variables are used to capture the 
degree of motor impairments through objective, precise, 
and detailed measurements of movement performance 
and quality [43]. They can describe feedforward senso-
rimotor control [9], reveal compensatory strategies [35], 
describe selective motor control [44], and quantify upper 
limb workspace and coordination [9]. Therefore, they are 
suitable measures to describe movement dysfunctions, 
and they have been extensively reported [11, 17, 43, 45, 
46]. Kinematics can be acquired with optoelectronic 
systems or inertial sensors, whose use is nowadays dif-
fused in the clinical setting and research laboratories, or 
using encoders of the robot when available. Considering 
electromyography, the scientific community recognizes 
EMG-based measures as key for quantifying muscle 
activation in terms of motor unit recruitment capabil-
ity [47], fatigue [48], synergies [49], co-contractions [50], 

and indirect investigation of neural plasticity [51]. EMG 
has also been proposed to assess the physiological effects 
of the human–robot interaction [15, 52]. These outcome 
measures domains can describe the motor abilities pre-
viously identified. In particular, kinematics is able to 
quantify all motor abilities except for muscular effort and 
power, as already reported in the literature [3, 9, 35]. The 
electromyography, instead, could be exploited to assess 
efficiency, muscular effort, intra-limb coordination, plan-
ning predictability, power, and smoothness.

Performance indicators
Considering the kinematics domain, we considered a set 
of PIs (Table 3) derived from the works of Nordin et al. 
[9], Garro et al. [3], de los Reyes-Guzmán et al. [16], and 
Schwarz et  al. [35], which identified outcome measures 
suitable to describe the cause of impairment or correlated 
with clinical scales. With respect to the effort performed 
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Fig. 2 Taxonomy for classifying upper limb motor primitives involved in the upper limb benchmarking scheme

Table 2 Upper limb motor abilities

EMG = Electromyography; // indicates that the ability has not been previously defined in the literature

Motor Ability Description Outcome 
measure domain

Source

Kinematics EMG

Accuracy Spatial error of movements relative to optimal behavior x [9, 16, 35]

Efficacy Successful achievement of a targeted task goal x [9, 16, 35]

Efficiency Quality of how a targeted task goal is reached x x [9, 16, 35]
Adapted for EMG domain

Movement amplitude Maximally reachable area or volume with a specific joint and position-related 
aspects of single or multiple joints

x [9, 16, 35]

Muscular effort Muscular activation associated with the production of muscle tension while 
achieving a task

x //

Intra-limb coordination Correlation and redundancies in upper limb joints that produce different 
strategies to complete the task

x x [9]
Adapted for EMG domain

Planning predictability Ability to perform goal-directed movements in a feedforward manner x x [9, 16, 35]

Power Ability to produce force or power while performing exercises x //

Smoothness Quality of feedforward control based on the deviation of the velocity profile 
to an optimal, bell-shaped velocity profile

x x [9, 16, 35]

Speed How fast movements are performed x [9, 16, 35]
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in these previous works towards standardization, we uni-
fied the PIs outlined in these works, deleted redundant 
PIs, and associated each PI with one of the motor abilities 
previously defined, as outlined in Table 3.

For the electromyography domain, instead, despite its 
huge potential, when evaluating movement or assessing 
the effect of the use of robots, researchers usually limit 
their analysis to standard outcomes (e.g., Root Mean 
Square, integrated EMG, co-contraction index) without a 
deep insight into the real meaning of these quantities and 
their relationship with motor abilities. Moreover, despite 
the recommendations [22], EMG measurements are not 
widely adopted in clinical settings [53, 54], and EMG 
signal features are more often used for control purposes 
than assessment ones. Therefore, we propose a list of PIs 
(Table  3) to assess the effects of rehabilitative interven-
tions or for the control of upper limb devices [3, 55].

For each motor ability, we labeled as “mandatory” the 
PI that demonstrated the highest correlation with the 
Fugl-Meyer scale, and that does not need a normative 
reference value to be computed. In particular, for the kin-
ematics domain, we relied on the review from Schwarz 
et  al. [35], while for the electromyography domain, we 
based on the work of Cahyadi and colleagues [56]. For 
the motor abilities accuracy, intra-limb coordination, 
and power it was not possible to extract a mandatory PI 
because the literature lacks sufficient evidence of its cor-
relation with the Fugl-Meyer scale.

Benchmarking protocol
We proposed a worksheet designed to facilitate the exe-
cution and replication of the experiments (Table 4). The 
worksheet is constituted of three main sections: (1) defi-
nition of the system under investigation, (2) definition of 
experimental set-up and kinematics and electromyogra-
phy standard definition, and (3) experimental procedure 
definition and standardization.

Definition of the system under investigation
First, the user must select if the protocol will be con-
ducted on a subject alone or an end-user wearing a 
robotic device. The worksheet includes a brief descrip-
tion of the subject. In particular, the following data are 
required for correct identification of normative refer-
ence data: age, sex, pathology, upper arm and forearm 
lengths, neuropsychological assessment, dominant and 
evaluated arm. The device, if included, has to be char-
acterized in terms of (1) device type (i.e., exoskeleton, 
end-effector, soft device), (2) training/assistive modal-
ity, (3) number of degrees of freedom (DOFs), (4) details 
on number and list of actuated and passive DOFs. For 
the training modality, we suggest the classification pro-
posed by Basteris and colleagues [88], which proposed 

eight different modes that characterize the human and 
robot’s contribution during the execution of the motor 
skills. For each active DOF, it is necessary to specify the 
list of human joints (Fig. 3), and the level of robot con-
tribution. In particular, with active DOF, the rater must 
quantify the level of resistance/assistance in the normal-
ized range [−  1; + 1]. −  1 corresponds to the “resistive” 
modality with a resistive level to counterbalance the max-
imum voluntary contraction of the user against that DOF, 
while + 1 is the “robot-in-charge” training modality (i.e., 
the movement is performed by the robot regardless of 
the subject’s response [88]). The “transparent mode” (i.e., 
“the robot does not provide assistance, nor resistance to 
the movement [88, 89]”) corresponds to 0. For passive 
DOFs, instead, the rater must specify the level of gravity 
compensation, ranging from 0 (i.e., the robot is not com-
pensating for gravity—“transparent” modality) to 1 (i.e., 
the robot compensates for the weight of the user’s arm 
completely).

Experimental set‑up
In Sect.  2, the user has to describe the instrumented 
experimental set-up. For kinematics, the specifications 
concern the type of sensor and their positioning on the 
anatomical segments. For electromyography, instead, 
the user must specify the selected muscles and the elec-
trodes type (e.g., wired/wireless, superficial/intramus-
cular). We proposed a standardized kinematics model 
to calculate all the PIs in Table 3 properly, and we iden-
tified the most relevant upper limb muscles involved in 
the motor skills of the scheme. Considering kinemat-
ics, an accurate description of the human upper limb is 
challenging due to the high complexity of its structure 
[90]. In this framework, pursuing the objective of fea-
sibility, a trade-off between complexity and accuracy is 
necessary. Therefore, we suggest the model presented 
by [91], adapting it to respect the recommendations of 
the International Society of Biomechanics (ISB) [92] 
(Fig. 4). In particular, the thorax is represented by a sin-
gle DOF corresponding to the flexion/extension  (q0). 
The shoulder is simplified as a ball-and-socket joint 
represented by the glenohumeral joint. Indeed, the 
shoulder motion can be represented largely by the gle-
nohumeral joint for a variety of arm activities involving 
up to 90° of arm elevation [91], which is our case. The 
corresponding three DOFs are plane of elevation  (q1), 
elevation angle  (q2), and axial rotation  (q3). Two DOFs 
can represent the elbow: flexion/extension  (q4) and pro-
nation/supination (i.e., axial rotation of the forearm—
q5). Finally, the wrist is characterized by two DOFs: 
flexion/extension  (q6) and ulnar/radial deviation  (q7). 
Considering the shoulder joint, often researchers in the 
robotics field use a different convention, represented by 
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Table 3 Benchmarking indicators for motor abilities

Motor Ability Performance Indicator Domain Mandatory/
Recommended

Description Relevant 
reference

Kin EMG

Accuracy Trajectory absolute error x R Mean or maximal distance between 
ideal and actual trajectory between 
movement onset and end

[57]

End-point error x R Mean or maximal Euclidean distance 
between actual and target position at 
or after movement end

[58]

Variable error x R Standard deviation of the end-point 
error across multiple repetitions of the 
movement or task

[59]

Area Index x R Area between the desired straight line 
and the path actually performed

[60]

Efficacy Success rate x R Number of accomplished objectives 
(e.g., movements performed, tasks com-
pleted) divided by the total number of 
attempts

[61]

Number of movements stops x M Number of times that the velocity curve 
dropped below a percentage of peak 
velocity after movement onset

[62]

Efficiency Movement time x R Time from the onset to the end of a task 
or movement

[63]

Path traveled x R Path length covered between onset and 
end of a movement or task

[64]

Path length ratio x M Ratio between the path traveled and 
the shortest possible distance between 
movement onset and end

[65]

Trunk compensation x R Ratio between trunk displacement and 
hand displacement in the sagittal plane

[66]

Waveform length x R Cumulative length of the waveform of 
the EMG signal from the ith-muscle over 
the time segment

[67]

Average amplitude change x R Mean of the cumulative length of the 
waveform of the EMG signal from the 
ith-muscle over the time segment

[55]

Difference absolute standard deviation 
value

x R Standard deviation of the cumulative 
length of the waveform of the EMG 
signal from the ith-muscle over the time 
segment

[55]

Intra-limb coordination Joint angle correlation x R Correlation between shoulder flexion–
extension and elbow flexion–extension 
joint time angles profiles

[68]

Elbow peak velocity x R Highest value of the elbow flexion/
extension joint velocity profile during 
movement

[43]

Time to peak elbow extension angle x R Time to reach peak extension angle for 
the elbow joint, relative to the duration 
of the movement

[69]

Muscular synergies x R Linear decomposition algorithm (e.g., 
principal components analysis, factor 
analysis, independent component 
analysis, and non-negative matrix 
factorization) to extract spatiotemporal, 
temporal, and spatial features from EMG 
signal of the muscles mainly involved 
in the task

[70]

Co-contraction index x R Percentage of overlapping activity of 
EMG linear envelopes between the ago-
nist and the antagonist muscle involved 
in the task

[71]
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Table 3 (continued)

Motor Ability Performance Indicator Domain Mandatory/
Recommended

Description Relevant 
reference

Kin EMG

Intermuscular coherence x R Square of the cross-spectra normalized 
with auto-spectra derived from the EMG 
signal from the agonist and the antago-
nist muscles involved in the task

[72]

Movement amplitude Joint range of motion x M Range of the anatomical joints angles 
between movement onset and end

[73]

Maximum reached distance x R Maximum distance reached from the 
starting position

[74]

Trunk displacement x R Euclidean distance covered by the trunk 
between movement onset and end

[75]

Normalized reaching area x R Maximally reached or reachable posi-
tion during a movement or task divided 
by the length of the user’s arm

[76]

Muscular effort Integrated EMG x R Summation of rectified EMG signal 
amplitude obtained from the ith-muscle

[55]

Root Mean Square x R Square root of the mean square of the 
EMG signal amplitude obtained from 
the ith-muscle

[55]

Activation level x M Average of the absolute value of the 
EMG signal amplitude obtained from 
the ith-muscle in a segment

[77]

Variance of EMG x R Average of squared EMG signal ampli-
tude obtained from the ith-muscle

[67]

Mean absolute value slope x R Differences between mean absolute 
values of the EMG signal amplitude 
obtained from the ith-muscle of the 
adjacent segments

[55]

Planning predictability Time to peak velocity x R Time to reach peak velocity relative to 
the duration of the movement

[78]

Reaction time/Response latency x M Time between the “Go” cue (as indicated 
by visual/acoustic feedback or any other 
channel) of a movement and the actual 
onset of the movement (e.g., 10% of 
peak velocity)

[62]

Muscle onset x R Time between the “Go” cue and the 
onset (e.g., detected by the Teager–Kai-
ser energy operator) of the EMG signal 
amplitude obtained from the ith-muscle

[79]

Initial movement direction error x R Distance between ideal and actual 
trajectory at an initial time point right 
after movement onset (e.g., 10% of peak 
velocity)

[62]

Aiming angle x R Angular difference between target 
direction and direction of travel calcu-
lated from starting point up to peak 
speed point

[80]

Power Mean frequency x R Sum of the product of the power spec-
trum of the EMG signal from the ith-
muscle and the frequency divided by 
the total sum of the spectrum intensity

[56]

Median frequency x R Frequency at which the power 
spectrum of the EMG signal from the ith-
muscle is divided into two regions with 
equal amplitude

[56]

Mean power x R Average power of the power spectrum 
of the EMG signal from the ith-muscle

[55]
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Table 3 (continued)

Motor Ability Performance Indicator Domain Mandatory/
Recommended

Description Relevant 
reference

Kin EMG

Power spectral density x R Amount of power per frequency inter-
val of the power spectrum of the EMG 
signal from the ith-muscle

[56]

Frequency ratio x R Ratio between the low-frequency 
components and the high-frequency 
components of the power spectrum of 
the EMG signal from the ith-muscle

[55]

Power spectrum ratio x R Ratio between the energy which is 
nearby the maximum value of the 
power spectrum of the EMG signal 
from the ith-muscle, and the energy 
which is the whole energy of the power 
spectrum

[55]

Smoothness Number of velocity peaks x M Number of peaks (i.e., maxima above a 
certain threshold) in the velocity profile 
between movement onset and end

[81]

Speed correlation to idealized profile x R Correlation between actual speed pro-
file and idealized normal velocity profile 
(e.g., straight line)

[82]

Movement Arrest Period Ratio x R Proportion of time that movement 
speed exceeds a given percentage of 
peak speed

[83]

Peak Speed Ratio x R Mean speed divided by the peak speed [83]

Normalized dimensionless jerk x R Time-integral of the squared jerk 
(i.e., third time-derivative of position) 
between movement onset and end 
normalized with respect to movement 
duration to the power of five and move-
ment length to the power of two

[84]

Spectral arc length x R Length of the spectral trajectory (i.e., in 
the frequency domain) of the velocity 
profile between movement onset and 
end

[85]

Mean acceleration x R Mean value of the acceleration profile 
between movement onset and end

[86]

EMG Zero Crossing x R Number of times that amplitude values 
of the EMG signal from the ith-muscle 
crosses zero amplitude level

[55]

Slope sign change x R Number of times that slope of the EMG 
signal from the ith-muscle changes sign

[55]

Speed Peak velocity x R Maximal value of the velocity profile 
between movement onset and end

[87]

Mean velocity x M Mean value of the velocity profile 
between movement onset and end

[83]

Mean velocity variability x R Difference between the velocity profile 
of the participant’s reaching trajectory 
and the ideal velocity profile for each 
movement

[80]

If not specified, kinematic outcomes must be computed from a distal joint or the robot end-effector. Electromyography outcomes must be computed for every muscle 
recorded if not specified. Relevant reference specifies the first work of the literature that, to our knowledge, used that specific outcome
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Table 4 Template of the worksheet to conduct the benchmarking

1) Definition of the system under investigation

Subject
Robotic device + Subject

Subject description:
Age:
Sex:
Pathology:
Upper arm length (cm):
Forearm length (cm):
Dominant arm:
Evaluated arm:
Neuropsychological assessment:

Robotic device description (if present):
Training modality:
Number of DOFs:
Actuated DOFs (list and level of resistance/assistance [− 1; 1]):
Passive DOFs (list and level of antigravity compensation [0;1]):

2) Definition of experimental set‑up and kinematics and electromyography standard definition

Kinematics
Sensor type:
Sensors placement:

Electromyography
Electrode types:
Electrodes placement on muscles:

3) Experimental procedure definition and standardization

3.1 Motor skills Motor skills and number of repetitions:
1. Anterior reaching at rest position height (N =)
2. Anterior reaching at shoulder height (N =)
3. Moving objects at rest position height (N =)
4. Moving objects at shoulder height (N =)
5. Hand to mouth (N =)

Environment:
 Micro-gravity
 Gravity

Description of the object (if skill number 2 or 3):
Shape:
Dimensions:

3.2 Disturbance Description of the disturbance
Examples:
 Payload
Description (mass in kg):
 Cognitive disturbance
Description:
 Motor perturbation
Description (Direction, location, magnitude, frequency, cycle waveform):
 Other
Description:

3.3 Outcomes Outcome measures categories:
 Kinematics
 Electromyography

3.4 Protocol Setting:
The subject sits in front of a desk on a chair without an armrest and with 
the seatback blocked at 90°
The height of the desk is adjusted in order to have the elbow at 90° of 
flexion and no compensation of the shoulder in the frontal plane
The starting position is with the hand on the desk in a central position 
(rest position)
The trunk of the subject must be blocked. Trunk displacement must be 
recorded, and if higher than 20° in the sagittal or frontal plane, the test is 
not valid
Procedure:
1) Set the measurement system according to the required outcome vari-
ables
2) Ask the subject to sit as described in section “Setting”
3) If skill 2 or 3, locate the object in the target position
4) (Eventually, set disturbance)
5) Start trial (data saving start)
6) Stop trial (data saving stop)
7) Store recorded data
8) Analyze data according to selected Outcomes
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these angles: flexion/extension, horizontal adduction/
abduction, and humeral rotation (Fig. 3). The kinematic 
transformations between frames are presented in [93]. 
The PIs listed in Table 3 concern both measures at the 
single joint (e.g., joint angle correlation), and at the 
end-effector level (e.g., end-point error). The proposed 
kinematics model is required to correctly compute all 
the PIs.

In what relates to the electromyography, we identi-
fied the following muscles as the most relevant to the 
motor skills we proposed: trapezius descendens, pec-
toralis major, anterior deltoid, medial deltoid, posterior 
deltoid, triceps brachii (long head), biceps brachii (long 
head), brachioradialis, and pronator teres (Fig. 5). Sen-
sor placement, signal processing, and modeling should 

follow the SENIAM (Surface ElectroMyoGraphy for the 
Non-Invasive Assessment of Muscles) guidelines [94].

Experimental procedure
The third part is related to the definition of the experi-
mental procedure. The first section describes the motor 
skills, the environment, and the description of the (pos-
sible) object. For all the motor skills, the subject is seated 
in front of a desk on a chair without an armrest and 
with the seatback blocked with a tilt angle between 100° 
and 110°. The starting position is with the hand on the 
desk in a comfortable position, with the palm down and 
with the center of the palm of the hand aligned with the 
user’s navel (A—rest position) (Fig. 6). The height of the 
desk should be adjusted to have the elbow at 90° of flex-
ion and no compensation of the shoulder in the frontal 
plane when the subject has the arm in the rest position. 
If the patient cannot reach this position autonomously, 
the rater can passively position the patient’s arm in the 
starting position. As to the target points, in the ante-
rior reaching and move objects motor skills, they can be 
placed at two different heights, according to the asses-
sor’s choice: at the same height of the rest position or the 
subject’s shoulder height. The rest point, instead, does 
not change. Consequently, these motor skills are split 
into (1) anterior reaching at rest position height, (2) ante-
rior reaching at shoulder height, (3) move objects at rest 
position height, and (4) move objects at shoulder height. 
The subject has to carry out the movements without 
moving his/her back away from the backrest to avoid 
compensation with the trunk. Movements are performed 
at a self-selected speed. During the anterior reaching 
motor skills, both at rest position height and at shoul-
der height, starting from the rest position (A), the sub-
ject has to reach three target points placed in the central 
(B), contralateral (C), and ipsilateral positions (D) (Fig. 7). 
After each reach, the subject must return to the rest posi-
tion (A) (Table 5). Point B is placed in front of the sub-
ject and aligned with point A. Points C and D are located 
at 45 degrees with respect to the straight line connect-
ing point A with point B (Fig. 7). The three target points 
(B, C, and D) must be placed at the distance correspond-
ing to a complete elbow extension of the subject’s arm 
in that direction. In the moving objects motor skills, the 
starting position is the rest position (A), and the object is 
placed in the central position (B). The subject must grasp 
the object in the central position (B), then push/pull 
it to reach two target positions at contralateral (C) and 
ipsilateral (D) (Fig.  7). After each reaching, the subject 
must release the object and return to the starting posi-
tion (A). Lastly, the object will be returned to the initial 
central position (B) (Table 5). Finally, the hand to mouth 
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Anterior deltoid

Pectoralis major

Biceps brachii

Brachioradialis

Pronator teres

Posterior deltoid

Triceps brachii

Trapezius

Medial deltoid

a) Anterior view b) Posterior view

Fig. 5 Upper limb main muscles involved in motor skills defined in the benchmarking scheme

Fig. 6 Rest position (A) in the frontal view (a) and in the lateral view (b)

A

B
C D

45° 45°
E

Fig. 7 Target points or object location for motor skill anterior reaching and move object. A = Rest position; B = Central position; C = Controlateral 
position; D = Ipsilateral position; E = Mouth
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motor skill is subdivided into two cases: without and 
with the object. In the first case, starting with the hand 
on the desk in the rest position (A), the subject is asked 
to reach his/her mouth (E) and touch it with the palm. 
After the idle phase, the subject has to return to the rest 
position (A). Instead, the case with the object consists of 
the activity of daily living mimicking the drinking task. 
Starting with the hand on the desk in the rest position 
(A), the subject has to grasp an object close to the rest 
position (A), reach his/her mouth (E) with the hand and 
the object, return to the start position on the plane (A), 
then release the object and position his/her hand in the 
rest configuration (Table 5). During this task, the subject 
is asked not to move the head toward the hand.

If the protocol is executed with a robotic device, the 
environment will be classified as gravity if the training 
modality is “patient-in-charge”, “transparent”, or “resis-
tive”. Otherwise, the environment will be microgravity, 
in order to take into account the assistance and gravity 
compensation provided by the robot.

The motor skill anterior reaching at rest position height 
represents the easiest movement that can be analyzed, 
and it is suitable for patients unable to grasp objects 
or elevate their arm against gravity. This motor skill, 
together with the motor skill move objects at rest position 
height, can be performed by sliding the arm on the table 
(hence, in the micro-gravity environment).

The motor skills moving objects and hand to mouth 
with object involve the mobilization of an object. In order 
to build a standardized and replicable benchmarking 
scheme, the object is represented by a cylindrical object 
of daily life (i.e., 0.5 l empty water bottle).

We suggest at least eight repetitions for each motor 
skill as a compromise between data robustness and 
repeatability, and the time required for the protocol.

The following part of the worksheet (i.e., disturbances) 
has to be filled only if disturbances are present during 
the experiment. The experimenter sets the disturbance. 
A possible disturbance is represented by a payload in the 
object (e.g., a bottle filled with water). Other disturbances 
(e.g., cognitive disturbance, motor perturbation) have to 
be carefully characterized.

The last part of the worksheet drives the assessor to 
execute the protocol. Before the execution of the pro-
tocol, the rater must explain the movements accurately 
to the subject. During the examination, verbal cues 
and encouragement must be avoided. In this way, the 
obtained output is only due to the patient’s performance 
and abilities. Moreover, verbal stimuli are difficult to 
standardize and reproduce.

Discussion
Technologies and sensors, such as optoelectronic sys-
tems, inertial measurement units, or EMG devices, can 
provide valid, reliable, and sensitive assessment tools 
exploitable in neurorehabilitation to objectively inves-
tigate sensorimotor impairments. Moreover, recently, 
some robotic devices, such as exoskeletons, are dem-
onstrating their potential to be used not only as a com-
plement to conventional therapy but also to assess 
sensorimotor capabilities in a more objective way and 
under repeatable conditions [13, 14]. There is now a 
clear need for guidelines for clinicians and researchers to 
optimize technology-based assessment since standard-
ized international evidence-based guidelines are missing, 
especially considering the upper limb district [22, 27, 28].

This work defines a unified scheme for benchmarking 
upper limb capabilities that can be used in the neurore-
habilitation field in several ways. In the acute phase, this 

Table 5 Motor skills flow description through motor primitives

Motor skill 1) Anterior reaching at rest 
position height
2) Anterior reaching at 
shoulder height

3) Move objects at rest 
position height
4) Move objects at shoulder 
height

5) Hand to mouth without 
object

6) Hand to mouth with object

Motor primitives 1) Idle (A)
2) Point-to-point reach (B)
3) Reposition (A)
4) Point-to-point reach (C)
5) Reposition (A)
6) Point-to-point reach (D)
7) Reposition (A)

1) Idle (A)
2) Reach for grasp (B)
3) Transport (C)
4) Reposition (A)
5) Idle (A)
6) Reach for grasp (C)
7) Transport (D)
8) Reposition (A)
9) Idle (A)
10) Reach for grasp (D)
11) Transport (B)
12) Reposition (A)

1) Idle (A)
2) Point-to-point reach (E)
3) Idle (E)
4) Reposition (A)

1) Idle (A)
2) Reach for grasp (A)
3) Transport (E)
4) Stabilize (E)
5) Transport (A)
6) Reposition (A)
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assessment procedure can be used to evaluate the level 
of motor impairment and personalize the intervention 
according to the patient’s needs. In subsequent phases, 
the scheme can be exploited for tuning training parame-
ters (e.g., type and complexity of a task, required amount 
of body weight support, percentage of active assistance) 
to adapt and optimize the level of challenge during reha-
bilitation. After the end of an intervention, the scheme 
could be exploited to assess eventual patient capabilities’ 
improvements.

Traditionally, assessment procedures in neuroreha-
bilitation are based on standard clinical scales, selected 
among the International Classification of Functioning 
(ICF), Disability and Health domains [95] (e.g., Fugl-
Meyer Assessment, Action Research Arm Test). In 
rehabilitation medicine, these scales represent the fun-
damental basis of the so-called Evidence-Based Medi-
cine, which is defined as the best available evidence 
in the process of decision-making related to patients’ 
health care [96]. However, relying only on clinical scales 
could not be sufficient to provide an accurate evalua-
tion, as already pointed out by the scientific community 
[7, 22, 28, 97]. Therefore, we suggest integrating tra-
ditional Evidence-Based Medicine with the proposed 
benchmarking scheme. In particular, following the defi-
nition of the World Health Organization, this scheme 
could be exploited as a “Capacity qualifier” [98]. Indeed, 
it describes an individual’s ability to execute a task or an 
action without considering the environment, which can 
be considered irrelevant being a standardized evalua-
tion setting. This scheme could increase the relevance 
and accuracy of the assessment. Indeed, it allows valu-
able comparisons, both considering patients’ longitudinal 
evaluation at different time points or the comparison of 
the efficacy of different rehabilitative interventions. The 
scheme applied to users without external devices could 
enable data comparison across clinical and research 
trials, possibly leading to more robust and shared evi-
dence. At the same time, quantitative outcome meas-
ures are characterized by higher precision, finer rate, and 
repeatability.

The motor skills constituting the protocol are suitable 
for a clinically relevant evaluation, for different levels of 
abilities, and can be easily decomposed in motor primi-
tives. These simple motor primitives are determinants of 
Capacity, and they could be used to determine the cause 
of the eventual impairment. Moreover, they could be 
exploited to derive or predict the performance of more 
complex skills without the need for a benchmark tailored 
for all possible upper limb movements. We included 
a minimal experimental set-up that is easy to admin-
ister and is currently present in most clinical settings. 
Although other aspects might be relevant in evaluating 

upper limb capabilities, such as kinetic evaluation, we 
decided to include kinematics and electromyography 
domains, which can also be assessed without robots. As 
suggested by Torricelli and colleagues [19], the scheme 
should be designed to maximize its transferability across 
different scenarios and subjects. Indeed, it leaves a cer-
tain degree of freedom in the benchmarking protocol, 
and, in this way, it can be implemented on various robotic 
platforms or adapted to different laboratory equipment. 
Consequently, the applicability of this benchmarking 
could be broad, and it may be considered an important 
tool for routinely upper limb rehabilitative technologies 
functional evaluation, leading to platform-independent 
assessments that can allow the comparison of treatment 
outcomes across rehabilitation centers worldwide.

The benchmarking scheme could also be exploited to 
assess the impact of a robot on the user’s performance, by 
comparing the subject’s performance without and with 
the external device. Indeed, the presence of the robot, 
as well as different levels of assistance/resistance, influ-
ence the PIs. The application of the scheme could allow 
quantifying both the effect of the robot and of different 
training modalities, comparing them with the baseline 
performance of the user without any external device. In 
this view, the scheme could also be exploited to assess the 
effectiveness of assistive arm supports.

Although this framework is meant especially for disor-
ders that occur in terms of weakness or hemiparesis (e.g., 
stroke), the scheme could be easily extended to other 
neurological conditions (e.g., cerebral palsy). Indeed, the 
involved motor skills are based on the decomposition 
into motor primitives of daily life activities that are rel-
evant for each pathology. As a consequence, the motor 
abilities and performance indicators can constitute a 
common reference landscape. The performance indica-
tors must be interpreted in relation to the pathology, the 
site of injury, or the related clinical conditions specific to 
the patient.

In line with Torricelli et al. [19], a benchmarking frame-
work should fulfill the following basic requirements: fea-
sibility, reproducibility, and transferability. The feasibility 
can be defined as the capability of the scheme to be suc-
cessfully used in the given application field, i.e., the clini-
cal setting in our case [99]. Reproducibility is defined as 
“the obtention of comparable results by different teams, 
measuring systems, and locations” [100]. Transfer-
ability is defined as “the ability to predict how a system 
would behave in the real world, by means of experiments 
conducted in a controlled (typically laboratory) envi-
ronment” [15]. Finally, the scheme has to be clinically 
meaningful, i.e., it has to constitute a relevant decision-
making support system for clinicians in the neuroreha-
bilitation context.
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We designed this benchmarking scheme to respect 
these four requirements. However, the effective compli-
ance of the scheme with such requirements needs to be 
demonstrated experimentally. Indeed, this work repre-
sents the starting point for creating a consensus among 
the scientific community. An iterative process involving 
stakeholders or players in the rehabilitation fields (e.g., 
physicians, therapists, engineers) is necessary to obtain a 
definitive consensus on this scheme.

A possible plan in this direction could include a test–
retest analysis on a population of healthy subjects to 
validate the feasibility and reproducibility of the scheme 
also in terms of inter-rater reproducibility. In this way, 
the normative data necessary to compute the baseline 
required by some indicators (e.g., the optimal trajectory) 
can also be derived. Finally, the reproducibility should 
be verified across different instrumentation (e.g., per-
forming the benchmarking scheme with optoelectronic 
systems and inertial measurement units for the kine-
matics). To validate the transferability, it is necessary to 
investigate the correlation and agreement between the 
PIs obtained by this scheme and standard clinical scales 
that evaluate daily life movements (i.e., ICF Activity and 
Participation domains) or questionnaires assessing the 
quality of life in a real-life environment. Finally, to vali-
date the clinical meaningfulness, the results from this 
framework need to be correlated with those from stand-
ard clinical scales among a population of neurological 
patients.

Specific updates of the benchmarking scheme might be 
proposed to assure the compliance of the scheme with the 
stated requirements after tests in the relevant environ-
ment. Moreover, the application of the scheme could lead 
to an accurate description of human upper limb move-
ments, which could be useful in the neurorehabilitation 
field in different ways. It can support the path planning 
process during robot development (e.g., as a combination 
of primitives), the recognition of pathological movements 
through artificial intelligence algorithm, or it could be 
beneficial to improve the human-likeness of robots.

In this work, we decided to propose a framework for 
the rehabilitative scenario without losing generalizabil-
ity. This benchmark can be translated to different health-
care domains with proper customization. For example, 
it can be adopted to evaluate the effectiveness of assis-
tive devices to support daily life activities in subjects 
with neurodegenerative diseases, analyzing the subject’s 
performance during the execution of the protocol with-
out and with arm support. In this case, the PIs should 
be chosen among those related to task accomplishment 
(e.g., success rate, active movement index, movement 
time, joint range of motion). Moreover, our scheme may 

be exploited to evaluate bimanual tasks or interven-
tions done with bimanual exoskeletons, adding proper 
measures on inter-limb coordination, as suggested by 
Nordin and colleagues [9]. The identified motor primi-
tives and most of the PIs could also be transferred to 
the case of occupational exoskeleton for the evaluation 
of physiological changes induced by the exoskeleton 
(e.g., variations in the Root Mean Square of EMG signal 
or in joint range of motion). Nevertheless, the protocol 
should be carefully revised to be adapted to the specific 
application.

Despite the relevance of this work, some limitations 
can be identified. First, this benchmarking scheme is 
intended to evaluate only the upper limb (i.e., shoulder, 
elbow, and wrist) and not the hand. Although the upper 
limb and the hand synergistically provide integrated 
functions, from the point of view of rehabilitation pro-
tocols, clinical assessment, and diagnosis, they repre-
sent different districts. Standard clinical scales (e.g., the 
Action Research Arm Test) tackle arm and hand with dif-
ferent items, and most of the existing robots for rehabili-
tation are designed for the arm only (e.g., ArmeoPower 
by Hocoma, Harmony by Harmonic Bionics) or the hand 
only (Gloreha by Idrogenet, Hand of Hope by Rehab-
Robotics). In line with the idea of considering hand and 
arm evaluation as separate, an instrumented assessment 
tool has already been proposed [101]. Considering the 
outcome measures, in this scheme, we focused only on 
PIs achievable from sensors. A comprehensive evaluation 
of technologies should also include the user experience, 
including perceptual, emotional, and cognitive aspects 
[15]. For upper limb assistive technologies, for exam-
ple, it was demonstrated that subject’s self-perceived 
improvement was significantly greater than the func-
tional gain detectable through clinical scales or a system 
measurement [102]. Another important aspect we did 
not consider was the physical human–robot interaction, 
which includes the kinematic compatibility and interac-
tion forces/torques between the system and the subject’s 
joints and ergonomics evaluations. The scheme does not 
include bimanual tasks. Although relevant in the con-
text of neurological disorders, bimanual tasks are usu-
ally related to the grasping of objects and, hence, to hand 
functions, which is out of the scope of this benchmarking 
scheme. At the same time, a requirement of the scheme is 
its feasibility in the context of robotic devices (e.g., exo-
skeletons), which are in great majority unilateral. Moreo-
ver, the clinical evaluation of post-stroke people, which 
represent a main cause of disability worldwide, is unilat-
eral. Finally, other relevant aspects, such as tremor, are 
not addressed in this scheme and would need a revised 
version.



Page 17 of 20Longatelli et al. Journal of NeuroEngineering and Rehabilitation          (2022) 19:102  

Conclusion and future perspectives
Benchmarking represents the desirable approach for 
evaluating the upper limb abilities of frail subjects and 
assessing and comparing the performance of different 
rehabilitative interventions. In this context, technol-
ogy-driven solutions provide a promising complement 
to conventional clinical assessments. We created a 
benchmarking framework based on kinematics and 
electromyography domains to evaluate the upper limb 
capabilities. The scheme can be exploited to assess the 
effectiveness of a rehabilitative program, e.g., compar-
ing patients’ performance before and after the interven-
tion, or to perform an instrumented clinical evaluation 
of a patient. It is suitable to be conducted with robot-
equipped sensors as well as with external sensors (e.g., 
optoelectronic system, wearable sensors). We sug-
gest that this framework should be combined with the 
standard Evidence-Based Medicine relying only on clin-
ical scales. The scheme could serve as a complementary 
and objective tool that promises to reveal sensorimotor 
impairment profiles more accurately, potentially allow-
ing for a reduction of the required sample size for clini-
cal trials.

Future efforts are needed to validate the reproducibil-
ity, transferability, and clinical meaningfulness of the 
scheme and eventually revise it. This scheme aims to 
be largely used by the scientific community to create a 
shared database of human performance that could drive 
the development of new personalized technologies.
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