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Abstract 

Background: Service robots are defined as reprogrammable, sensor-based mechatronic devices that perform useful 
services in an autonomous or semi-autonomous way to human activities in an everyday environment. As the number 
of elderly people grows, service robots, which can operate complex tasks like dressing tasks for disabled people, are 
being demanded increasingly. Consequently, there is a growing interest in studying dressing tasks, such as putting on 
a t-shirt, a hat, or shoes. Service robots or robot manipulators have been developed to accomplish these tasks using 
several control approaches. The robots used in this kind of application are usually bimanual manipulator (i.e. Baxter 
robot) or single manipulators (i.e. Ur5 robot). These arms are usually used for recognizing clothes and then folding 
them or putting an item on the arm or on the head of a person.

Methods: This work provides a comprehensive review of the most relevant attempts/works of robotic dressing 
assistance with a focus on the control methodology used for dressing tasks. Three main areas of control methods 
for dressing tasks are proposed: Supervised Learning (SL), Learning from Demonstration (LfD), and Reinforcement 
Learning (RL). There are also other methods that cannot be classified into these three areas and hence they have been 
placed in the other methods section. This research was conducted within three databases: Scopus, Web of Science, 
and Google Scholar. Accurate exclusion criteria were applied to screen the 2594 articles found (at the end 39 articles 
were selected). For each work, an evaluation of the model is made.

Conclusion: Current research in cloth manipulation and dressing assistance focuses on learning-based robot con-
trol approach. Inferring the cloth state is integral to learning the manipulation and current research uses principles 
of Computer Vision to address the issue. This makes the larger problem of control robot based on learning data-
intensive; therefore, a pressing need for standardized datasets representing different cloth shapes, types, materials, 
and human demonstrations (for LfD) exists. Simultaneously, efficient simulation capabilities, which closely model the 
deformation of clothes, are required to bridge the reality gap between the real-world and virtual environments for 
deploying the RL trial and error paradigm. Such powerful simulators are also vital to collect valuable data to train SL 
and LfD algorithms that will help reduce human workload.
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Introduction
Over the latest years, there has been an increasing inter-
est in Human Robot Interaction (HRI) due to the increas-
ing usage of robots not only in industries, but in other 
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areas such as schools [1], homes [2], hospitals [3], and 
rehabilitation centres [4]. Service robotics is one such 
area of robotics where robots have shown high promise 
in working near humans. Intelligent robotic agents have 
been deployed in hospitals [5], in domestic environments 
[6], in retirement houses [7]. The presence of a robot, in 
fact, is a useful support during the management of daily 
activities [8, 9], the promotion of social inclusion [10], 
and the suggestion of healthy activities [11, 12]. An easy 
and continuous connection with other people (i.e. rela-
tives, friends or doctors), could promote social inclusion 
of people with disabilities or elderly people and increase 
the quality of their life [13]. Consequently, in the future, 
robots will concretely share environments with human 
beings to actively collaborate with them in specific daily 
tasks.

One such daily task is the handling of clothes, rang-
ing from washing them to pressing and folding them, or 
to placing them at their designated places such as cup-
boards and shelves. Getting dressed up is another daily 
task involving the handling of clothes. While accomplish-
ing these tasks may seem to be an effortless task for the 
young and able-bodied, it is undoubtedly a cumbersome 
activity for the elderly and the disabled and thus demands 
assistance. The increased life expectancy, owing to the 
availability of better healthcare facilities, coupled with 
falling fertility levels [14] has only added to the already 
ageing population. This has directly resulted in a short-
age of caregivers and therapists [15]. This shortage has 
prompted researchers in the field of robotics to explore 
new avenues and ways of letting robots take over, fully 
or partially, some of the assistive tasks involving cloth 
manipulation.

These manipulation tasks, as trivial as they may seem 
for humans, are extremely challenging for robots to 
accomplish. These challenges stem from the intrinsic 
property of clothes being deformable which allows them 
to, in theory, assume an infinite number of states each 
varying in appearance. The challenge is aggravated by the 
unpredictability of the outcome of a specific action on a 
piece of cloth. Thus, tracking the cloth state becomes an 
expensive operation once a manipulation action is exe-
cuted. On top of that, effective trajectory planning, and 
control strategies are needed to execute such manipula-
tion in a closed loop which remains a challenge too. In 
fact, an intelligent robotic agent requires a perfect syn-
ergy between the state perception and control execution 
to ensure successful completion.

While the state estimation problem has been thor-
oughly studied over the recent years, there still exists 
a gap in identifying ideal closed loop control strate-
gies for different cloth manipulation scenarios. Ear-
lier work on state perception started off by employing 

sophisticated motion detection systems which soon 
gave way to the use of inexpensive depth cameras and 
principles of computer vision to infer the cloth state. 
Many of the works also attempted to model the defor-
mation of clothes to predict their future state. A com-
prehensive review outlining these methods was carried 
out by [16]. There has been works aimed at modelling 
the manipulator movements to achieve cloth manipu-
lation tasks such as folding or assisted dressing, but 
they have proved to be insufficient in adapting to the 
complex nature of movements required mainly due to 
their limited generalization abilities and higher compu-
tations costs for working in real-time scenarios. Con-
sequently, researchers have turned to make the robots 
learn these movements as opposed to modelling them.

Some notable works have employed the Reinforce-
ment Learning paradigm to make robots learn the 
required trajectories based on trial and error, interact-
ing with the environment (clothes) while others have 
tried to exploit human demonstrations in a Learn-
ing from Demonstration paradigm to impart human 
knowledge to robotic agents. There exists, however, 
a pressing need to analyse where the field currently 
stands. Concretely, the following questions need to be 
addressed:

1) What is the current state of the art for learning based 
approaches in cloth manipulation?

2) How effective are these approaches in overcom-
ing the limitations of traditional model-based 
approaches?

3) What are the current challenges and future direc-
tions of research in this area?

To answer these questions, we have carried out this 
comprehensive review. Our work analyses the learning-
based strategies, keeping in mind the above-mentioned 
questions, and groups them as follows:

• Supervised learning (SL): is the task of learning a 
function that maps an input to an output based on 
example input–output pairs [17, 18].

• Learning from demonstration (LfD): is to transfer 
new skills to a machine based on human demon-
strations [19, 20].

• Reinforcement learning (RL): is an area of machine 
learning concerned with how software agents ought 
to take actions in an environment so as to maximize 
some notion of cumulative reward. Its focus is find-
ing a balance between exploration (of uncharted 
territory) and exploitation (of current knowledge) 
[21, 22].
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The rest of the article is organized as follows: in Sect. 2, 
the research methodology for the comprehensive review 
is explained. In Sects. 3 and 4 the results and the discus-
sions regarding the papers are shown. In Sect. 5, a sum-
mary of the review and its conclusions are presented.

Methodology: search strategy and selection 
criteria
This paper reviews empirical studies published between 
2009 and 2019 since most of the advances in this area 
have occurred within that timeframe. A bibliography was 
developed upon searches in Scopus, Web of Science, and 
Google Scholar electronic databases.

The searched terms and the combinations used are: 
{dress AND robot} OR {garment AND robot} OR {dress 
AND manipulation} OR {garment AND manipulation} 
OR {dress AND grasping} OR {garment AND grasping} 
AND D.

As concerns Google Scholar, we took into considera-
tion the first ten pages of the electronic database. Ref-
erence lists of included articles and significant review 
papers were examined by authors of the review to include 
other relevant studies. After the deletion of duplicates 
and papers out of context (i.e. papers not related to 
robots), we identified articles deserving a full review. 
Additionally, other articles were excluded (not written in 
English for e.g.) and a total of 76 works was selected at 
this stage. Then, a full-text assessment was carried, and 
the final list of papers includes 39 studies, since papers 
not related to control strategies were discarded; in the 
following figure (Fig. 1) the selection process is shown:

Results
Application overview
The interest toward service robots which are involved 
in dressing task has grown and we decided to collect the 
papers concerning dressing dividing them according to 
the task the robot is doing. Particularly, out of the fully 
selected papers, 8 papers (20.51%) were published before 
2015 and 31 papers (79.49%) were published within the 
past five years (Table 1).

In Fig.  2, the robot assisted dressing process is 
described. The first step is the cloth detection, followed 
by cloth classification and manipulation planning. The 
human position is then tracked to avoid the robot hurt-
ing the patient during the dressing task. Finally, different 
tasks accomplished by the robot are described in green, 

D ∈ ReinforcemenLearning ,

Learningbydemonstration,

Supervisedlearning

while the ones that should be investigated in the future 
are crossed in red. The tasks accomplished in several.

papers by robots are putting a t-shirt or a jacket on the 
arm of the user, putting a t-shirt on the head of a person, 
putting a shoe on the feet of the user, or dressing trou-
sers. The tasks that should be accomplished in the future 
are, for example, folding a complex shape or ironing a 
garment.

Cloth folding/untangling/coveraging
In this section, the papers concerning cloth folding, 
untangling or coveraging are evaluated and divided into 
subsections according to the control approach applied.

Supervised learning
In SL, each example is a pair consisting of an input 
object (typically a vector) and a desired output value 
(also called the supervisory signal). An SL algorithm 
analyses the training data and produces an inferred func-
tion, which can be used for mapping new examples [17]. 
Bersch et al. [24] used a DL approach with a PR2 robot 
for cloth manipulation and specifically for laundry fold-
ing. The quality of each grasp pose was evaluated using 
a function that calculates a score based on a set of geo-
metric features and the score function was automatically 
trained using an SVM. Other strategies belonging to SL 
were the ones developed by Lui al. [25] that used a learn-
ing algorithm based on max-margin learning to manipu-
late deformable objects such as ropes with a PR2. Starting 
with a point-cloud obtained from an RGB-D camera, the 
authors designed appropriate features that their learn-
ing algorithm uses to first infer the rope’s knot structure 

Fig. 1 Selection process of relevant papers
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and then chooses an appropriate manipulation action to 
untangle the knots in the ropes. Concerning humanoid 
robots, Yang et  al. [23] also used DL to let a humanoid 
robot achieve folding task skills. The proposed approach 
was a real-time user interface with a monitor and pro-
vided a first-person perspective using a head-mounted 
display. Through this interface, teleoperation was used 
for collecting task operating data, especially for tasks that 
are difficult to be applied with a conventional method. 

A DL model was also utilized in the proposed approach. 
A deep convolutional autoencoder extracted image fea-
tures and reconstructed images, and a fully connected 
deep time delay neural network learnt the dynamics of a 
robot task process from the extracted image features and 
motion angle signals (Fig. 3).

Tanaka et al. [14] used, a particular NN called Encode-
Manipulate-Decode Network (EMD Net) for cloth fold-
ing. This EMD Net is essentially a 3D convolutional 

Fig. 2 Robot assisted dressing process
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auto-encoder (providing the encoder and decoder mod-
ules), with a fully connected network (the manipulation 
module) inserted at the bottleneck layer.

Furthermore, in Hu et al. [26], limitation of movements 
of the user (modelled with the Gaussian Process Latent 
Variable Model) were studied and related to the online 
update of the dressing trajectory. The authors validated 
their idea by letting the robot fold towels.

A different approach was used by Jia et  al. [27]. The 
authors used a random forest approach. They used imi-
tation data consisting of visual features and control sig-
nals to learn a random forest controller that maps the 
observed visual features from an RGB-D camera to opti-
mal control signals of a robotic manipulator to manipu-
late clothes. The controller parameters are learnt in two 
steps: online dataset sampling and controller optimiza-
tion. The dataset is generated from an expert (a ground-
truth hard coded control algorithm in their case but can 
also be a human) performing the manipulation task and 
RGB-D images from a camera collected which are then 
transformed into a low dimensional feature space by 
computing HOW features [27]. The random forest imi-
tation learning controller parameters are learnt in an 
online fashion where a set of cloth simulation trajecto-
ries are first generated. During each time step of these 
trajectories, they query their expert for an optimal con-
trol action. This action is combined with the action pro-
posed by the random forest controller and fed into the 
simulator to generate a new observation. This process is 
repeated until the imitation learning has converged to an 
optimal solution. The authors validated their approach by 
folding towels.

Finally, Corona et  al. [28] used a hierarchy of three 
CNNs with different levels of specialization to grasp a 
garment and fold it using a Wam Robot. First, one robot 
arm grasps a garment from any point and shows it to an 
RGB-D camera and the cloth is recognized using the first 
CNN. Then, the visibility and locations of two reference 
grasping points are identified using the second CNN. 
Next, they located the second point of grasping with a 
third, more specialized, CNN.

Learning from demonstration
Learning from demonstration is conceived to provide 
and transfer assistive skills from non-expert users to the 
robot. It can be achieved using a kinaesthetic teaching or 
motion capture system, that demonstrations of the task 
executed in several situations can be used to adapt new 
situations rapidly. For these reasons, LfD is widely used 
for robotic manipulation tasks such as assistive dressing, 
towels and ropes folding.

Sannapaneni et  al. [29] proposed an algorithm that 
folds cloth using amrita dual anthropomorphic manipu-
lator (ADAM). Cloth coordinates (composed of four 
points) are extracted using depth images and are used to 
classify the cloth shape as a trouser and t-shirt. The main 
algorithm is to use marker coordinates along with cloth 
dimension and type stored. The marker is composed of 
four picks and place points, and then it is applied for 
folding the cloth by simple geometry calculation. It is 
implemented for cloth folding, but the limitation of this 
proposed LfD algorithm can only be used for a specific 
shape of robotic clothing assistance. To develop more 
complex assistive dressing algorithms, well-known LfD 
algorithms, which represent Dynamic Movement Primi-
tives (DMP) and hidden Markov model (HMM) with a 
combination of the traditional methods, are applied.

Reinforcement learning
Balaguer et  al. in  [30] and in [31] were one of the first 
groups of researchers to formulate the cloth assistance 
problems as an RL problem. They combined imita-
tion and RL to learn a control policy for two independ-
ent manipulators, working collaboratively, to achieve a 
towel folding task. Imitation training data was acquired 
by motion capture system detecting tracking the reflec-
tive markers placed on the towel and a human perform-
ing momentum folds—the kind of fold where the force 
applied to grasping points on the towel is used to give 
momentum to the towel and lay half of it flat on the table. 
Rewards were computed as the exponential function of 
the negative smallest error between an observation and 

Fig. 3 a Robot folding cloths using a SL strategy [23]
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training samples. This error was calculated by the Itera-
tive Closest Point ICP (algorithm). PoWER [32], which 
was a state-of-art algorithm RL algorithm,  was used to 
learn a policy based on the human samples.

Yaqiang et al. [33] also targeted to accomplish a t-shirt 
folding task while it is surmounted on the chest of a 
human being. They teach the general motion expected of 
a dual-arm robot by a teaching approach. A human dem-
onstration of the expected folding behaviour is captured 
by a 3D range image capture system. Coloured markers 
placed on the shirt help recognize the state and shape 
of the cloth. Since the final state of the cloth is explicitly 
defined by the marker positions, the problem is reduced 
to a search problem and so the PILCO algorithm [34] is 
used for policy search.

Finally, Wu et al. [35] proposed a conditional learning 
approach for learning to fold deformable objects, improv-
ing sample complexity.

Putting a cloth on user’s arm
In this part, the papers concerning wearing a cloth on 
the user’s arm are evaluated and divided into subsections 
according to the control strategy applied.

Supervised learning
Zhang et al. [36] proposed the offline learning of a cloth 
dynamics model by incorporating reliable motion cap-
ture data and applied this model for the online tracking 
of human-cloth relationship using a depth sensor. The 
authors tested the approach using a robot that wears 
a cloth on the user’s arm. Furthermore, Chance et  al. 
[37] used the Support Vector Machine (SVM) to dress 
a jacket onto a mannequin or human participants, con-
sidering several combinations of user pose and clothing 
type. In detail, their SVM method involved searching for 
an optimal hyperplane that separates the data by class 
and is optimized by finding the largest margin at the 
boundaries.

Moreover, Stria et al. [38] used the SVM for the classi-
fication of garment categories and focuses particularly on 
putting a shirt on a user’s arm.

Erickson et  al. [39], used a fully connected NN that 
estimated the local pose of a human limb in real time. 
A key benefit of this sensing method is that it can sense 
the limb through opaque materials, including fabrics and 
wet cloth creating a robot that can assist a person dur-
ing dressing and bathing tasks. The authors tested their 
approach by putting a hospital gown on the user’s arm.

Finally, Gao et al. [40] used a random forest approach. 
They presented an end-to-end approach to build user 
specific models for home-environment humanoid robots 
to provide personalised dressing assistance (a robot puts 
a cloth on the user’s arm). By mounting a depth camera 

on top of the head of a Baxter humanoid robot, they 
recognised the upper body pose of users from a single 
depth image using randomised decision forests. From 
sequences of upper-body movements, the movement 
space of each upper-body joint is modelled as a mixture 
of Gaussian learned by an expectation–maximization 
(EM) algorithm. The experimental results showed that 
their method of modelling upper-body joint movement 
of users, combined with real-time human upper body 
pose recognition enables a humanoid robot to provide 
personalised dressing assistance and has potential use 
in rehabilitation robotics and long-term human–robot 
interactions.

Learning from demonstration
Pignat et  al. [41] proposed a different approach that 
encodes a joint distribution in a hidden semi-Markov 
model (HSMM) for adaptive dressing assistance. The 
parameters of this model, which represents the sequence 
of complex behaviours, were learned from human dem-
onstration data using an EM algorithm. This method pro-
vided a solution for movement primitives (MPs), which 
are usually encoding only motor commands. Also, it 
increased the performance of robot behaviour that could 
be controlled both time-dependently and independently. 
Also, another HMM [42] method was used to classify 
the time series of forces robot-assisted dressing [43]. To 
classify the force, HMM was used for pattern recogni-
tion of the forces. Mainly raw forces were measured and 
the movement of the end-effector in the x and z direc-
tion was provided as the dataset from 12 human par-
ticipants. The performance of the HMMs was validated 
using univariate and bivariate models with force in the 
x-direction. The limitation of these methods (DMP and 
HMM) was that the workspace where the robot can 
move for assisting dressing was inadequate compared to 
human body movement. In addition, demonstrations for 
a specific task like the one-to-one relationship had the 
restriction that motor commands were always linked to 
a unique perception distribution. To overcome this prob-
lem, the combination of each demonstration and point 
cloud scene was developed for folding towel manipula-
tion. First, the method recorded the demonstrated pose 
and force trajectories. During the demonstration, the 
authors found that five demonstrations were sufficient 
for achieving generalization. Also, the point cloud of the 
scene was retrieved using a Kinect depth sensor at the 
beginning of each demonstration. The thin-plate spline 
robust point matching (TPS-RPM) algorithm [56] was 
used to match from each of the demonstrations to the 
current point cloud scene. After the demonstration, a 
mean trajectory and a sequence of time-varying feedback 
gains were extracted, and the gains were learned using 
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a joint Gaussian distribution. This method is beneficial 
for dressing from small demonstrations, and point cloud 
scene well recognizes the new situation, but it still needs 
to obtain optimal gains to optimize the task.

Kapusta et  al. [44] provided evidence for the value 
of data-driven haptic perception for robot-assisted 
dressing through a carefully controlled experiment. To 
design an informative and replicable experiment, they 
deliberately focused on a representative sub-task of 
dressing with a commonly used article of clothing, and 
they tested their approach by wearing a hospital gown 
on the user’s arm.

Reinforcement learning
Clegg et  al. [45] approached the dressing problem dif-
ferently by viewing the long horizon task of dressing as 
a sequence of smaller sub tasks. They have argued that 
learning to dress is challenging because humans rely 
heavily on haptic information and the task itself is a 
prolonged sequence of motions which are very costly to 
learn together especially in the right order. They have 
thus proposed to learn a unique policy for each sub-
task and have introduced a policy sequencing algorithm 
that matches the output state distribution of one sub-
task to the input state distribution of the other subtask 
while the transitions between the different subtasks 
are managed by a state machine. To deal with a high 
dimensional observation space typically associated with 
dressing tasks, they defined their observation space as a 
163-dimensional vector which includes information on 
the human’s joint angles, garment feature (e.g. a sleeve 
opening) locations, haptics (contact forces between 
human and cloth), surface information (information 
on the inner and outer surfaces of the garment) and a 
task vector. The reward function is then defined as the 
weighted sum of the progress reward (extent to which 
a limb is dressed), deformation penalty (penalization of 
undesired cloth deformation), geodesic reward, reward 
for moving the end effector in the direction of the task 
vector and another reward that attracts the character to 
a target position. With these definitions of the reward 
and state which are queried from a dressing simula-
tion, Trust Region Policy Optimization algorithm 
(TRPO) [46] was used to update the policy parameters 
represented by a neural network. They validated their 
approach by putting a hospital gown on a virtual user. 
The same authors presented a DRL based approach for 
modelling collaborative strategies for robot-assisted 
dressing tasks in simulation. Their approach applied co-
optimization to enable distinct robot and human poli-
cies to explore the space of joint solutions to maximize 
a shared reward. In addition, they presented a strategy 

for modelling impairments in human capability. They 
demonstrated that their approach enables a robot, una-
ware of the exact capability of the human, to assist with 
dressing tasks.

Other methods
Chance et al. [47] created strategies for an assistive robot 
to support dressing using a compliant robotic arm on a 
mannequin. A tracking system is used to find the arm 
position of the mannequin and it supports trajectory 
planning using waypoints. Torque feedback and sensor 
tag data provide failure detection.  Also, speech com-
mands are allowed for correction of detected dressing 
errors successfully. The authors tested on ten different 
poses of the mannequin with the proposed method, and 
it showed that assistive dressing tasks could be devel-
oped without complex learning algorithms. Further, the 
method investigated has the advantage of using a small 
number of low-cost sensors which can be used to sense 
unplanned movement in smooth trajectories. The prob-
lem of this strategy was to not have force feedback from 
the mannequin that is important to know (people could 
be hurt by the robot). They validated their approach by 
putting a t-shirt and a jumper on the user’s arm.

Erickson et  al. [48] showed how task-specific LSTMs 
can estimate force magnitudes along a human limb for 
two simulated dressing tasks. At each time step their 
LSTM networks took a 9-dimensional input vector con-
sisting of the force and torque applied to the end effector 
by the garment and the velocity of the end effector. The 
networks then output a force map at each time step con-
sisting of hundreds of inferred force magnitudes across 
the person’s body. Their work was tested on a simulated 
robot that puts a shirt on a virtual user’s arm.

Putting a cloth on user’s head
In this section, the papers concerning wearing a cloth on 
the user’s head are evaluated and divided into subsec-
tions according to the control strategy applied.

Supervised learning
Koganti et  al. [49] proposed a data-efficient representa-
tion to encode task-specific motor-skills of the robot 
using Bayesian non-parametric latent variable models 
to learn a dynamics model of the human-cloth relation-
ship and use this model as a prior for robust tracking 
in real-time. They reduced their policy search space by 
first learning a low dimensional latent space using the 
BGPLVM [44]. A dataset of successful clothing assis-
tance trajectories was then used to train a latent space 
that encodes the motor skills. Each of the trajectories 
were then transformed into a sequence of points in the 
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latent space forming latent space trajectories followed 
by searching for policy using the PoWER algorithm [32]. 
The authors validated their idea by wearing a t-shirt on 
a person. The same authors learnt the underlying cloth 
dynamics using the shared Gaussian Process Latent Vari-
able Model and by incorporating accurate state informa-
tion obtained from the motion capture system into the 
dynamics model. Shared GP-LVM provides a probabilis-
tic framework to infer the accurate cloth state from the 
noisy depth sensor readings. The experimental results 
showed that shared GP-LVM was able to learn reliable 
motion models of the T-shirt state for robotic clothing 
assistance tasks. They also demonstrated three key fac-
tors that contribute to the performance of the trained 
dynamics model. The advantage of using GP-LVM is that 
a corresponding latent space manifold can be learned for 
any representation used in the observation spaces.

Saxena et al. [50] also used SL for grasping point detec-
tion and for garment recognition; the challenge of their 
work was to use the Kinect camera near the garment to 
try the algorithm with an occluded vision of the object. 
The authors tested their approach by putting a t-shirt on 
a person.

Learning from demonstration
Joshi et  al. [51] (Fig.  4) presented a framework for 
robotic clothing assistance by DMP on a Baxter robot. 
The authors divided the dressing task into three phases 
(reaching, arm dressing, and body dressing) and each 
phase was applied for different skills. The reaching phase 
was to move the robot arm in a specific location without 
collision, thus it can be achieved through point-to-point 
trajectory while the arm dressing phase was to reach 
the ends at the elbow position. To make the robotic arm 
reaching the position DMP, which can be applied for a 
global trajectory modification, was used. DMP param-
eters can be acquired from the kinaesthetic demonstra-
tion, and support generating a trajectory globally using 
the start and goal parameters of DMP. Compared to 

reaching the elbow position, generating a trajectory to 
the torso position is more complicated, thus the authors 
introduced the Bayesian Gaussian Process Latent Vari-
able Model (BGPLVM) as the body dressing phase. They 
applied BGPLVM to encode complicated motor-skills to 
generalize trajectory in latent space and modify the tra-
jectory locally. The authors validated their idea using a 
manipulator that puts a t-shirt on a person.

Reinforcement learning
Koganti et al. [52] used a depth sensor to extract and fil-
ter a point cloud of the t-shirt collar and sleeve which in 
turn were detected by a colour extraction method. Once 
retrieved, both the point clouds were approximated with 
an ellipse followed by computing the same topological 
relationship but this time, in real-time. They also modi-
fied the reward function to now calculate the Mahalano-
bois distance between the current and the target states to 
account for the different scales of different state variables. 
The authors tested their model using a robot that puts 
a t-shirt on the head of the person. Twardon et al. [53], 
instead, made a dual-arm robot, attached with anthropo-
morphic hands, and learned to put a knit cap on a styro-
foam head. They modelled the head as an ellipsoid using 
point cloud data and constructed a head-centric policy 
space where the policy search takes place. The policy 
was then defined in this space as the parameterized end-
effector trajectories (parameterized as B-splines) from 
the back of the head (back pole) to its front (front pole). 
They then defined an objective function which gives the 
robot a fixed reward for successful task completion while 
supporting the robot to find a trade-off between mini-
mizing the risk of early failure and establishing contact 
between the fabric and the head. All this setting allowed 
the authors to use a gradient-free direct policy search 
approach to find the optimal policy by minimizing the 
objective function Active-CMA-ES algorithm [80].

Furthermore, Tamei et al. [54] presented a novel learn-
ing system for an anthropomorphic dual-arm robot to 

Fig. 4 LfD example where a Baxter robot is dressing a man with a T-shirt [51]
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perform the clothing assistance task. The keys of their 
system were to apply a reinforcement learning method 
for coping with the posture variation of the assisted per-
son, and to define a low-dimensional state representation 
utilizing the topological relationship between the assisted 
person and the non-rigid material. With their developed 
experimental system for T-shirt clothing assistance, 
including an anthropomorphic dual-arm robot and a soft 
mannequin, they demonstrated the robot quickly learns 
to modify its arm motion to put the mannequin’s head 
into a T-shirt.

Additionally, Matsubara et  al. [55] and Shinoara et  al. 
[56] proposed a novel learning framework for learning 
motor skills for interacting with non-rigid materials by 
RL. Their learning framework focuses on the topological 
relationship between the configuration of the robot and 
the non-rigid material. They constructed an experimental 
setting with an anthropomorphic dual-arm robot and a 
tailor-made T-shirt for the robot. They both applied the 
method to the robot to perform the motor task of wear-
ing a T-shirt.

Other methods
Klee et al. [57] focused on the motion interaction between 
the robot and the person. The authors found a solution 
involving manipulator motions and user repositioning 
requests. Specifically, the solution allows the robot and 
user to take turns moving in the same space and is cogni-
zant of the user’s limitations. To accomplish this, a vision 
module monitors the human’s motion, determines if 
they are following the repositioning requests, and infers 
mobility limitations when they cannot. The learned con-
straints were used during future dressing episodes to per-
sonalize the repositioning requests. Their contributions 
included a turn-taking approach to human–robot coor-
dination for the dressing problem and a vision module 
capable of learning user limitations. They validated their 
approach using a robot that puts a hat on the user’s head.

Putting a shoe on user feet
In this section, the papers concerning wearing a shoe on 
the user’s feet are evaluated and divided into subsections 
according to the control strategy applied.

Learning from demonstration
Canal et al. [58] defined a method to guide a planner to 
choose the preferred actions by the user. The user model 
was included in the planning domain as predicates, and 
the actions’ associated costs depend on them, the costli-
est actions being those that do not satisfy the user model. 
Moreover, they used a stochastic planner with NID rules 
that contemplate the possibility of different action out-
comes and failures. The initial user model was inferred 

by asking two simple questions to the user, related to his/
her confidence and comfortability. A Fuzzy Inference 
System (FIS) was then used to translate the answers to 
planning predicates. To make the planner adapt to user 
behaviour change and to cope with wrongly inferred user 
models, each rule’s probabilities and costs were updated. 
First, an initial refinement was performed to favour the 
inferred user model. Then, after each task completion, 
the satisfaction of the user was used to refine each rule 
cost, and the outcome of each action was used to refine 
the success’ probabilities. This defines a separation 
between the user model and the action outcomes, as the 
user delight should not be measured only by the success 
of the actions, which may fail due to events unrelated to 
the users’ preferences. Moreover, the system was able 
to plan with task related actions as well as with interac-
tion actions, asking the user to move when needed and 
informing them regarding the next action when this 
increased the success rate of the action. They showed 
how the system was able to adapt to user behaviour 
changes, as well as how the use of feedback to update the 
action costs with the decreasing m-estimate produced a 
more stable behaviour and faster convergence to the pre-
ferred solution.

Putting an item on user leg
In this part, the papers concerning wearing a cloth on 
the user’s leg are evaluated and divided into subsections 
according to the control strategy applied.

Other method
Yamazaki et  al. [59] focused on a different task: the 
actions by which the robot can pull a pair of trousers 
along the subject’s legs. These actions are frequently 
demanded by humans requiring dressing assistance and 
which are potentially automatable. To overcome this 
problem the authors implemented the dressing proce-
dure using a life-sized humanoid robot. Estimating the 
shape of the legs from images captured by a three-dimen-
sional range camera, they proposed a method of modi-
fying the trajectory from the basic one estimated from 
statistical human-body data.

Multiple tasks
In this section, the papers multiple tasks are evaluated 
and divided into subsections according to the control 
strategy applied.

Learning from demonstration
Lee et  al. [5] presented an approach for generaliz-
ing force-based demonstrations of deformable object 
manipulation skills to novel situations. Their method 
uses non-linear geometric warping based on point cloud 
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registration to adapt the demonstrations to a novel test 
scene, and then learns appropriate feedback gains to 
trade off position and force goals in a manner consistent 
with the data, providing for variable impedance control. 
Their results showed that including forces in the manipu-
lation tasks allows for significantly greater generalization 
than purely kinematic execution: knots could be tight-
ened more tightly in ropes with greater length variation 
and could be tied to a pipe without slipping off, towels of 
varying geometries could be stretched and laid flat, and 
whiteboards could be erased effectively. They chose their 
tasks to include both phases that were determined pri-
marily by pose, such as positioning the gripper to grasp 
the rope, and phases that were primarily force-driven, 
such as tightening the knot. Performing such tasks kin-
ematically is unreliable, because some parts are defined 
primarily by the force exerted on the object, while others 
require precise positioning. Automatically determining 
whether force or pose is important at each phase is essen-
tial for effectively generalizing demonstrations of such 
tasks. The authors validated their work using a robot that 
tied a knot, folded a towel, erased a whiteboard, and tied 
a rope to a pipe.

Reinforcement learning
Tsurumine et al. [60] (see Fig. 5a, b) proposed two DRL 
algorithms: deep policy network and duelling deep policy 
network structure which combine the nature of smooth 
policy update with the capability of automatic feature 
extraction in deep neural networks to enhance the sam-
ple efficiency and learning stability with fewer samples. 
To exploit the nature of smooth policy update, they 
used dynamic policy programming [61] which considers 

the Kullback–Leibler divergence between current pol-
icy π and baseline policy π̄ into the reward function to 
minimize the difference between the current and base-
line policy while maximizing the expected reward. A 
DDQN inspired novel architecture was also presented 
that learned separate value and advantage functions and 
then used human demonstrations to drastically reduce 
the exploration space for their RL agent. Their state was 
defined as raw RGB images which are then mapped to 
optimal actions by the neural network. Results reported, 
indicated a stable and sample efficient learning for cloth 
manipulation tasks such as folding a t-shirt and flipping a 
handkerchief when compared to deep Q-learning (DQN) 
[62] algorithm while simultaneously earning higher total 
reward. The robot in this approach tied a knot, folded a 
towel, erased a whiteboard, and tied a rope to a pipe.

Matas et  al. [63] instead, proposed a task agnostic 
algorithm based on Deep RL which bypasses the need 
to explicitly model cloth behaviour and does not require 
reward shaping to converge. The agent was able to learn 3 
long horizon tasks: folding a towel to a tape mark, diago-
nal folding of face towel and draping a small towel over 
a hanger. Training was seeded with 20 demonstrations 
and happened entirely in simulation with a couple of 
adaptations to account for imperfections in experimental 
deformable body support, and with domain randomiza-
tion to enable easy transfer of the policy. The learning 
algorithm incorporated 9 improvements proposed in the 
recent literature and they presented ablation studies to 
understand the role of these improvements. The robot in 
this approach folded up a towel up to a mark, folded a 
face towel diagonally, and draped a piece of cloth over a 
hanger.

Fig. 5 a RL example of a robot that is folding a T-shirt [57] and (b) RL example of network implementation with folding steps of the T-shirt [57]
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Discussion
As the description of the result section, the three learn-
ing-based control approaches have lots of advantages 
for cloth manipulation and dressing assistance. How-
ever, it still has disadvantages that needs to improve the 
approaches, so the pros and cons of these approaches are 
described in Table 2. We also analyse the state of the art 
that provides a list of hints regarding control approaches 
during dressing tasks. Future research efforts should 
lead to overcoming the limitations of the existing works, 
as summarized in Table 3. It identifies several areas that 
should be analysed in future works such as dataset, mul-
tisensory approach, perception, manipulation, simu-
lation, and experimental phases. Moreover, legal, and 
social aspects should be taken into consideration to build 
an efficient behavioural model for future robots.

On the other hand, it should be noted that research 
and development in this field is following a positive trend 
with many examples of concrete experimentation with 
code availability for users, which can be found [30, 44, 
56]. This is very useful for the reader if they want to repli-
cate and develop new code.

Dataset
A crucial aspect in dressing a person using a robot or 
more technically speaking, using machine learning tech-
niques, is the acquisition of the dataset of clothes and 
this situation brings to a limitation of the dataset itself. 
In the state of the art, we can find several apparel data-
sets such as the DeepFashion dataset or Fashion-MNIST 
dataset; the issue is that those datasets are very small 
compared to other existing datasets not concerning fash-
ion, such as the MNIST dataset. Furthermore, in [51], the 
authors discussed that their approach (dressing a sleeve-
less t-shirt) should be extended to other clothing articles 
such as pants, jackets and so on, for each type of clothing 

article. The same arguments were discussed in [28] where 
the authors explained that in their future work, they 
would design a system that can be easily scaled to work 
with more types of garments with few modifications 
to expand their dataset. The main problem of having a 
small dataset is that this brings to a wrong classification 
of clothes when a new item is used in the experimental 
phase because the robot is not able to recognize it.

Sensor technology
Sensor technology plays an important role in the inter-
action between humans and the robot and as concerns 
fashion, many sensors can be found and several of them 
are being employed to infer the cloth state in cloth 
manipulation and assisted dressing tasks. In the field ana-
lysed, sensor information is often used separately while it 
is important to have a multisensory approach to improve 
the accuracy of the system. Zhang et al.[36], for example, 
would aim in their future work to combine multi-modal 
information, including gripper positions, force informa-
tion and depth images, into a probabilistic framework 
to obtain real-time estimate of the arm pose during the 
dressing process.

Perception
A second ability that should be deeply analysed is the 
area of perception. At present, perception is mostly rely-
ing on vision for the detection of clothes, and this is a 
very limited view for a robot. There are few works such 
as Yuan et  al.[73], where information from tactile sen-
sors is used for perception. Stria et  al. [38] underlined 
the importance of not relying only on vision in the field 
of perception and they stated that they have future plans 
to develop advanced models of clothing taking into 
account their physical properties when unfolding a towel. 
They also pointed out that they plan to detect and model 

Table 2 Pros and cons of SL, LfD, and RL

Pros Cons

SL 1. This approach is very accurate for seen clothes recognition using the
training dataset [50]
2. Given data and labels is very helpful for classification and detecting
clothes grasping points for the cloth application [64]

1. Without prior knowledge about specific garments, clothes classifica-
tion and recognition is inaccurate [64]
2. It is not easy to extend to complex cloth manipulation scenarios [65]

LfD 1. This approach can transfer the learned motion to unseen scenarios [4]
2. The demonstration provides a high-level plan that is used to execute 
low-level control for cloth manipulation [66]

1. This approach mostly focuses on a single task, which means it is dif-
ficult to learn to manipulate new objects [66]
2. After the demonstration, this approach is not easy to adapt different 
scales or shape of robotic clothing assistants.[67] [29]

RL 1. This approach makes it possible to accomplish complex clothing 
assistance tasks using appropriate reward functions [60]
2. It is the only way to collect data for interacting with the environment 
[68]

1. It is still challenging to find suitable reward functions for complex 
cloth manipulation without reward shaping [60]
2. This approach requires a lot of data which makes the computation 
time consuming which, in turn, increases the difficulty to achieve the 
results [68]
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Table 3 Challenges and opportunity/Weaknesses

Type Keywords of barriers/limitations Challenges and opportunities/weaknesses

Dataset Dataset limitation
[52, 56, 65]

Large datasets with different categories of clothes 
should be created to avoid the dataset limitation. More 
information is given to networks, the easier is for them 
to produce good results

Sensor technology Deep studies on the integration of sensor technology
[20, 33, 56]

A multisensory approach should be used to acquire as 
much as information the robot needs to accomplish its 
task in real-time (not only use vision but also using force 
and tactile inputs)

Perception Relying only on vision for the detection of clothes
[20]

One possibility not to relay only vision is to take an 
active perception approach, e.g., turn the cloth over or 
introduce additional slack for perceiving it better. Moreo-
ver, tactile sensing could also help in better perception. 
This kind of approach is used only in few papers as [69] 
and should be developed more to achieve better results

No combination between optical flow with forces and 
3D information
[55]

Feature description combining optical flow with force 
data should be studied because significant relationships 
between force data and optical-flow data could improve 
the success rate and accuracy of failure detection and 
recovery

Manipulation Robots could learn to infer forces exerted on humans Robots could learn to infer the forces that people physi-
cally feel during robot- assisted dressing to have a more 
real dressing scenario

Occlusion of the cloth
[52]

To solve the issue of the occlusion of cloth, we could 
add additional views of it using a hand-mounted camera 
or putting more cameras around the grasping scenario

In many works the authors concentrate only on a 
single scenario
[34, 40]

Systems should not only perform upper or lower body 
tasks but should do both and their integration could 
bring balance into the controller. Moreover, our frame-
work could enable robotic assistance in other dressing 
tasks such as undressing the person

The object grasped is unknow by the robot
[30]

In principle, the limitation of not knowing the object 
grasped could be overcome simply by collecting data 
from many object manipulation scenarios, so as to learn 
a single model that generalizes effectively across objects. 
A more nuanced approach might involve correlating 
the behaviour of objects in the human demonstrations 
with other previously experienced manipulations, to put 
them into correspondence and infer the behaviour of an 
object for which prior experience is unavailable

Experimental and simulation phase A limitation of some studies is that a soft mannequin is 
used as a subject or simulating only the dressing task
[49, 56, 70, 71]

The robot should work with a real person so that 
researchers can have feedback from them about the 
force applied by the robot or other problems that can 
happen during the dressing task to overcome the limita-
tion of using the robot only in simulation

Neural Network limitations
[65]

Comparing neural networks to see the difference 
between them and find the better and fast approach to 
accomplish the task

Better planning algorithms
[25]

Algorithms that consider the limitations of the arms 
movements of a robot as well as uncertainty in percep-
tion would also improve the performance and the safety 
of the people that are working with a robot

Improves manipulators trajectories
[57, 72]

Improving manipulator trajectories should be studied in 
the future to make the robot more user friendly and to 
reduce the computation time

Autonomy of the robot
[57]

The robot should be as autonomous as possible to 
reduce the computation time. For example, when a 
robot finds a goal infeasible, it should not request the 
user to reposition his or herself but should recompute 
autonomously its trajectory
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special parts of clothing like buttons, pockets or collars 
which provide additional information about the garment 
configuration.

Furthermore, in [25], the garment taken by the robot 
is put in a specific position which represents a very lim-
ited scenario. The authors stated that active perception 
is needed for identifying rope’s knot structure, e.g., turn-
ing the rope over or introducing additional slack for per-
ceiving it better. Moreover, they pointed out that tactile 
sensing could also improve perception. Saxena et al. [50] 
proposed to add additional views of the cloth using a 
hand-mounted camera or putting more cameras around 
the grasping scenario to avoid occlusion and to have an 
improved representation of the item.

Manipulation
There are many issues to be solved concerning manipula-
tion. The main problem that can be found during dress-
ing tasks is clothing assistance that is developed only for 
specific scenarios.

Another important aspect is the number of experi-
ments and of people involved in the trials.

Tamei et al. [54] also underlined the importance of hav-
ing a validation of putting in a mannequin’s head a t-shirt 
with more participants. They stated that testing their 
method of dressing with different participants is impor-
tant to obtain more information about the experience of 
the person regarding the interaction between him/her 
and the robot tested to improve it.

Furthermore, another issue that should be considered, 
is to manipulate not only one object at a time, but instead 
collecting more clothes at the same time even if some 
parts of them are occluded [28]. Collecting more appar-
els, would speed up the process of the dressing assistance.

Manipulation in  situations of occlusion, is another 
problem that should be solved as stated in and in [36].

Another important issue is that some methods cannot 
learn to manipulate new objects exclusively by watch-
ing human demonstrations, since performing a manipu-
lation task requires a model that can effectively predict 
the motion of the object, and this model is learned from 
the robot’s own experience. Yang et  al. [23] underlined 
this concept stating that their future focus is to imple-
ment their model on unknown items and in a quick 
manner. This limitation could be overcome simply by col-
lecting data from many object manipulation scenarios.

Simulation and experimental phases
In the simulation phase, an issue that should be over-
come is the lack of support for deformable objects that 
most robotic simulators have. In literature there are some 
simulators like Gazebo, among the widely used simu-
lators, [74] cannot offer this specific, only Pybullet [75] 
implements some rudimentary and experimental func-
tionality for simulating deformable objects. Solving this 
problem would let the researchers create accurate models 
of deformable objects grasping that can be useful to suc-
ceed in the experimental phase. One problem is that in 
many real scenarios, the model of the robot is tested on a 
mannequin. Working with it represents a problem, since 
the researchers cannot have feedback from the manne-
quin about the intensity of the forces applied by the robot 
[54]. If the robot, instead, interacts with a person, it can 
receive all this kind of feedback. A second issue is related 
to the importance of having several scenarios for validat-
ing the behaviour of a robot [44]. During the experiments 
of this paper a specific scenario was an armrest sup-
ported the participant’s upper arm, and the participant’s 

Table 3 (continued)

Type Keywords of barriers/limitations Challenges and opportunities/weaknesses

Lack of support for deformable objects in most robotic 
simulators
[28]

Create accurate models of deformable object grasping, 
incorporate it into widely used simulators and release 
the environments to create a set of benchmark tasks for 
future research in the domain

Use of markers attached to clothes
[30, 33]

Rewards calculated based on markers attached to the 
clothes which is not a real-world scenario

Single scenario
[44, 58]

Having different scenarios could improve the quality of 
the robot because it could adapt it to several situations 
instead of having only a single scenario

Legal and safety aspects No rules can be found in the legal or safety fields of 
social robotics
[50]

The birth of a regulation for social robots could be an 
important step to overcome the problem that social 
robots can’t operate in environments with people with-
out a supervision of an operator
Moreover, the safety of user should be the foremost 
priority
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forearm was initially aligned to the robot’s motion. In 
other dressing tasks, body parts could have greater free-
dom to move with respect to the robot, resulting in more 
variability of the forces measured by the robot. Likewise, 
a robot might hold a garment in place while the person’s 
body moves, which might increase the variability of the 
forces measured by the robot [44]. Yang et  al. [23] also 
underlined the importance of having several scenarios 
stating that they expected that the accuracy and adapt-
ability for various environments and the robot’s task per-
forming speed should improve in the future.

Another important issue that emerges in [57], is the 
importance of the autonomy of the robot in terms of 
being controlled by humans. If a system is autono-
mous, the computation of time during tasks is reduced 
and the robot could achieve a better performance in 
dressing tasks.  Moreover, in two papers the impor-
tance of the number [54] and feedback of participants 
is pointed out to increase the accuracy of the model. 
Other elements that should be considered during the 
experimental phase are the following: trying not only 
a single network but using several of them, compar-
ing them and finding the one that boots the accuracy 
of the dressing task and having improved planning 
algorithm [20]. In the last case, algorithms that con-
sider the limitations of the arms of a robot as well as 
uncertainty in perception would also improve the per-
formance and the safety of the people who are work-
ing with a robot. Several works consider only a single 
dressing task, or a single object grasped, or specific 
configurations [55], and these limitations should be 
overcome in the future to have as many generic mod-
els as possible. Moreover, applying for such tasks as 
turning socks inside out, and applying bandages, [56] 
could be a new step in this field. Another issue is the 
conversion from mesh to voxel representations. For 
example, given a cloth folded neatly in half, it can be 
nearly impossible to distinguish on which side the fold 
is by looking at the voxel representation alone. They 
found that such ambiguity can be greatly reduced by 
adopting a coloured voxel representation that marks 
the cloth’s hems. However, in practical application this 
would require visual recognition of the hems in a pre-
processing step. Canal et al. [58] stated the importance 
of long-term adaptation of the system. The authors 
explained that in the future long-term adaptation 
should be analysed carefully, as well as the inclusion 
of more actions and preferences, with the possibility of 
automatically learning the actions along with the pref-
erences.4.6. Legal aspect and safety aspects.

At present, few rules can be found in the legal or 
safety fields of social robotics. In [76], expert opin-
ions are given from different international workshops 

exploring ethical, legal, and social (ELS) issues asso-
ciated with social robots, but many questions remain 
open. Several extensions to cope with the safety of 
patients must be made in several works such as [55] 
where it is pointed out that this topic should be ana-
lysed in depth. Finally, the birth of a regulation for 
social robots, like the one created for drones during 
the past years, could be an important step to have the 
possibility to use robots in crowded environments 
[77].

Conclusions
This paper focuses on the control approaches that ser-
vice robots use for dressing tasks. The current state-of-
the-art of existing systems used in this field is presented 
to identify the pros and cons of each work with the aim 
to provide recommendations for future improvements.

Several issues must be solved to improve the devel-
opment of robots for clothing assistance. First, there 
should be an increment of the size of the dataset to 
have a better training and to obtain better results. 
Concerning perception, most experiments focus on 
one or two specific skills and have been executed in 
pre-defined laboratory conditions. This is far from 
the human ability to approach and grasp items where 
needed, reverse inside-out sleeves or fold clothes [78]. 
Moreover, there is the need of high-resolution depth 
to solve to go towards more accurate wrinkle meas-
uring and state estimation, but processing times are 
still too long for real-time applications. Furthermore, 
future solutions should include active vision, with the 
help of a robot moving base, to obtain multiple views 
of the garment and generate a more robust prediction 
[79]. Another aspect that should be taken into consid-
eration in the future is using a multisensory approach 
to acquire as much as information the robot needs to 
accomplish its task in a fast way (not only use vision but 
also using force and tactile inputs).

Perceptual skills must gain in speed and accuracy and 
must be tightly coupled with manipulation to achieve 
active vision strategies to resolve uncertainties in an 
agile way.

Moreover, robots should have a multitasking strat-
egy to not only accomplish a single task but to be more 
useful in different tasks (dressing both lower and upper 
limbs). The researchers should improve networks limi-
tations, the autonomy of the robot, improve manipu-
lators trajectory, the lack of support for deformable 
objects in most of the robotic simulators, and should 
test the robot in different scenarios with different pop-
ulations, to receive feedbacks by the participants of 
an experiment. Manipulation of clothes should evolve 
to have algorithms that recognize unknown objects or 
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occluded objects, and more attention should be paid to 
the forces applied from robots to a patient.

Furthermore, legal or safety fields for social robotics 
should be studied in deep since it is still a new topic of 
research.

Additionally, the tasks of state estimation and track-
ing require further advances in versatility and uncer-
tainty handling to effectively mimicking human 
comprehension of cloth states and our intuitive discre-
tization of what is a continuum of deformed states [78].

To maintain the importance of each contribution, it is 
fundamental to include in a whole vision all the sugges-
tions provided by each work.

Finally, for what concerns the future direction of learn-
ing control strategies for dressing task it can be shown 
that Transformers [80, 81] could be used in the future 
for clothes classification tasks. Other models that could 
be applied in future works of RL, in the manipulation of 
clothes and dressing assistance, could be the one used in 
[82]. Then, for what concerns LfD in apparel manipula-
tion and assistance, [83] and [84] could be used in future 
works.

Although many improvements remain to be accom-
plished, the already satisfying results the authors have 
achieved are an optimum starting point to develop a bet-
ter solution using knowledge of human cognitive and 
psychological structures.
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