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Abstract 

Background: Falls in older adults are a critical public health problem. As a means to assess fall risks, free-living digital 
biomarkers (FLDBs), including spatiotemporal gait measures, drawn from wearable inertial measurement unit (IMU) 
data have been investigated to identify those at high risk. Although gait-related FLDBs can be impacted by intrinsic 
(e.g., gait impairment) and/or environmental (e.g., walking surfaces) factors, their respective impacts have not been 
differentiated by the majority of free-living fall risk assessment methods. This may lead to the ambiguous interpreta-
tion of the subsequent FLDBs, and therefore, less precise intervention strategies to prevent falls.

Methods: With the aim of improving the interpretability of gait-related FLDBs and investigating the impact of envi-
ronment on older adults’ gait, a vision-based framework was proposed to automatically detect the most common 
level walking surfaces. Using a belt-mounted camera and IMUs worn by fallers and non-fallers (mean age 73.6 yrs), 
a unique dataset (i.e., Multimodal Ambulatory Gait and Fall Risk Assessment in the Wild (MAGFRA-W)) was acquired. 
The frames and image patches attributed to nine participants’ gait were annotated: (a) outdoor terrains: pavement 
(asphalt, cement, outdoor bricks/tiles), gravel, grass/foliage, soil, snow/slush; and (b) indoor terrains: high-friction 
materials (e.g., carpet, laminated floor), wood, and tiles. A series of ConvNets were developed: EgoPlaceNet categorizes 
frames into indoor and outdoor; and EgoTerrainNet (with outdoor and indoor versions) detects the enclosed terrain 
type in patches. To improve the framework’s generalizability, an independent training dataset with 9,424 samples was 
curated from different databases including GTOS and MINC-2500, and used for pretrained models’ (e.g., MobileNetV2) 
fine-tuning.

Results: EgoPlaceNet detected outdoor and indoor scenes in MAGFRA-W with 97.36% and 95.59% (leave-one-sub-
ject-out) accuracies, respectively. EgoTerrainNet-Indoor and -Outdoor achieved high detection accuracies for pave-
ment (87.63% ), foliage (91.24% ), gravel (95.12% ), and high-friction materials (95.02% ), which indicate the models’ high 
generalizabiliy.

Conclusions: Encouraging results suggest that the integration of wearable cameras and deep learning approaches 
can provide objective contextual information in an automated manner, towards context-aware FLDBs for gait and fall 
risk assessment in the wild.
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Background
Falls in older adults (OAs, > 65 yrs) are one of the most 
important public health problems worldwide, which 
impact one in three OAs at least once each year [1]. OAs’ 
falls have a multifactorial etiology [2] with risk factors 
generally categorized as intrinsic/biological (e.g., gait 
and balance impairment, visual disorders) and extrin-
sic/environmental (e.g., irregular or slippery surfaces). 
Gait and balance disorders and environmental hazards 
have been reported to be the most important risk factors 
contributing to ≈ 17% and ≈ 31% of falls in OAs, respec-
tively [3]. To assess the exposure to risk factors, fall risk 
assessment (FRA) methods have been developed, which 
informs selection and timing of interventions to prevent 
fall incidents. Commonly used clinician-administered 
tests in controlled conditions (e.g., Timed Up and Go 
[4]) can provide valuable insights on specific aspects of 
an OA’s intrinsic risk factors at discrete points in time. 
However, these in-lab/in-clinic approaches have exhib-
ited a low-to-moderate performance in the identification 
of fall-prone individuals [5]. To address this limitation, 
recent attention has been focused on free-living FRAs 
using wearable inertial measurement units (IMUs) to 
assess OAs’ activities in their natural environments. 
Proposed free-living FRA approaches (e.g., 24 studies 
reviewed in [6]) have investigated relationships between 
falls and IMU-derived free-living digital biomarkers 
(FLDBs), primarily extracted from gait bouts [6]. Gait-
related FLDBs include macro (e.g., quantity of daily: 
steps [7], missteps [8], and turns [9]) and micro (e.g., 
step asymmetry [7]) measures. Although these measures 
can be impacted by both intrinsic and environmental 
features [10–12], their respective impacts on FLDBs’ fall 
predictive powers have not been differentiated [6]. For 
instance, higher variability in acceleration signal (meas-
ured by the amplitude of the dominant frequency in the 
mediolateral direction, as a FLDB) during gait could 
indicate appropriate adaptation to the environment [13] 
(and potentially a lower risk of falls) and/or exhibit gait 
impairment (and potentially a higher risk of falls) [14]. 
Similarly, frequent missteps (as a FLDB) detected in 
free-living IMU data can be an indicator of impaired 
dynamic balance control (and a higher risk for falls [8]) 
and/or false alarms generated by anticipatory locomo-
tion adjustment while walking on an irregular terrain 
(e.g., construction site) [15]. This ambiguity in interpre-
tation leads to less precise intervention strategies to pre-
vent falls.

A context-aware free-living FRA would elucidate the 
interplay between intrinsic and environmental risk fac-
tors and clarifies their respective impacts on fall predic-
tive powers of FLDBs. This would subsequently enable 
clinicians to target more specific intervention strategies 
including environmental modification (e.g., securing 
carpets and eliminating tripping hazards) and/or reha-
bilitation interventions (e.g., training to negotiate stairs 
and transitions). Ideally, a context-aware free-living FRA 
method would be capable of examining the relation-
ships between the frequency of falls, FLDBs, and differ-
ent environmental fall-related features such as presence 
of dynamic obstacles (e.g., pedestrians, pets), unstable 
furniture, lighting condition, and terrain types. As a step 
towards this longer-term goal, the focus of the present 
study is to develop an automated method to differentiate 
between different walking surfaces commonly observed 
in everyday environments.

A wrist-mounted voice recorder was previously uti-
lized to capture contextual information following misstep 
events (trips) [16], which could be limited to observa-
tions made by the user and may lack spatial and tem-
poral resolution. To objectively identify terrain types, 
several studies examined the feasibility of using wearable 
IMU data recorded during gait [17–19]. For instance, 
machine learning models achieved 89% accuracy (10-fold 
cross-validation) to detect six different terrains including 
soil and concrete using two IMUs in [17]. These studies 
investigated datasets mostly sampled from young partici-
pants in controlled conditions (i.e., walking repetitively 
over a few surface types with constant properties), and 
primarily reported machine learning models’ holdout or 
k-fold cross-validation measures. However, cross-valida-
tion approaches such as leave-one-subject-out (LOSO) 
or models’ assessment using independent test and train-
ing datasets represent a more reliable picture of mod-
els’ robustness against inter-participant differences and 
generalizability to unseen data [20, 21]. Additional file 1: 
Preliminary results for IMU-based surface type identifi-
cation reports the drastic difference between the k-fold 
and LOSO results of machine learning models imple-
mented using the same IMU data (an open access dataset 
[22]) to differentiate between the walking patterns over 
stairs, gravel, grass, and flat/even surfaces.

Egocentric or first person vision (FPV) data recorded 
by wearable cameras affords the ability to provide rich 
contextual information more readily than IMU-based 
data alone. Additionally, while third-person vision data 
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captured by ambient cameras (e.g., Microsoft Kinect) 
could provide valuable contextual information in an 
unobtrusive manner, they are restricted to fixed areas and 
can be challenged by multiple residents with similar char-
acteristics [23]. In contrast, FPV data can be recorded 
in any environment with which the camera wearer is 
interacting, including outdoors [21]. In [24], seven days 
of data were collected from fallers and controls during 
daily activities using ankle-mounted IMUs and a neck-
mounted camera. Subsequently, the frames attributed to 
walking bouts were investigated and annotated manually. 
The most frequent terrain type manually identified for 
all participants were outdoors on pavement, indoors on 
carpet and polished or hardwood flooring. Other terrain 
observations included grass, gravel, and multiple envi-
ronments. However, the manual identification of walking 
surfaces, especially in large-scale free-living studies, is a 
laborious and inefficient process. To advance the field of 
free-living FRA and gait assessment, there exists a need 
to develop automated vision-based methods for terrain 
type specification.

Automated vision-based methods for terrain type 
identification have been investigated in other fields of 
assistive technology and robotics (mostly focused on 
outdoor terrain types [25–27]). For instance, in [28] 
head-mounted camera data were used for adaptive con-
trol of legged (humanoid) robot’s posture and dynamic 
stability on different terrains. Engineered features such 
as intensity level distribution, complex wavelet trans-
form, and local binary pattern were extracted and a 
support vector machine model was developed to cat-
egorize 1,000 training images to three classes: (a) hard 
(e.g., tarmac, bricks, rough metal); (b) soft (e.g., grass, 
soil, gravels, snow, mud); and (c) unwalkable (static and 
moving obstructions). Although useful, this approach 
may not provide sufficient descriptive information to 
inform FRA. For instance, while snow, gravel and grass 
were considered into the same class, they would be 
expected to induce different patterns of gait. A relatively 
high accuracy of 82% was achieved when the model was 
applied to a 40-second video. However, this approach’s 
high computational cost was considered a limitation. 
Elsewhere, to control a powered prosthetic leg, a camera 
and IMU were mounted on the prosthetic and the rela-
tionship between image sharpness and acceleration was 
considered to trigger the camera [29]. Twenty minutes 
of data were collected from 5 able-bodied participants 
walking over 6 different types of terrain (asphalt, carpet, 
cobblestone, grass, mulch, and tile). Using a bag of word 
approach (SURF), an average classification accuracy 
of 86% was achieved based on 5-fold cross-validation. 
Deep learning approaches have shown strong poten-
tial to outperform engineered and bag-of-word-based 

approaches from many aspects, particularly inference 
time and accuracy [30, 31]. By integrating both order-
less texture details and local spatial information, a Deep 
Encoding Pooling Network model was developed [32]. 
The model was trained on the images in Ground Ter-
rain in Outdoor Scenes (GTOS) dataset [27], and tested 
on GTOS-mobile dataset. The former contains 30,000 
images across 40 outdoor terrain classes captured by 
a camera mounted on a mobile exploration robot with 
a fixed distance between the camera and the ground. 
GTOS-mobile data was captured by a mobile phone 
and with more flexible viewpoint, still relatively close to 
the ground. Although promising results were achieved, 
due to low intra-class diversity, limited viewpoint, and 
restriction to outdoor terrains, the GTOS(-mobile) 
models may not be generalizable to address the prob-
lem of terrain identification in complex everyday envi-
ronments. More relevant to the context of FRA, data 
of a chest-mounted camera and Gabor Barcodes [33] 
were used to automatically detect 17 environmental 
fall-related features such as slope changes (e.g., ramps) 
and surfaces (e.g., gravel, grass). Although high (88.5% ) 
accuracy was achieved, the incorporated dataset was 
restricted to young adults, limited to public environ-
ments lacking at-home data. Moreover, only k-fold 
cross-validation results were reported.

To address the previous research works’ limitations, 
this paper employs a unique dataset, i.e., Multimodal 
Ambulatory Gait and Fall Risk Assessment in the Wild 
(MAGFRA-W), collected from older non-fallers and 
fallers in out-of-lab conditions and presents a vision-
based deep framework to classify level walking surfaces 
(see Fig.  1). To maximize the framework’s generaliz-
ability and minimize its dependence on sample size, 
an independent training dataset with high intra-class 
variance was formed by curating data from relevant 
datasets, such as GTOS ("Assessing and augmenting 
models’ generalizability" Section). The curated data-
set includes the following 8 classes (a) outdoor: pave-
ment, grass/foliage, gravel, soil, and snow/slush and (b) 
indoor: high-friction materials, tiles, wood flooring. 
Subsequently, the framework’s generalizability to OA’s 
data and its robustness against inter-participant dif-
ferences were assessed (e.g., using LOSO cross-valida-
tion). The proposed framework provides one of the first 
investigations into the contextualization of free-living 
gait and fall risk assessment in OAs.

Materials and methods
Recruitment and data collection
The project received ethics approval (reference number: 
17589, approval date: 4-Oct-2019) from Northumbria 
University Research Ethics Committee, Newcastle upon 
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Tyne, UK. All participants gave written informed consent 
before participating in the study.

Using wearable IMUs, cameras, and a motion capture 
system, a unique dataset, Multimodal Ambulatory Gait 
and Fall Risk Assessment (MAGFRA), was collected from 
fallers and older non-fallers in laboratory/clinic (MAG-
FRA-C) and/or in the wild (MAGFRA-W) [34]. In the 
present study, FPV data from nine participants (2 males, 
7 females, mean age ≈73.6 yrs, 3 fallers) from MAGFRA-
W were used (Table 1). One participant’s age was below 
65 yrs, but as she was a recurrent faller, her data were 
considered for further analysis (marked by P8). The num-
ber of self-reported falls in the previous 12 months is 
reported in Table 1.

Considering our previous findings [21, 35], we hypoth-
esized that a waist-level camera would offer a greater 
resolution of the feet and texture of surfaces than views 
higher on the body (e.g., a chest-level camera) for the 
purpose of informing free-living FRA. Moreover, as dis-
cussed in our previous research work, waist level views 
offer a consistent view of the feet even during sharp turns 
[21]. In contrast, head- and leg-mounted views tend to 
rotate in anticipation of turns or shift in attention, which 

reduces views of the feet and the terrain underneath and 
increases risk of motion blur [28, 29]. Thus, video data 
were collected using a GoPro Hero 5 Session or Hero 6 
Black camera (30fps, 1920×1080, wide view, except for 
OA2 and OA3 as marked by ⋆ in tables, see "Preproc-
essing"), centered at each OAs’ waist by means of a belt 
attachment. The camera was set up to capture top-down 
views of feet and the regions around them, with no cali-
bration or a strictly reproducible placement procedure 
on camera’s angle with respect to the frontal plane.

Data collection was performed in (a) public environ-
ments within Northumbria University, during which 
participants had to navigate through different indoor 
and/or outdoor environments while walking alongside 
a researcher (the walking paths were not predefined for 
participants to allow capturing different environmental 
features), or (b) participants’ homes or their neighbour-
hood (for OA2, OA3, OA6 and P8) for 1–2 hours with no 
researcher in attendance. Data collection in outdoor envi-
ronments was performed during daylight hours. Two par-
ticipants walked with a cane/stick at all times and during 
walking outside home. OA3 and OA6 were living in the 
same home as marked by † in tables.
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Preprocessing
Gait/ambulatory bout definition is highly inconsistent 
in the literature, but is often defined as any walking epi-
sode ≥ 3 steps [6]. In the MAGFRA-W dataset, FPV data 
attributed to level walking bouts ≥ 3 steps (stairs ascend-
ing/descending episodes were excluded) were taken into 
account for annotation. FPV data collected during short 
pauses/stances between longer walks were not necessar-
ily excluded. Frames attributed to the identified gait bouts 
were sampled at 6 Hz using MATLAB R2019b. Compared 
to 1/15 Hz in previous work [24], this sampling rate was 
appropriate to capture changes in environment during gait. 
FPV data for OA2 and OA3 (marked by ⋆ in tables) were 
accidentally collected with a lower sampling rate (resulting 
in a smaller quantity of annotated images, Table 1) and a 
higher resolution. Therefore, the subsequent frames were 
resized to align with the rest of data. Additionally, OA2, 
OA3 and OA6 wore the camera upside-down (marked by 
⋆ in tables). Subsequently, a rotation was applied to permit 
comparisons with other data.

All sampled frames and image patches used for models 
development are in the RGB color space (e.g., 3 ×1920×
1080), however, for simplicity, ’3× ’ is removed here when 
describing the dimensions.

Considerations for the framework’s structure 
and annotation of MAGFRA‑W data
Two‑layer framework vs end‑to‑end approach
Depending on the phase of gait (e.g., left heel strike in 
Fig. 1) and camera angle with respect to the frontal plane, 
a portion of the frames captured by a waist-mounted 
camera can be obscured by lower extremities and/or 
hands (see Figs. 2, 3, and 4). For instance, in Fig. 4-nar-
row outdoor path, a considerable portion of the frame is 
covered by participants’ blue jeans. In this case, it can be 
hypothesized that the color of pants/clothing may impact 
the prediction of an end-to-end model when the full 
frame, rather than its specific regions, is fed as input.

To address this, frames were investigated to identify 
robust regions in terms of the provision of terrain-related 
visual features. Two 453×453 patches cropped at (267, 0) 
and (1200, 0) in 1920×1080 frames (Fig. 1) were initially 
considered as representatives of surfaces underneath the 
participants’ left and right feet, respectively. These two 
patches were primarily cropped from all frames attrib-
uted to gait bouts. Considering the belt-mounted cam-
eras’ field of view, the cropping parameters (e.g., the 
upper left corner coordinates, dimensions) were selected 
empirically to obtain regions with low overlap with 
upper/lower extremities during walking, but high overlap 
with walking surfaces.

From visual inspection of cropped patches, it was 
observed that 453×453 regions attributed to different 
indoor and outdoor surfaces can resemble each other 
closely in terms of colour and texture (Fig.  2), which 
may lead to a low classification accuracy. Moreover, it 
was noticed that due to the higher complexity of indoor 
scenes (compared to outdoor scenes), there could be a 
higher likelihood of overlap between the two 453×453 
indoor patches with objects occluding views of the ter-
rain such as walls and cabinets (Fig.  3). Thus, two larger 
1080×1080 regions cropped at (0, 0) and (840, 0) (Fig. 1 
and Fig.  3) were considered as better representatives of 
indoor terrains. The smaller outdoor and larger indoor 
patches were also more similar to the images in GTOS 
and Material in Context (MINC) [36]) datasets, respec-
tively, which were further considered to form an inde-
pendent training dataset (discussed in  "Assessing and 
augmenting models’ generalizability").

The aforementioned points necessitated the devel-
opment of a two-layer framework, rather than an end-
to-end approach (8-class classification considereing 
all terrain types), to first categorize frames based on 
their location into indoor and outdoor classes. The 
first-layer’s (i.e., EgoPlaceNet model) prediction further 

Table 1 Demographic information and the distribution of crops/frames over different classes

From MAGFRA-W, only frames and patches attributed to walking bouts ≥3steps (level walking) were annotated. Fall history: number of falls in the previous one year, 
⋆ : camera was unintentionally mounted upside-down by the participants or was set to take photos (not videos) resulted in smaller sample size, †: Participants living in 
the same home. HFM: high-friction materials
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determines the frames’ regions that need to be cropped 
and fed into the second layer (i.e., EgoTerrainNet-Out-
door or -Indoor models) for terrain type identification 
(see Fig. 1).

Annotation of MAGFRA‑W FPV data
Sampled frames (see subsection "Preprocessing") were fur-
ther considered for the preparation of the ground truth 
data. To maintain 1:1 aspect ratio for each frame, a 1080×

Fig. 2 Patches cropped from right or left parts of sample frames: a laminate flooring (high-friction material), b asphalt, c carpet (high-friction 
material), d partial view of furniture. Although the type of the walking surfaces are different, the 453× 453 patches are very similar in terms of color 
and texture. EgoPlaceNet was adopted to classify frames into outdoor and indoor before terrain type identification to improve the framework’s 
performance
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1080 region was randomly cropped either from the top right 
or top left corners of the down sampled 1920×1080 frames 
(1 crop for each frame, e.g., the blue square in Fig. 1). These 
crops were further annotated as outdoor (n=10,875) and 
indoor (n=6,099) depending on the enclosed scene to form 
the ground truth data for EgoPlaceNet (Table 1). Moreover, 
taking into account the criteria stated in "Considerations for 
the framework’s structure and annotation of MAGFRA-W 
data", 453×453 and 1080×1080 regions were cropped from 
outdoor (at (267,0) and (1200,0)) or indoor frames (at (0,0), 
(840,0)), respectively (e.g., red squares for outdoor scenes 
as shown in Fig. 1). To form the ground truth data for Ego-
TerrainNets, outdoor crops were further annotated as: (a) 
pavement (e.g., outdoor tiles, bricks, asphalt and cement), 
(b) gravel/stone (including pebble, shale), (c) soil, (d) grass/
foliage; and the indoor patches were grouped as (a) high 
friction materials (including carpet, fabric, laminate floor-
ing, gym surfaces), (b) indoor tiles, and (c) wood (Fig. 3 and 
Table 1). Less than two patches were annotated for frames 
that either considerably overlapped with non-terrain mate-
rials (e.g., walls), had fully occluded field of view, or with 
unknown terrain type due to poor lighting ( ≈ 7% and 11% 
of outdoor and indoor patches remained unlabeled, respec-
tively). All image patches were extracted automatically using 
MATLAB R2019b.

Assessing and augmenting models’ generalizability
As discussed in  "Background" and considering the results 
in Additional file 1: Materials (I), high accuracies obtained 
from holdout and k-fold approaches may not necessar-
ily indicate model’s generalizability and robustness against 
environmental and/or inter-individual differences. Moreo-
ver, while MAGFRA-W data possesses high intra-class vari-
ance (see Fig. 3), surfaces may differ significantly from one 
OA’s home to another (e.g., carpet comes in a wide range of 
colours, patterns, and textures). As collecting a sufficiently 
large dataset to capture this heterogeneity across OAs’ eve-
ryday environments may not be feasible, similar to our pre-
vious research work [21], we hypothesized that curating a 
training dataset from other (reasonably similar) databases 
could increase intra-class variance, in terms of textures, 
colours, geometry, lighting conditions and clutter, and 
reduce the possible propensity to sample size bias. Subse-
quently, the framework’s generalizability to unseen datasets 
could be improved. The procedure for curating the training 
dataset is discussed in  "Assessing and augmenting models’ 
generalizability".

In the case of observing unsatisfactory results from the 
former approach, the LOSO cross-validation approach 
(similar to leave-one-dataset-out in [21]) was consid-
ered as the next best in the present study to evalu-
ate the framework’s generalizability and robustness 
against inter-participant variance in the MAGFRA-W 

dataset (although higher accuracies compared to the first 
approach is expected to be achieved [15, 20, 21]).

The validation accuracies during training (holdout: 70% 
training, 30% validation, see "Experiments") were sepa-
rately reported for each network in the framework.

Independent training dataset A separate dataset was 
curated from other resources including public data-
sets: MINC-2500 (or MINC here) [36], GTOS(-mobile) 
datasets [27, 32] (or ’GTOS’ here), and HUJI-EgoSeg (or 
’EgoSeg’ here) [37, 38]. These datasets complement each 
other to address identification of various terrain types 
observed under free-living conditions1. For instance, 
while the MINC-2500 dataset does not contain images 
of asphalt, there are asphalt and stone asphalt classes in 
GTOS (which includes outdoor terrain patches only). 
Moreover, although there are 2,500 images of carpet, 
wood and tiles in MINC-2500, only a small proportion 
resemble the images that could be taken from a top-down 
view. Considering a large proportion of images in MINC-
2500 are irrelevant to MAGFRA-W (e.g. furniture, 
or cabinet in class ’wood’), only relevant images from 
MINC-2500 were selected (e.g., 445/2500 from wood as 
hardwood flooring, Additional file 2: Materials (II)).

As mentioned in  "Background", images in GTOS were 
collected while the camera-ground distance is much 
smaller than the height of the waist-mounted camera. 
This field of view resulted in very low complexity and 
intra-class variance in GTOS (e.g., pedestrian’s feet were 
not observed in the image) compared to the higher view 
in MAGFRA-W and may reduce the prospects for gen-
eralizability to everyday terrains. Although there are 40 
different classes of outdoor terrains in GTOS, differenti-
ating between each may not provide relevant additional 
information for gait assessment and free-living FRA. For 
example, separate GTOS classes of asphalt, cement, or 
pavement bricks may not result in substantially differ-
ent walking patterns. Thus for the purpose of this study, 
images from the relevant classes were combined.

To further address the limitations of MINC and GTOS, 
the suitability of several FPV-based datasets (e.g. EPIC-
Kitchens 2018 [39]) was examined. Among public FPV 
datasets, HUJI-EgoSeg was considered a suitable candi-
date, as the camera wearers walked in diverse outdoor 
environments. HUJI EgoSeg video data were collected 
from a head-mounted GoPro Hero3+ camera during 
a range of activities (e.g., walking, riding bus, driving). 
After resizing 720p frames to 1920×1080, patches of 453×
453 were cropped from the lower-central, right, and left 

1 Additional file  3:Materials (III) shows the preliminary test results of Ego-
TerrainNet-Outdoor and -Indoor fine-tuned on (a) a subset of GTOS and 
(b) all 2,500 images of ’wood’, ’carpet’, and ’tiles’ in MINC-2500, when applied 
to MAGFRA-W. The results suggest that one dataset alone may not result in 
generalizable models.
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parts of the resized frames. Considering head-mounted 
cameras may not provide a consistent view of terrain, 
only a handful were annotated and included.

As GTOS and MINC datasets contain no images of 
snow/slush-covered terrains, a smartphone at waist level 
was used to capture videos of slush- or snow-covered ter-
rains by the authors. Patches (453×453) were cropped 
from the right and left corners of the frames and added to 
the training dataset. Although this snow/slush class may 
not have representatives in the test dataset (MAGFRA-
W), snow-covered terrains are frequently observed in 
regions with low average yearly temperature, impact gait 
patterns and are a potential risk factor for falls. There-
fore, adding this class would improve the framework’s 
relevance and generalizability.

Overall, 3,651 and 5,773 image patches were extracted 
from the aforementioned datasets to form training data-
sets for indoor and outdoor surfaces, respectively. The 
distribution of patches extracted from different datasets 
as well as sample patches for snow/slush has been shown 
in Additional file  2: Materials (II). The open access 
image/FPV datasets discussed here can be accessed and 
viewed from their corresponding data repositories.

Pre‑trained ConvNets
Considering the size of the curated training dataset 
and MAGFRA-W (also used for training in the LOSO 
approach), training a deep ConvNet from scratch was not 
feasible. Therefore, the transfer learning approach [40] 
was considered. This subsection discusses the criteria for 
selecting the backbone models (ConvNet pre-trained on 
a large-scale dataset) for EgoPlaceNet and EgoTerrainNet.

For applications in prosthestics and exoskeletons, the 
real-time detection of environmental features is a criti-
cal part of the control loop. While on-device detection 
of environmental features is not necessary for the pur-
pose of FRA, this allows processing of frames with-
out the need for storing videos, and may subsequently 
mitigate privacy and ethical issues associated with FPV 
data use. By benchmark analysis of state-of-the-art deep 
neural network architectures (in terms of accuracy, 
size of the learnable parameters, memory usage, com-
putational complexity using the floating-point opera-
tions, and inference time), SqueezeNets, MobileNets, 
ResNet-18, GoogLeNet, and AlexNet achieved optimal 
real-time performance, while no significant relationship 
between model complexity and recognition accuracy 
was reported [41]. Building upon the idea of depth-wise 
separable convolution from MobileNetV1 [42], Mobile-
NetV2 pushed the state of the art for mobile image 
classification [43] using the inverted residual with lin-
ear bottleneck as a novel layer module. This resulted in 
faster and more accurate performance while using ≈ 30% 

fewer parameters compared to MobileNetV1. Therefore, 
MobileNetV2 pretrained on ImageNet [44] was consid-
ered as the initial candidate for backbone models in our 
study.

Considerations for EgoPlaceNet: In contrast to Ima-
geNet categories, where indoor and outdoor scenes were 
not separated, images in Places365 dataset [45] were cat-
egorized into indoor and outdoor macro-classes (e.g., 
indoor and outdoor categories for ice skating rink) and 
the models were trained on millions of scene photo-
graphs. Therefore, deep networks trained on this dataset 
have learned different feature representations for a wide 
range of indoor and outdoor images compared to Ima-
geNet, and hypothesized to be a better candidate for Ego-
PlaceNet (where the desired task is similar to classifying 
scenes) resulting in higher accuracies. Among the avail-
able pre-trained deep models on Places365 dataset2,  3, 
AlexNet (with over 60 million parameters for 227× 227 
images, 8 layers, [46]) and GoogLeNet ( ≈ 12 times fewer 
parameters compared to AlexNet, 22 layers [47]) models 
were considered as the backbone model for EgoPlaceNet.

Fine-tuning procedures for all models are discussed in 
"Experiments".

Experiments
For EgoTerrainNet-Outdoor and -Indoor versions, 
MobileNetV2’s were fine-tuned using the curated train-
ing dataset discussed in "Assessing and augmenting mod-
els’ generalizability", by replacing the last fully connected 
layer and the final classification layer of the network.

The GoogLeNet pre-trained on Places365, was first 
fine-tuned on indoor and outdoor images in the curated 
training dataset (described in  "Assessing and augment-
ing models’ generalizability") . The subsequent model is 
referred to as EgoPlaceNet.v1 in the present study. Con-
sidering the evaluation criteria detailed in "Assessing and 
augmenting models’ generalizability", after observing the 
EgoPlaceNet.v1’s results when tested on the MAGFRA-
W datset, LOSO cross-validation (EgoPlaceNet.LOSOn , 
n = {1, . . . , 9} ) was further performed to investigate 
models’ robustness against inter-participant variations. 
To implement this, the GoogLeNet-Places365 was fine-
tuned based on the dataset acquired from 8 participants, 
and tested on the remaining data from one participant.

The GoogLeNet-Places365 models were fine-tuned by 
freezing the weights of 10 earlier layers in the network 
according to preliminary results. The improved results 
obtained by unfreezing the weights of more layers than 
solely the last fully connected layer (considered for 

2 https:// github. com/ CSAIL Vision/ place s365
3 https:// www. mathw orks. com/ help/ deepl earni ng/ ref/ googl enet. html

https://github.com/CSAILVision/places365
https://www.mathworks.com/help/deeplearning/ref/googlenet.html
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EgoTerrainNets fine-tuning) was likely due to the fewer 
number of classes in the binary classification approach 
(vs 5 for EgoTerrainNet-Outdoor), and thus, the availabil-
ity of more samples in each class.

Depending on the model (i.e., EgoPlaceNet.LOSOn , 
EgoPlaceNet.v1, EgoTerrainNet-Outdoor, EgoTerrain-
Net-Indoor) the relevant training dataset (e.g., indoor 
or outdoor, as discussed in "Assessing and augment-
ing models’ generalizability", or remaining 8 OAs for 
EgoPlaceNet.LOSOn ) was randomly divided into train-
ing (70% ) and validation (30% ) with images resized to 
224×224. Experiments were performed on a workstation 
(Intel(R) Core (TM)i7-6700, 3.4GHz with Nvidia GeForce 
GTX 750 Ti), with MATLAB R2019b. The mini-batch 
sizes of K = 10 and K = 64 were used (due to the limited 
memory), for EgoPlaceNet and EgoTerrainNet, respec-
tively. The training procedure was terminated manually 
when the model performance stopped improving (by 
monitoring the loss/accuracy in the performance plot) to 
avoid overfitting. Validation patience was set to 20.

The initial learning rate of γ = 0.01 for EgoTerrain-
Net-Outdoor and -Indoor and γ = 3e -4 for EgoPlace-
Net models resulted in the best validation accuracies. 
Stochastic gradient descent with momentum was con-
sidered as the optimization method. Moreover, the fol-
lowing hyperparameters were employed: momentum: 
0.9, L2 Regularization: 1e-4, gradient threshold method: 
L2 norm, and decay rate of 0.0005. To further address the 
problem of a small dataset, improve the generalization of 
the network, and prevent the models from overfitting and 
memorizing the details of the training images, data were 
augmented by including random crops, translation, rota-
tion ∈ [−20+ 20] deg (accounting for changes in camera 
orientation during gait) and vertical reflection/flip over y 
axis. Considering the viewpoints of images in the train-
ing dataset as well as data captured by a belt-mounted 
camera, horizontal reflection was not considered for aug-
mentation. Using MATLAB data augmentation object 
and the aforementioned transformations, one randomly 
augmented version of each image was used during each 
epoch of training. No further manual data augmentation 
was preformed.

Results
At the end of the training process, the validation accura-
cies of 93.97% , 98.19% (mean-over-participants), 99.23% , 
and 85.26% were achieved for EgoPlaceNet.v1, EgoPlace-
Net.LOSOn , EgoTerrainNet-Outdoor and EgoTerrainNet-
Indoor, respectively.

The EgoPlaceNet.v1 resulted in test accuracies of 
91.14% (std: 7.99% ) and 78.04% (std: 10.82% ) (Table  2) 
for the detection of outdoor and indoor scenes in MAG-
FRA-W, respectively. However, these rose to 97.36% (std: 

2.43% ) and 95.59% (std: 6.28% ) when LOSO cross-valida-
tion was performed (9 models, EgoPlaceNet.LOSOn).

Confusion matrices and per-class detection accura-
cies for each participant were examined separately to 
better assess the impact of inter-participant differences, 
colour of clothing, camera placement, and environmen-
tal features on models’ performance (Table  3). There-
fore, although the distribution of image patches over 
classes were different for participants, due to the afore-
mentioned points, the mean-over-participant detection 
accuracy for each class was considered as a more suitable 
metric compared to overall detection accuracy for each 
class (e.g., total true positives from all participants for 
class ’pavement’/total number of patches labeled as ’pave-
ment’ from all participants). In addition to mean-over-
participant accuracies, standard deviation (std) measures 
were reported for scene/terrain classes for which data 
from ≥ 3 individuals were available.

EgoTerrainNet-Outdoor exhibited satisfactory perfor-
mance (mean-over-participant test accuracies)for the 
identification of pavement (87.63% (std: 3.97)), grass/
foliage (91.24% (std: 9.00)), and stone/gravel (95.12% (std: 
1.96)). However, it failed to detect soil with high acura-
cies for OA1 and OA3 (Table  3). EgoTerrainNet-Indoor 
detected high-friction materials including carpet and 
laminate flooring with a high accuracy (mean over par-
ticipants: 95.02% (std: 4.48)). However, the mean-over-
participant accuracies drastically decreased to 71.15% 
(std: 36.25) and 64.76% for tiles and wood, respectively. 
While tile identification accuracy was high in most par-
ticipants (OA1: 88.51% , OA4: 94.93% , OA5: 90.96% , OA7: 
88.05% , OA9: 92.88% ), the results of OA3 (0% ) and OA6 
(42.74% ) decreased the mean accuracy for tile detection. 
It was interesting as the color of tiles in OA3’ and OA6’s 
home was ’grey’, and similar to some sample patches from 
other participants’ data (see  Figs.  3 and  4). Similarly, 
wood identification achieved a high and low accuracies 
for OA7 (93.62% ) and P8 (35.90% ), respectively.

Deeper analysis of lower accuracies
Results marked by � in Table 3 are further discussed in 
this subsection.

First, pavement is mainly confused with soil (e.g., in P8) 
and snow (e.g., OA1). In OA1’s data, the 453×453 patches 
overlapped with regions of pavement with white paint-
ings/street signs (Fig.  4), which could be confused with 
snow. Moreover, many images in asphalt and soil classes 
in the curated training dataset for EgoTerrainNet-Out-
door ("Assessing and augmenting models’ generalizabil-
ity" Section) share similar visual features such as colour 
and texture, which partially explains the aforementioned 
confusion.
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Table 2 Results for 1. EgoPlaceNet.v1 (fine-tuned on the selected training dataset from MINC+HUJI EgoSeg+GTOS) when applied 
to MAGFRA-W (validation accuracy at the end of the training process: 93.97% ), and 2. EgoPlaceNet-LOSOn for participant n. LOSOval 
indicates the validation accuracy at the end of the training process for each model. Darker shades of grey indicate higher per-class 
accuracies.

Table 3 Confusion Matrices at participant level: for EgoTerrainNet-Outdoor and -Indoor, MobileNetV2’s pre-trained on ImageNet 
dataset were fine-tuned. The validation accuracies (during training) for -Outdoor and -Indoor versions were 99.23 and 85.26, 
respectively. ⋆ : camera was unintentionally mounted upside-down by the participants or was set to take photos (not videos), † : 
Participants living in the same home, HFM: high-friction materials, 

�
 : cases that are discussed in "Deeper analysis of lower accuracies ". 

Darker shades of gray indicate higher per-class accuracies
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Samples in soil were mainly confused with grass/foliage 
in OA1. In OA1’s data, soil was frequently mixed with or 
covered by grass/foliage (Fig. 4). Considering the lack of a 
standard definition for the annotation of patches, either 
grass/foliage or soil may have been assigned to those 
patches, which may explain the subsequent results.

The camera’s field of view during free-living data col-
lection in OA3’s and OA6’s home was heavily occluded 
by participants’ clothing (e.g., blue pants/jeans). In addi-
tion to covering the tiles texture, the participants’ cloth-
ing likely confused EgoTerrainNet-Indoor to classify tiles 
as high-friction material (e.g., fabric/carpet) (see Fig. 4). 
The images were also blurry in many cases (Fig. 4), con-
cealing the texture of tiles in the subsequent images.

The lower wood detection accuracy for P8, compared 
to OA7, could be attributed to poor lighting conditions in 
the former’s home (Fig. 4). The image patches attributed 
to ’wood’ for this participant were mainly categorized 
as high-friction materials, likely because the texture of 
wood was not differentiable in the subsequent 1080×1080 
patches due to poor lighting condition.

Discussion
This paper proposes an egocentric vision-based frame-
work to automatically detect indoor and outdoor level 
walking surfaces. To the best of the authors’ knowledge, 
this work is the first to present a deep learning-based 
model tested on OAs’ everyday FPV data towards the 
development of a context-aware free-living FRA.

The MAGFRA-W dataset offers a considerable diver-
sity in terms of terrain types and visual characteristics 
(presence of pets and walking aids, clothing in differ-
ent colours), lighting conditions, feet appearance (e.g., 
shoes with different colours, barefoot, socks, slippers) 
leading to more ecologically valid classification results 

compared with data collected in controlled conditions. 
After investigating the participants’ FPV data and other 
relevant public datasets, a two-layer structure was con-
sidered superior to an end-to-end approach for ter-
rain type identification. Subsequently, the training and 
test datasets were prepared according to this hypoth-
esis. Overall, it can be concluded that aggregating Ego-
PlaceNet trained on outdoor-indoor images captured 
by a belt-mounted camera, followed by EgoTerrainNets 
trained on an independent dataset leads to the best ter-
rain identification performance in terms of accuracy 
and generalizability.

To train and test EgoPlaceNet and EgoTerrainNets, 
several approaches could have been considered: (a) 
holdout and k-fold cross-validation, (b) LOSO using 
MAGFRA-W, or (c) using MAGFRA-W as the test 
dataset and incorporating an independent (but suf-
ficiently similar) training dataset for fine-tuning deep 
models. Considering that the discrepancy between the 
distributions of training and test datasets in approach 
(c) avoids the generation of unrealistically high accura-
cies, we considered this option to be superior. Further-
more, option (c) is aligned with our previous research 
work [21] and represents a pragmatic picture of the 
proposed framework’s generalizability. Option (b) was 
considered as the next best to evaluate the framework’s 
robustness against inter-participant differences.

To form an independent training set for approach (c), 
relevant images (or frames) from different datasets (e.g., 
MINC-2500, HUJI EgoSeg, and GTOS) were selected. 
The subsequent fine-tuned ConvNets on this dataset, 
i.e., EgoTerrainNet-Outdoor and -Indoor, were applied 
to specific regions of outdoor ( 453× 453 ) and indoor 
( 1080× 1080 ) frames. Promising results exhibited the 
models’ generalizability to detecting a broad range 

P8-Wood 

OA3-Tile (blurry)

OA6-Tile (Occluded)

OA1-Soil

OA1-Foliage

OA1-Pavement

OA3-Soil Transitions from indoor to outdoor 

Narrow outdoor path Indoor transitions, 
multiple indoor surfaces

Indoor transitions, 
multiple indoor surfaces

Fig. 4 Sample frames/patches illustrating conditions challenging the performance of the proposed framework
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of terrains. Although the sample size for the curated 
dataset was relatively small (9,424 images overall), the 
results indicate that this dataset captured a high vari-
ations of texture, colour, and shape in everyday scenes, 
which bypasses the requirement for prolonged data 
collection from a large cohort of OAs to form a hetero-
geneous training dataset. This approach also outper-
formed the models that were solely fine-tuned on one 
dataset (e.g., GTOS or MINC, as shown in Additional 
file 3: Materials (III)).

EgoPlaceNet.v1 achieved 91.14% and 78.04% detection 
accuracies for outdoor and indoor scenes, respectively. 
The relatively poor performance of this binary classifier 
supports the hypothesis that an end-to-end approach, 
i.e., an 8-class classification problem (more complex 
compared to the binary classification) may not exhibit 
a robust performance if option (c) is considered. On the 
other hand, high EgoPlaceNet.LOSOn accuracies ( ≥95% 
for both indoor and outdoor scenes, Table  2) confirm 
the models’ robustness against variations in participants’ 
characteristics, camera view and partial occlusions (e.g., 
lower extremities, walking aids).

High detection accuracies were consistently observed 
for pavement, gravel, grass/foliage, and high-friction 
materials for all participants. Among the outdoor terrain 
types, soil had the lowest detection accuracy as well as 
a low per-class quantity in MAGFRA-W (only 42 sam-
ples, see Table  1). Additionally, no sample of snow was 
found in the MAGFRA-W dataset. These points neces-
sitate further investigation of EgoTerrainNet-Outdoor’s 
performance using a more inclusive test dataset in future 
studies. Moreover, while tiles (in different patterns and 
colors such as grey, white, see Fig. 3) in public environ-
ments were detected with high accuracies (OA1, OA4-5, 
OA7, OA9; ranging from ≈ 88% to ≈ 95% ), in-home tiles 
(mostly grey) captured in OA3’s and OA6’s home were 
mainly confused with high-friction materials. The same 
trend was observed for ’wood’, which was detected with 
93.62% and 35.90% accuracies for OA7 (public environ-
ment) and P8 (in-home), respectively. As detection of 
wood and indoor tiles require capturing fine details 
of terrain textures, partially-obscured views as well as 
blurry and/or dark images due to dim lighting condi-
tions in in-home settings were considered as the primary 
reasons for this inferior performance. A similar phe-
nomenon was observed in other studies [48, 49], where 
image blur/noise led to a considerable drop in classifica-
tion accuracies. Methods have been proposed to exclude 
or skip blurry images [28, 29], at the expense of heavier 
computational demand. Other works have suggested that 
classification performance of deep architectures could 
be improved by fine-tuning the models on blurry images 
[49]. In [50], authors jointly trained a deblurrer combined 

with a high-level computer vision network. Therefore, the 
integration of similar pipelines into the proposed frame-
work in the present study may augment the performance 
of EgoTerrainNet-Indoor.

The backbone deep models considered here (i.e., 
MobileNetV2 and GoogLeNet pretrained on ImageNet 
and Places365 datasets, respectively) were selected based 
on multiple criteria and previous comparison studies 
(discussed in subsection  "Pre-trained ConvNets"), and 
exhibited satisfactory performance in terms of detection 
accuracy. Further investigation using larger-scale data-
sets is required to identify the optimal deep architecture 
addressing terrain type identification in the wild. Moreo-
ver, the employed parameters (e.g., learning rate, num-
ber of frozen layers for transfer learning) were selected 
based on some preliminary numerical analyses and may 
be tuned by performing deeper analyses in future studies.

While the collection of FPV data in controlled condi-
tions facilitates the process of image annotation by pro-
viding high quality and consistent data, the complex 
nature of everyday scenes captured in the MAGFRA-W 
dataset challenged the process of image patch annota-
tion. First, a subset of image patches ( 7% and 11% of the 
extracted outdoor and indoor patches, respectively) 
remained unlabelled due to their significant overlap 
with non-terrain materials such as walls, dim lighting 
conditions, or obscured views. Therefore, although the 
accuracies for EgoPlaceNet and EgoTerrainNet were cal-
culated separately, the overall framework’s accuracy (the 
sequential approach) could not be reported. The addition 
of class ’others’ [36] in the training dataset could have 
been considered to address this limitation, however, the 
preparation of relevant samples collected from the top-
down view to form this class was out of the scope of the 
present study. Secondly, in addition to mixed surfaces 
(e.g., soil and grass in Fig.  4), transitions between dif-
ferent locations and surfaces (see Fig.  4) challenged the 
annotation of ground truth data. For example, while only 
one label was attributed to each 1080× 1080 patch, in 
Fig. 4 (right panel) each foot is placed on a different sur-
face. Subsequently, both tiles and high-friction materials 
could be considered as valid labels for the patch. Such a 
discrepancy in the annotations could introduce errors to 
the reported results. This issue occurred less frequently 
during the annotation of outdoor patches, as due to their 
smaller size (compared to indoor patches) the enclosed 
outdoor terrain type was generally more consistent. Con-
sidering a belt-mounted camera’s field of view, a separate 
453×453 region was expected to represent the terrain 
type around each foot in outdoor scenes. However, there 
were exceptions. For instance in Fig. 4, the OA is walk-
ing on a narrow ’brick-covered’ ( ∈pavement) surface, and 
the right and left patches partially overlap with foliage, 
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which is irrelevant to the walking surface type. By inte-
grating the spatial and temporal (embedded in optical 
flow) information in our previous research work [21], 
the FootChaser framework was proposed to localize feet 
in the video data captured from a belt-mounted cam-
era for the purpose of gait assessment. Therefore, rather 
than cropping frames’ fixed regions (considered in the 
present study), the integration of FootChaser model into 
the proposed framework is expected to allow cropping 
more specific regions (with varying sizes) of frames in the 
proximity of each localized foot. This may permit a more 
accurate identification of walking surfaces.

Considering the preliminary results of Weiss et al. [12] 
and evidence reported in Additional file 1: Materials (I) 
regarding the feasibility of stair walking detection using 
IMU data alone, the present study focused on vision-
based detection of level walking surfaces. While compar-
ing the performance of IMU- and FPV-based models for 
the task of level walking surface identification requires 
a rigorous assessment, the inferior performance of the 
incorporated IMU-based approach4 for the detection of 
gravel, grass and paved/flat surfaces (<50% LOSO accura-
cies, Additional file  1: Materials (I)), along with EgoTer-
rainNet-Outdoor’s satisfactory detection accuracies for 
the same outdoor classes (>87%, see "Results" Section), 
imply that egocentric vision-based models generally lead 
to more promising results for the aforementioned task, 
and thus, can be integrated to improve the interpret-
ability of commonly used IMU-based FLDBs. However, 
incorporating an additional sensor modality (i.e., camera) 
along with IMU(s) may negatively impact compliance in 
larger-scale field studies (e.g., due to ethical/privacy con-
cerns, obtrusive sensor placement). While further testing 
to assess the acceptability of the proposed vision-based 
framework by older populations is beyond the scope of 
the present study, subsequent efforts may focus on miti-
gating potential ethical/privacy issues associated with 
egocentric vision data use. This may be achieved using 
light-weight models (including those employed in the 
present paper) to enable automated processing without 
the need to store videos. Overall, the fast-paced advance-
ments in miniaturized wearable sensor technologies 
combined with deep learning models with low computa-
tional demand, are promising for advancements in ego-
centric vision methods in the area of neurorehabilitation 
engineering (e.g., [24, 51, 52]). Smaller cameras with high 

on-board processing power, expected in the near future, 
can facilitate unobtrusive sensor modalities while pre-
serving older adults’ privacy through on-device process-
ing at the same time.

Considering IMU data were collected along with FPV 
data in the MAGFRA-W dataset, the impact of environ-
mental features on a comprehensive list of IMU-based 
gait-related FLDBs (e.g., spatiotemporal gait) [6] will be 
investigated in both faller and non-faller groups in our 
future studies. Moreover, similar to multimodal deep 
models proposed to address activity recognition [53, 
54], temporal and spatial information during gait can be 
examined simultaneously by a hybrid multi-stream net-
work trained on both FPV (including still images and 
optical flow) and IMU data. By examining potential inter-
actions between intrinsic and extrinsic factors captured 
in different modality types, the subsequent framework 
may outperform the models trained solely on FPV data 
for the task of terrain type identification. While demo-
graphic factors (e.g., gender, history of falls, age) have 
minimal impact on the spatial data (still frames) in the 
MAGFRA-W dataset, gait-related temporal data can 
be impacted by such factors. Therefore, addressing the 
aforementioned multimodal approaches requires a bal-
anced dataset in terms of the demographic characteris-
tics, which will be achieved in the future phases of the 
project.

In our future work, other details of the walking sur-
faces will be considered. For instance in OA4’s mul-
timodal data (IMU and FPV), 1 naturally-occurring 
(hit and bump) misstep was automatically detected by 
applying an IMU-based model, where a light pole was 
visually verified as the environmental fall risk [15]. 
Therefore, algorithms to detect such a static obstacle, 
as well as other tripping hazards (including dynamic 
obstacles such as pedestrians and pets, Fig.  3) and 
cracks in pavement [55] will be considered to pro-
vide complementary information on the properties 
of environment, towards a comprehensive context-
aware free-living gait and fall risk assessment method. 
The automated identification of contexts associated 
with falls (and missteps [15]) using egocentric vision 
data would increase the interpretability of IMU-based 
FLDBs and address more specific intervention strate-
gies, including the environmental modification (e.g., 
removing obstacles, securing fall areas, using non-slip 
flooring materials) as well as rehabilitation interven-
tions (e.g., training to negotiate obstacles), which can 
potentially reduce the frequency of future falls in older 
adults. For instance, if a high frequency of slips (a form 
of misstep) is observed while walking on indoor tiles, 
non-slip flooring materials can be integrated to avoid 
future imbalance events.

4 The incorporated IMU-based approach exhibited satisfactory performance 
in our previous research [15] addressing a different research question, and 
was hypothesized to be a suitable baseline candidate for the purpose of terrain 
type identification. This approach demonstrated satisfactory performance for 
the identification of stair walking episodes, as discussed in Additional file 1: 
Materials (I).
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Conclusions
Overall, encouraging results suggest that the integration 
of wearable cameras as well as deep learning approaches 
can provide objective information on the properties of 
walking surfaces, towards context-aware FLDBs for gait 
and fall risk assessment in the wild. Considering IMU 
data were collected along with FPV data in MAGFRA-
W, the impact of environmental features on IMU-based 
gait-related FLDBs will be investigated in our future 
works.
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