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Abstract 

Background:  Human-human (HH) interaction mediated by machines (e.g., robots or passive sensorized devices), 
which we call human-machine-human (HMH) interaction, has been studied with increasing interest in the last dec-
ade. The use of machines allows the implementation of different forms of audiovisual and/or physical interaction in 
dyadic tasks. HMH interaction between two partners can improve the dyad’s ability to accomplish a joint motor task 
(task performance) beyond either partner’s ability to perform the task solo. It can also be used to more efficiently train 
an individual to improve their solo task performance (individual motor learning). We review recent research on the 
impact of HMH interaction on task performance and individual motor learning in the context of motor control and 
rehabilitation, and we propose future research directions in this area.

Methods:  A systematic search was performed on the Scopus, IEEE Xplore, and PubMed databases. The search query 
was designed to find studies that involve HMH interaction in motor control and rehabilitation settings. Studies that do 
not investigate the effect of changing the interaction conditions were filtered out. Thirty-one studies met our inclu-
sion criteria and were used in the qualitative synthesis.

Results:  Studies are analyzed based on their results related to the effects of interaction type (e.g., audiovisual com-
munication and/or physical interaction), interaction mode (collaborative, cooperative, co-active, and competitive), 
and partner characteristics. Visuo-physical interaction generally results in better dyadic task performance than visual 
interaction alone. In cases where the physical interaction between humans is described by a spring, there are con-
flicting results as to the effect of the stiffness of the spring. In terms of partner characteristics, having a more skilled 
partner improves dyadic task performance more than having a less skilled partner. However, conflicting results were 
observed in terms of individual motor learning.

Conclusions:  Although it is difficult to draw clear conclusions as to which interaction type, mode, or partner char-
acteristic may lead to optimal task performance or individual motor learning, these results show the possibility for 
improved outcomes through HMH interaction. Future work that focuses on selecting the optimal personalized inter-
action conditions and exploring their impact on rehabilitation settings may facilitate the transition of HMH training 
protocols to clinical implementations.
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Introduction
Human‑human interaction
Humans often interact with each other while performing 
motor tasks, either to improve performance by working 
as a group or to learn from each other. Some motor tasks, 
such as exercising an injured joint, can be accomplished 
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by a single person, but also allow two or more people 
(e.g., the therapist and the patient) to interact during per-
formance of the task. Other motor tasks require multiple 
people to interact and cannot be performed by a single 
person (e.g., carrying a large table). Human-human (HH) 
interaction in tasks such as these can take the form of 
audiovisual communication and/or physical interaction.

In recent years, many studies have compared motor 
task performance under solo conditions and under dif-
ferent types of interaction among groups of two or more 
[1–5]. For tasks that can be performed with one or more 
people, we refer to task performance as the individual 
ability to accomplish a motor task during or without 
interaction. Similarly, for tasks that require multiple peo-
ple, task performance is the ability to perform the task as 
a group.

There has been an increasing interest also for the 
effects of HH interaction on individual motor learning [2, 
6–8] for motor tasks. In this article, we refer to individual 
motor learning as the solo task performance difference 
before and after a training period. This training phase can 
be performed individually or by interacting with some-
one else. In this review, we are interested in the learning 
of only individuals but not groups. Therefore, we do not 
analyze motor learning for tasks that require multiple 
people.

Studies that have demonstrated better outcomes of 
HH interaction than solo performance or training often 
attributed these positive effects to (1) increased moti-
vation and interest [3, 9, 10]; (2) the ability to estimate 
partner’s motion, [11, 12]; and (3) the summing of physi-
cal effort, or the ability of partners to communicate and 
adopt specialized roles in performing a physical task [1, 
13].

Even though important results have been obtained 
showing the potential benefits of human-human inter-
action, it is unclear how different kinds of interactions 
impact task performance and individual motor learning. 
A better understanding of how humans interact with 
each other in motor control tasks will have a significant 
impact on rehabilitation robotics, industrial collaborative 
robotics, and social robotics.

Robots as a medium for human‑human interaction
Conventional human-human (HH) interaction often 
occurs through direct physical connection in motor con-
trol and rehabilitation contexts. For example, in physical 
therapy, the therapist interacts with patients by holding 
their limb to guide or assist them. In some cases, how-
ever, it is beneficial to controllably customize the physical 
interface between the therapist and the patient [14]. One 
way to achieve this customized interface is to connect 
each human to a robot. The robots can then be controlled 

to implement desired interaction dynamics between the 
humans [2, 15], and possibly to display a virtual external 
environment [6, 16]. The simplest scenario involves two 
humans interacting through two robots, but other inter-
action network topologies, with more humans involved 
[12] (e.g., for group training), are possible. We call all 
such systems of robot-mediated interacting humans 
“human-robot-robot-human” (HRRH) interaction, or 
“human-robot-human” (HRH) for short.

In addition to physical interaction, HRH systems sup-
port non-physical interaction (e.g., audiovisual interac-
tion), which can lead to improved motivation and task 
performance [17–19]. For example, an arm exoskeleton 
can measure the joint angles of the human arm and esti-
mate the hand’s position. The individuals’ state infor-
mation can then be projected to a virtual environment 
where both users see visual cues about themselves and 
their partners [20]. While these kinds of virtual envi-
ronments directly provide visual interaction between 
individuals, they can also indirectly improve auditory 
interaction by providing more content to talk about with 
their partner [19, 21].

It is also possible to use passive mechanical devices to 
transmit physical information between humans, or sen-
sors to collect information for transmission between 
humans [5, 9, 22–24]. These devices cannot be referred 
to as robots. To include both robot-mediated and pas-
sive-device-mediated systems, we use the term human-
machine-human (HMH) interaction.

Definitions
Throughout this review, we refer to the previously-
defined terms “task performance” and “individual motor 
learning” to describe the goals of particular HMH inter-
actions. It is also worth distinguishing the two main 
forms of motor learning [25]: motor adaptation is the 
“learner’s incremental return to baseline performance in 
response to an environmental perturbation that causes 
performance errors” [26], while skill learning is improving 
the performance beyond baseline levels in the absence 
of environmental disturbances [27]. We also use the fol-
lowing terms to categorize the different studies in HMH 
interaction:

Interaction type The interaction type refers to physical 
interaction, non-physical interaction, or a combination 
of physical and non-physical interaction. Non-physical 
interaction includes cases where subjects can see the 
motion of their partner or partner’s avatar (visual) or can 
hear their partner (auditory). We also refer to the interac-
tion characteristics that characterize the particular inter-
action type. For example, a physical interaction defined 
by a virtual spring between two humans is characterized 
by the stiffness of the spring. In this case, the stiffness is 
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the interaction characteristic, which influences task per-
formance in multi-human interaction [2, 15, 16, 28, 29].

Interaction mode Figure 1 illustrates the following defi-
nitions of interaction modes which have been adapted 
from Sawers et al. [30] and Jarrasse et al. [31]:

•	 Collaborative Partners share the same task goal 
and work together to achieve it. Their roles are not 
assigned a priori.

•	 Cooperative Partners share the same task goal but are 
assigned to different roles (e.g., teacher and student).

•	 Co-active The task is divisible, and each human 
works independently, but they still interact.

•	 Competitive Each human tries to achieve their own 
goal, which is in conflict with the other(s) achieving 
theirs.

The choice of interaction mode has a significant impact 
on task performance and engagement [3, 5, 32, 33]. It is 
worth noting that the term interaction behavior is also 
used in the literature in place of interaction mode [30, 
31].

Partner characteristics The relative skill levels of inter-
acting partners, the relationship between the partners 
(e.g., strangers, friends), and the partner’s personality 
(e.g., extroversion, agreeableness) are referred to as part-
ner characteristics, which have been shown to be impor-
tant factors influencing task performance and individual 
motor learning [2, 3, 6–8, 12, 22, 28, 33].

Interaction condition The term interaction condition 
for a particular task refers to one or more of the interac-
tion type, interaction mode, and partner characteristics.

Contribution of this review
Baur et al. [34] conducted a systematic review to analyze 
whether multiplayer games improve experience and per-
formance in robot-assisted and virtual reality-assisted 
rehabilitation. They mainly focused on studies with non-
physical interaction and compared the methods and 

results of papers with different game modes. Sawers et al. 
[30] performed a comprehensive review with a focus on 
the physical interaction between humans with considera-
tion to the perspective on rehabilitation robotics. Moreo-
ver, they provided detailed taxonomies of human-human 
sensorimotor interaction.

Due to the complex nature of human-human interac-
tion, the effects of interaction conditions on task per-
formance and individual motor learning are not well 
understood. Also, considering the large amount of recent 
work, we believe a broader and more up-to-date review 
with a focus on the effects of different interaction con-
ditions is needed. In this review, we provide a compre-
hensive analysis of experimental designs and results 
by covering the interaction conditions defined above. 
We address the following research question: How does 
human interaction in HH and HMH systems influ-
ence task performance and individual motor learning? 
We conducted a systematic literature search focused on 
studies that investigate the effects of interaction condi-
tions on coordinated work between humans mediated by 
machines. The different experimental methods and per-
formance metrics of these studies were identified.

The core of this paper analyzes the results of the 
selected studies according to the main factors influencing 
the HMH interaction: interaction type, interaction mode, 
and partner characteristics. While we highlight consist-
ent results in these references, we also examine conflict-
ing outcomes between different studies. This review also 
identifies gaps in the literature and indicates directions 
for future research.

Outline
We first present the details of our search criteria and 
statistics of the study selection process under the 
Methods section. Then we provide a comprehensive 
analysis of the experimental design and methods used 
only in the selected references. This section presents 
different experimental setups, their implementation 

Fig. 1  Examples of different interaction modes
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details, and metrics used in the selected studies. In 
the Results section, we focus on the findings of the 
selected studies related to the effects of the interaction 
conditions on task performance and individual motor 
learning under three main categories: (1) interaction 
type and characteristics, (2) interaction mode, and (3) 
partner characteristics. In the Discussion, we analyze 
the experimental designs and results of the selected 
papers with reference to papers that were excluded 
from the core analysis. We also highlight conflicting 
and consistent results in the literature and suggest 
directions for future research.

Methods
A comprehensive review of the literature to synthesize 
the effects of HH and HMH interaction in motor con-
trol and rehabilitation has been conducted. The review 
methodology is described in following subsections.

Search criteria
An electronic search on Scopus, IEEE Xplore, and Pub-
Med databases was conducted. The search was lim-
ited to literature written in English. No restriction on 
the publication date was considered. Both conference 
papers and journal articles were included. We finalized 
the search in April 2021.

The search query was designed such that the result-
ing studies have the following characteristics: (1) they 
involve robotic or related devices, (2) they include 
tasks related to rehabilitation or motor control, (3) 
they involve multiple subjects interacting with each 
other, and (4) they refer to physical and/or non-phys-
ical interaction. Keywords used for each criterion are 
presented in Table  1. Exact search queries for each 
database can be seen in Additional file 1.

The search resulted in 863 papers: 614 papers from 
Scopus, 208 papers from IEEE Xplore, and 41 papers 
from PubMed.

Study selection
We filtered the studies using three main steps to elimi-
nate papers that were not related to the focus of this 
review. The methodology is presented in Fig.  2 as a 
PRISMA diagram [35].

First, duplicate records from different databases, 
review papers, position papers, and conference papers 
presenting the same data with a journal article were fil-
tered out. Second, papers were excluded unless (1) they 
included simultaneous interaction between at least two 
people and (2) the tasks were related to physical rehabili-
tation or motor control. For example, telerehabilitation 
systems where the therapist can only monitor the status 
of the patient, studies where there is only human-robot 
interaction, work related to social therapy, and stud-
ies with non-human subjects were excluded. Third, only 
studies that investigated the effects of interaction type 
(e.g., physical interaction vs. visual interaction), interac-
tion mode (e.g., cooperative vs. competitive), or partner’s 
characteristics (e.g., novice vs. expert) in motor control 
or rehabilitation were included. Studies focusing on mod-
eling human motion and interaction force, or on devel-
opment of multi human-robot systems and controller 
design, were excluded at this step. Even though one of 
our search criteria includes keywords such as “robot” and 
“exoskeleton,” we did not filter out studies that used only 
sensory systems due to their relevance to human-robot 
systems.

Out of 863 papers, thirty-one papers were found to sat-
isfy the inclusion criteria.

Data extraction
Data extraction and systematic synthesis were performed 
on the included studies. First, these papers were catego-
rized into three groups based on their primary research 
topic: (1) the effect of the interaction type (i.e., physical, 
non-physical, combination) or characteristics (i.e., spring 
stiffness, auditory, visual); (2) the effect of the interaction 
mode (i.e., cooperative, collaborative, co-active, com-
petitive); and (3) the effect of the partner’s characteristics 

Table 1  Search criteria and simplified version of the phrases used in the systematic search

Criteria Search phrase

Involves robotic or related devices (Exoskeleton OR robot)

AND AND

Studies about rehabilitation or motor control (Rehabilitation OR therapy OR “motor (control OR learning)”)

AND AND

Involves multi-human interaction (Pairs OR dyads OR multiplayer OR telerehabilitation)

AND AND

Refers to physical or non-physical interaction (“(Haptic OR physical OR social) interaction” OR motivation OR game)
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(e.g., novice, experienced, healthy, impaired). Categories 
of the selected studies are presented in Fig.  3. Articles 
investigating more than one of the three research topics 
above appear in each relevant group.

We analyzed each paper in detail by extracting the fol-
lowing information: experimental task, measured vari-
ables, focus of the research question, interaction type and 

its characteristics, interaction mode, partner characteris-
tics and presented results.

Experimental design and methods
This section describes the experimental design and meth-
ods used in the selected studies. This was done in terms 
of (1) the tasks chosen for coordinated HMH interaction, 
(2) the way interaction forces were rendered between 
humans, and (3) the measurements used to assess the 
experimental outcomes.

Experimental tasks
The devices and experimental tasks used in the selected 
studies are shown in Figs. 4 and 5. A more detailed sum-
mary of the experimental tasks and devices used in each 
study are given in Additional file 2: Table S1.

Tracking tasks
Eleven studies investigated the effect of dyadic interac-
tion in planar (2D) arm tracking tasks [2, 4, 6–8, 12, 15, 
17, 28, 36, 37]. These studies were based on moving a cur-
sor to a moving [2, 4, 7, 12, 15, 37] or a stationary [6, 17, 
28] target, following a path with a cursor  [8], and maneu-
vering a virtual object on a confined path while trying to 
prevent collision with the environment [36]. Hand-held 
end-effector-type manipulators or haptic devices were 
used as input devices for moving the cursors or virtual 

Fig. 2  Flowchart of study selection (PRISMA diagram [35])

Fig. 3  The focus of the research question in selected studies
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objects. The cursors or virtual masses controlled by mul-
tiple users were virtually coupled.

Object manipulation
Seven studies focused on different kinds of object manip-
ulation (e.g., stacking cubes, grasping cylindrical objects, 
applying specific forces to static tools moving pendulum) 
with hand-held end-effector type manipulators, haptic 
devices, or sensorized objects [16, 19, 29, 38–41]. Among 
them, five studies used a virtual environment (VR) [16, 
19, 29, 39, 40] while in the other two studies subjects 
applied force on a robotic tool [38] , or to a rigid pole [41] 
without any feedback from a virtual environment. Two of 
these studies were built on specific applications, includ-
ing performing a biopsy [40] and assessing spasticity of 
hypertonic arms [29].

Rehabilitation games
Many studies are based on custom-developed reha-
bilitation games [3, 5, 9, 18, 22–24, 32, 33, 42–45]. Arm 
rehabilitation systems [3, 9, 18, 22–24, 32, 42, 45], hand 
rehabilitation systems [33], commercially-available 
exergaming input devices [5, 44], and touch-screen tab-
lets and conductive handles [43] were used as the input 
devices for the games. For most of these studies, one 
participant used a haptic manipulator or rehabilitation 
system (generally the impaired participant), while oth-
ers used a commercially-available joystick or mouse. This 
was to consider the practical deployment and application 
in real-life rehabilitation scenarios (e.g., telerehabilitation 
and patient training with a PT or a healthy partner).

Haptic rendering
There are mainly two types of physical interaction in 
HRH systems. The first is obtained by rendering pas-
sive elements such as a spring and a damper between 
subjects. The other is obtained by mirroring the force or 
position between users. Eighteen of the selected stud-
ies implemented physical interaction between subjects. 
While most of them rendered virtual passive elements 
between the users to investigate the effects of dyadic 
interaction, a real sensorized rigid object was used in one 
study [41].

Haptic virtual elements were implemented in task 
space between the connection points of each user with 
the robot [2, 4, 6–8, 12, 16, 17, 19, 28, 29, 36, 37, 39, 
40] or at the joint level between the joints of users [15]. 
While some studies used commercial products and their 
built-in controllers [12, 17, 19, 28, 36, 39, 40], others used 
their own custom robotic devices and controllers [2, 6–8, 
15, 16, 29, 38].

Metrics
The metrics used to quantify task performance, individ-
ual motor learning, motivation, and exercise intensity are 
listed in Additional file  2: Table  S1. This section briefly 
summarizes some of the different metrics employed.

Task performance
Task performance metrics include task completion time 
[19, 39, 40, 46], success ratio [16, 29], and number of 
unwanted collisions with the environment [36, 40]. In 
static target-reaching tasks, completion time (i.e., the 
time spent to reach the target) was a typical metric [17, 
28]. In tasks involving tracking a trajectory, the root-
mean-squared or mean error between the actual trajec-
tory and the target trajectory was typically measured [2, 
4, 7, 11, 12, 15, 17, 37].

Studies that implemented rehabilitation games mostly 
used maximum achievable difficulty level of the game 
[22, 23] or points collected during the game [33, 44] as a 
measure of the task performance.

For tasks that allow one or more people, task perfor-
mance difference between a specific interaction con-
dition and solo mode was calculated as the difference 
between the individual performance during interaction 
and the succeeding solo performance without any inter-
action [2, 37]. For tasks that require multiple people, 
average dyadic performances of different interaction con-
ditions were compared [16, 17].

Individual motor learning
Individual motor learning is quantified by the difference 
between initial solo performance before training and 
final solo performance after training [2, 7, 8]. For exam-
ple, participants get baseline test scores (e.g., task com-
pletion time, tracking error) during solo performance; 
then they practice under different dyadic interaction con-
ditions; then they test again under solo conditions. We do 
not analyze motor learning results on tasks that require 
multiple people, as team learning is out of the scope of 
this review.

Motivation and exercise intensity
Increasing motivation, engagement, and exercise inten-
sity are important intermediate goals in motor control 
and rehabilitation contexts and are helpful for achieving 
improved task performance and individual motor learn-
ing. Both objective and subjective metrics are used to 
measure these factors.

Subjective results can be derived from Intrinsic Moti-
vation Inventory (IMI) questionnaires [5, 9, 18, 19, 22, 
24, 32] (measuring enjoyment/interest, effort/impor-
tance, perceived competence, and pressure/tension) and 
other game experience questionnaires [32, 47]. Objective 
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measurements include exercise intensity quantified by 
the RMS or the mean absolute value of the arm velocity 
[3, 9, 22, 24] and time spent on the game [3, 5].

Results
Effects of the interaction type and characteristics
We grouped the interaction types into three categories: 
(1) physical interaction, (2) non-physical interaction, 

Fig. 4  Devices used in the selected studies

Fig. 5  Experimental tasks used in the selected studies
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and (3) the combination of physical and non-physical 
interaction. Physical interaction is usually obtained by 
rendering a spring/damper system between subjects via 
robotic devices [2, 7, 16, 20, 28]. Non-physical interaction 
includes auditory or visual interaction [18, 19]. In some 
cases, both physical and non-physical interactions occur 
[17, 36, 38, 40]. Characteristics of the interaction are 
related to the properties of the virtual rendered elements 
(e.g., spring stiffness, damping ratio) in physical interac-
tion and the communication channels (e.g., visual, audi-
tory, audio-visual) in non-physical interaction.

Twelve studies showed the effects of different interac-
tion types or interaction characteristics [2, 15–19, 28, 
29, 36–38, 40]. Five out of the twelve studies analyze 
the effects of the interaction type [17, 19, 36, 38, 40], 
six study the characteristics of physical interaction (i.e., 
properties of the haptic environment) [2, 15, 16, 28, 29, 
37], and one studies the characteristics of non-physical 
interaction (e.g., auditory vs audio-visual) [18]. Details 
of these studies and the summary of their results can be 
found in Additional file 2: Tables S2 and S3.

Visuo‑physical interaction results in better task performance 
than visual interaction alone
Chellali et al. [40] and Liu et al. [36] compared the coop-
erative task performance of dyads having only visual 
interaction with dyads having both visual and physical 
interaction. While dyads in the study of Liu et  al. [36] 
worked on moving a virtual sphere inside a pipe, dyads in 
the study of Chellali et al. [40] worked on a virtual biopsy 
task. These two tasks, performed with haptic devices, are 
similar in the sense that both reward finishing the task as 
fast as possible with minimal contact with the environ-
ment (pipe or organs). In Liu et al. [36], subjects control 
the position of the virtual sphere along different axes 
while they are connected to the sphere with spring and 
dampers; in Chellali et  al. [40], one subject supervises 
his/her partner through the rigid haptic link between 
them.

Both studies found that dyadic performance with 
visuo-physical interaction had less undesired contact 
with the environment and achieved shorter completion 
time than the users with only visual interaction. In addi-
tion to the better dyadic task performance, the subjec-
tive assessment showed the preference of visuo-physical 
interaction over visual interaction [36].

The characteristics of the physical interaction affect task 
performance and individual motor learning
The effects of different interaction stiffnesses were inves-
tigated by five studies [2, 15, 28, 29, 37], and one study 
analyzed the effect of viscosity and damping ratio [16].

Ganesh et al. [2], Takagi et al. [15], Beckers et al. [37], 
and Che et al. [28] implemented collaborative interaction 
where subjects try to move their own cursor to either a 
dynamic [2, 15, 37] or a static [28] common target. Exper-
imentation was done solo and with subjects’ end effectors 
haptically connected via virtual springs. In all of these 
studies, the tracking performance difference between the 
dyadic and solo trials with different interaction stiffnesses 
was analyzed to see the effect on the task performance. 
Moreover, Beckers et al. [37] analyzed motor learning by 
examining the individual task performance improvement 
after training with partners connected by soft and hard 
springs.

Che et al. [28], Takagi et al. [15], and Beckers et al. [37] 
found that as the interaction stiffness increases, dyadic 
task performance improvement (with respect to the solo 
trial) of the less skilled partner increases. Ganesh et al. [2] 
reported that the largest task performance improvement 
occurs when the spring has an intermediate value of stiff-
ness, neither too small nor too large (The stiffness values 
are given in Additional file  2: Table  S3.). All four stud-
ies reported that there was no significant performance 
improvement for the better partner in any of the tested 
interactive stiffnesses.

Piovesan et  al. [29] analyzed the effect of interaction 
stiffness in a rehabilitation setting where users try to 
assess the spasticity of simulated hypertonic arms while 
subjects are virtually connected to them with virtual 
springs through a single interaction port. It was con-
cluded that a soft connection leads to significantly worse 
assessment performance, especially when the severity of 
spasticity is mild.

The effect of the viscosity and damping ratio on dyadic 
task performance was investigated by Tanaka et al. on a 
“balance seesaw” task [16]. Participants operate two han-
dles of a robotic device to control the angle of a virtual 
bar to drop a virtual ball (that rolls on top of the bar) into 
a moving box below. The virtual mass of the bar was vir-
tually connected to ground through a damper, and the 
participants’ handles were connected to each side of the 
bar through a spring and damper. They found that a high 
damping ratio of the connection to the bar and low vis-
cosity of the handle results in significantly worse task 
performance. The stiffness and damping values used in 
each study can be found in Additional file 2: Table S3.

Non‑physical interaction affects the physical communication
Wang et  al. [17] and Takagi et  al. [38] investigated the 
effects of additional non-physical interaction in addition 
to physical interaction for reaching and force reproduc-
tion tasks, respectively. In the study of Wang et al. [17], 
subjects tried to reach an invisible target while getting 
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directives from their supervisor—who could see the 
target—with only physical interaction or physical and 
auditory interaction together. Physical interaction was 
implemented by mirroring the position of the supervi-
sor’s haptic device to the other subject’s haptic device. 
Similarly, in the study of Takagi et al. [38], subjects tried 
to reproduce the force they felt from their partner either 
while looking at each other (physical and visual inter-
action) or not looking at each other (physical interac-
tion). Both studies found that task performance with 
the additional non-physical interaction component was 
significantly different from the performance with physi-
cal interaction alone. While additional visual interaction 
caused the users to perform worse [38], additional audi-
tory interaction was found to improve performance [17].

Increasing the number of non‑physical interaction channels 
increases motivation
Johnson et al. [18] and Le et al. [19] compared the moti-
vation and engagement of subjects for varying numbers 
of non-physical interaction channels (e.g., no interaction, 
audio, audio-visual). In the study of Johnson et  al. [18], 
pairs played a competitive tic-tac-toe game with each 
other while they were connected to an end-effector type 
robot in one of the three conditions: (1) no interaction 
with the opponent, (2) subjects could hear each other, 
and (3) subjects could see and hear each other. Similarly, 
the subjects in the study of Le et al. [19] collaboratively 
stacked virtual cubes by using haptic devices while either 
having only visual feedback or visual and auditory feed-
back from their partners. Both studies found that the 
subjects’ interest and motivation increased as the num-
ber of non-physical communication channels increased. 
Moreover, Le et al. [19] reported that when subjects were 
allowed to talk with each other, they completed their task 
faster.

Effects of interaction mode
As defined earlier (see Fig. 1), we consider the following 
interaction modes: collaborative, cooperative, co-active, 
and competitive [30, 31].

Most studies investigated the effect of interaction 
modes on either (1) task performance and individual 
motor learning or (2) game experience (i.e., motivation 
and engagement levels) during non-physical interaction 
[3, 5, 9, 18, 22–24, 32, 42–45]. Among them, five stud-
ies focused on the effects of collaborative interaction [3, 
9, 23, 43, 45], nine studies addressed competitive inter-
actions [3, 5, 18, 22–24, 32, 42, 43], three studies ana-
lyzed cooperative interactions [5, 9, 44], and three studies 
implemented co-active interaction modes [3, 32, 43]. In 
five studies, interaction modes were directly compared 

to one another [3, 9, 23, 32, 43] (e.g., competition vs. 
cooperation).

Nine studies were conducted to investigate the effect 
of a specific interaction mode during physical interac-
tion compared to solo performance [2, 6–8, 15, 17, 28, 
38, 39]. Among the nine studies, eight of them analyzed 
the effect of collaborative interaction [2, 6–8, 15, 17, 28, 
38] and one study analyzed cooperative interaction [39]. 
Competition with physical interaction was not consid-
ered by any of the analysed references. Details of these 
studies and a summary of their results can be found in 
Additional file 2: Tables S1 and S4.

Interaction modes affect engagement and task performance
The majority of studies that have been reviewed reported 
that non-physical interaction improves both task perfor-
mance and gaming experience for rehabilitation games. 
Most studies showed that game experience (e.g., motiva-
tion, enjoyment level, preference) was improved during 
non-physical interaction compared to performing the 
task alone for games such as tic-tac-toe [18], balancing 
virtual objects on a structure [33], air hockey [32], VR-
based cooking [9], arm tracking [5] tasks, and Pong game 
[3, 22, 24].

In addition to the game experience, improved exercise 
intensity was observed for the dyadic modes in the stud-
ies of Gorsic et al. [3, 24], and Thielbar et al. [5]. Moreo-
ver, Mace et al. [33] reported improved task performance 
for collaborative interaction compared to solo for less-
skilled subjects.

On the other hand, Gorsic et  al. [45] found no differ-
ences between solo mode and collaborative mode on the 
motivation and exercise intensity of sub-acute stroke 
survivors exercising with a virtual environment. Mace 
et al. [33] presented decreased task performance for col-
laborative interaction compared to solo for more skilled 
subjects.

Specific interaction modes are more effective than others 
in non‑physical interaction
Only a small number of studies compare the effect of dif-
ferent interaction modes within the study. Four studies 
directly compare interaction modes during non-phys-
ical interaction [3, 9, 32, 43]. According to Novak et  al. 
[32], for both healthy and post-stroke participants play-
ing air hockey, two distinct groups emerged: those who 
liked the competitive mode but did not care for the co-
active mode, and those who liked the co-active mode 
but did not enjoy the competitive mode. Also, the group 
who preferred competitive mode put higher effort while 
playing competitive as compared to playing in different 
modes.
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Similar results were reported by Gorsic et  al. [3] for 
a Pong game where almost half of the participants pre-
ferred competitive mode over collaborative or co-active 
modes. Moreover, participants who preferred the com-
petitive game played that mode at a higher exercise 
intensity compared to other modes, as was also reported 
by Novak et al. [32].

In another study, Pereira et al. [43] reported that in an 
object-catching VR game collaborative mode promotes 
more social involvement, which was measured using the 
Game Experience Questionnaire (GEQ), as compared 
to competitive and co-active modes. Similarly, subjects 
in the study of Gorsic et  al. [9] preferred collaboration 
without any defined roles over cooperation with assigned 
roles in a VR-based cooking game. All studies described 
in this section emphasize the importance of selecting 
the preferred interaction mode to achieve high moti-
vation and a positive experience during non-physical 
interaction.

Collaborative physical interaction affects task performance 
and individual motor learning
Improved task performance or individual motor learn-
ing during physical interaction for collaborative tasks was 
reported in several studies [2, 4, 7, 8, 15, 17, 41]. These 
studies were conducted on tracking tasks such as mov-
ing a cursor to a dynamic [2, 4, 7, 15] or static [17] tar-
get, tracking predefined trajectories [8], or moving a pole 
back and forth with a specified amplitude [41].

Most studies showed that physical interaction was 
mutually beneficial; namely, both interacting partners 
improve task performance during interaction where the 
task performance in solo trials was compared to the task 
performance in paired trials. On the other hand, van der 
Wel et al. [41] found no difference between the task per-
formances of solo and dyadic subjects on a pole moving 
task. However, it is worth noting that in the solo mode, 
the other partner was replaced by the other hand of the 
subject (i.e., bi-manual operation).

Some studies found improved individual motor learn-
ing with collaborative haptic interaction compared to 
training solo under visuo-motor rotation [2] or force field 
[4]. However, different levels of improvement in individ-
ual motor learning were reported depending on the skill 
level and experience of the partner. More details of the 
partner characteristics are given in the following section.

Effects of partner characteristics
Partner characteristics, including the skill level of the 
partner and the relationship between partners, are also 
important factors that influence dyadic interaction. Stud-
ies have investigated the effects of different skill levels 
between interacting dyads in collaborative reaching tasks 

[6, 28] and tracking tasks [2, 7, 8, 12, 37] with physical 
interaction, as well as the effects of the partner relation-
ship in collaborative or competitive rehabilitation games 
[3, 22, 33] with non-physical interaction. Details of these 
studies and the summary of their results can be found in 
Additional file 2: Table S5.

Skill level of the partner affects individual motor learning
Beckers et al. [37], Mireles et al. [6], and Kager et al. [8] 
investigated the effects of partner’s initial skill level on 
individual motor learning for planar tracking, reaching, 
and trajectory following tasks, respectively. All three 
studies implemented collaborative interaction with a 
virtual spring between subjects’ upper limbs by robotic 
manipulanda. While Beckers et  al. [37] and Kager et  al. 
[8] implemented visuo-motor disturbances, Mireles et al. 
[6] implemented a force field that subjects need to adapt 
to. Beckers et  al. [37] found that subjects who trained 
with more skilled partners obtained better individual 
motor learning compared to subjects who trained with 
less skilled partners. On the other hand, Mireles et al. [6], 
and Kager et al. [8] reported significant results and quali-
tative trends respectively, suggesting training with a part-
ner with a similar skill level resulted in better individual 
motor learning compared to training with an expert.

Interacting with a better partner improves task performance
Nine studies analyzed the effect of the partner’s skill level 
on task performance [2, 6–8, 12, 15, 28, 33, 37]. While 
eight of them implemented collaborative physical inter-
action between the subjects during tracking [2, 7, 12, 15, 
37], reaching [6, 28], and trajectory following tasks [8], 
one of them only used visual interaction with no physi-
cal connection between the subjects during a collabo-
rative balancing task [33]. All of these studies reported 
that interacting with a better (i.e., more skilled) partner 
resulted in better task performance during dyadic inter-
action compared to interacting with a worse partner or 
performing the same task solo. Some of these studies 
also found that even interacting with a worse partner 
improves the task performance during interaction com-
pared to solo performances [2, 7, 12].

Interacting with relatives/friends at home raises motivation
Gorsic et al. studied the effects of partnership on motiva-
tion and intensity [3] in rehabilitation games, where par-
ticipants played four variants (competitive, collaborative, 
co-active, and single-player) of a Pong game with either 
their friends/relatives at home or with their occupational 
therapists at a clinic. In another study, Gorsic et al. asked 
patients to play a competitive Pong game in two differ-
ent conditions: (1) with a relative/friend at home and (2) 
with another patient (stranger) at a rehabilitation clinic 
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[22]. Compared to patients exercising with a stranger at 
a clinic (a therapist or another patient), patients exercis-
ing with a friend/relative at home preferred competitive 
game modes and showed higher motivation and engage-
ment [3, 22].

Discussion
Devices and experimental setups
All studies included in this review were based on upper-
limb movements or rehabilitation tasks. Most studies 
were also performed with hand-held end-effector-type 
manipulators, haptic devices, or sensors where there 
is a single interaction point between the device and the 
user. These studies could be extended to lower-limb 
movements (e.g., tracking trajectories with the ankle for 
rehabilitation [48]) to investigate if current results can 
be generalized. Furthermore, conducting studies with 
multiple interaction points between the device and the 
user, such as with a multiple DOF exoskeleton that can 
provide virtual connections of varying and controllable 
impedance at the joint level between dyads, would aid 
our understanding of how dyadic interaction affects task 
performance and motor learning at the joint level.

Haptic rendering
In most studies on HRH physical interaction, the haptic 
connections between dyads are virtual spring-damper 
elements. Other physical interaction schemes, such as 
magnet-like force fields [21], could be investigated to 
provide a holistic view of the effects of physical interac-
tion. Lessons can also be learned from the vast amount 
of previous work in teleoperation [49–52]. A promis-
ing possible approach, due to its similarity to traditional 
rehabilitation, could be to mirror the motion of user A 
to user B, while only sending the force measurement of 
user B to user A [53–56]. This type of asymmetric physi-
cal interaction can be beneficial, especially in cooperative 
scenarios where users have different roles. Designing the 
characteristics of the physical interaction based on the 
assigned roles could improve the outcomes of the inter-
action. For example, in a rehabilitation setting, the ther-
apist can follow the patient’s motion through their own 
device while applying forces as needed to assist or correct 
the patient instead of just being connected with virtual 
springs [14].

Towards haptic rendering in a network of subjects
While most studies focus on interaction between only 
two subjects, scenarios where a network of people inter-
act with each other can be quite beneficial, especially 
in a rehabilitation setting. For example, the ability to 
simultaneously interact with a network of patients can 
allow therapists to provide more efficient and effective 

therapy. Even though it might be expected that adapta-
tion and learning will take more time with more people, 
especially if the interaction is only non-physical, Takagi 
et al. [12] obtained promising results related to the ben-
efits of increased group size with physical interaction. 
They examined the task performance of dyads, triads and 
tetrads whose hands are connected with virtual springs 
while they follow a common moving target. They found 
that individuals use the interaction force to estimate the 
collective’s target and improve their movement planning. 
As the group size increases, the variance of haptic infer-
ence decreases, which results in better estimate and task 
performance.

Considering the initial positive results and its possi-
ble impact on rehabilitation practice, we believe that it 
will be beneficial to the field to allow a network of peo-
ple to interact with each other through their own robotic 
devices in future studies. In addition to solving the prac-
tical challenges of developing these systems, the effect of 
multilateral HRH interactions on task performance and 
motor learning should be explored.

Metrics
Task-related measurements (e.g., completion time, track-
ing error) are generally used to quantify short-term 
motor learning due to dyadic training. Motor learning 
also involves neuroplastic changes in the brain, and it 
has two key attributes: retention and transfer. These are 
not studied in the papers we reviewed. With advanced 
technologies in electroencephalography (EEG), we could 
potentially measure the neuroplastic changes in the brain 
during different dyadic interaction conditions and fur-
ther understand the mechanism of dyadic interactions in 
motor learning [57, 58]. In addition, it would be useful to 
include experiments that investigate how the key factors 
(e.g., interaction type, interaction mode, partner charac-
teristics) in dyadic interactions affect the retention/per-
sistence and transfer/generalization of motor learning, 
which is essential for rehabilitation purposes.

Two papers [3, 22] examine how the relationship 
between partners affects their motivation and pref-
erences, and many studies show that motivation can 
directly influence training intensity, which improves 
functional outcomes. However, there has been little study 
of the direct effect of different interaction modes on 
clinical outcomes (e.g., via the Fugl-Meyer Assessment). 
Clinical measurements should be used in combination 
with subjective and objective measurements to assess 
how key factors in dyadic interaction affect rehabilitation 
outcomes.
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Effects of the interaction type and characteristics
Twelve studies [2, 15–19, 28, 29, 36–38, 40] that analyzed 
the effects of interaction type and characteristics mostly 
reported similar results on dyadic interaction. However, 
there are several contradicting results and areas that sug-
gest further investigation.

Limited studies about the effects of interaction characteristics 
on individual motor learning
Some tasks can only be performed by two people, so 
only dyadic task performance can be analyzed. In a reha-
bilitation setting, however, the goal is motor learning 
for the individual patient. In other words, in rehabilita-
tion settings, dyadic interaction is used to train people to 
improve their solo performance. However, most studies 
investigate the effects of interaction types and charac-
teristics focused on dyadic task performance but do not 
investigate motor learning of individuals due to dyadic 
training.

Only Beckers et al. [37] investigated the effect of inter-
action characteristics (i.e., spring stiffness) on individual 
motor learning and found no significant learning differ-
ence between training with compliant and stiff interac-
tion. Considering the fact that they also did not find any 
learning difference between solo and stiff connection, 
it would be valuable to replicate a similar experimen-
tal procedure with much stiffer virtual springs or with 
rigid interaction. This would allow to compare the two 
extremes of the physical interaction characteristics (no 
interaction and rigid interaction).

Conflicting results on the effect of interaction stiffness
Four studies implemented collaborative target track-
ing tasks where solo and dyadic tracking performances 
are compared [2, 15, 28, 37]. While Ganesh et  al. [2] 
found that the biggest dyadic task performance improve-
ment (with respect to solo) occurs at intermediate lev-
els of stiffness between members of a dyad, Che et  al. 
[28] , Takagi et  al. [15] and Beckers et  al. [37] observed 
that as the stiffness increases performance improve-
ment increases. (The stiffness values are given in Addi-
tional file  2: Table  S3.) The reasons for these different 
results are unclear, but two main differences between 
the experimental setups might be the source of the con-
flicting results. First, the tracking tasks in the study of 
Takagi et al. [15] and Che et al. [28] were 1 DoF, but in 
the study of Ganesh et al. [2] and Beckers et al. [37], sub-
jects tracked targets that moved in a plane. Second, while 
in the articles of Ganesh et al. [2], Takagi et al. [15], and 
Beckers et al. [37] subjects tracked a moving target, in the 
study of Che et al. [28] subjects reached to a static target. 
Therefore, additional studies with different task spaces 

and target types (moving, static) could be of help to bet-
ter understand the effect of interaction stiffness on task 
performance.

Little study of the effect of interaction damping
Even though several studies [2, 28, 29, 37] implemented 
virtual dampers between subjects for stability, they were 
focused on the effect of different spring stiffnesses on 
dyadic task performance. Only Tanaka et  al. [16] ana-
lyzed the effects of virtual damping by varying its viscos-
ity. They found significantly different task performance at 
different viscosities and damping ratios. Additional study 
of the effect of velocity-dependent forces on task perfor-
mance is warranted.

Several studies have reported promising motor learning 
results for single-person upper-limb reaching or track-
ing tasks due to training under destabilizing negative 
viscosity [59–61]. Negative viscosity can improve motor 
learning by increasing motor variability and facilitat-
ing the development of internal models of body dynam-
ics [62, 63]. However, none of the references reviewed in 
this paper implemented negative viscosity between the 
subjects.

Effects of the interaction mode
Many factors contribute during non‑physical interaction
It is clear that, when the interaction mode is selected 
properly, non-physical interaction can improve the par-
ticipants’ motivation, engagement, and gaming expe-
rience, leading to an increase in physical activity and 
training intensity. Many of the included studies con-
firmed that the personality of the user, the intimacy 
between dyads, and environmental factors play impor-
tant roles in choosing the proper interaction mode. In 
neuromuscular therapy, training intensity—alongside 
early treatment and user-centered, task-oriented train-
ing—is a key factor for functional improvement. There-
fore, non-physical interaction has great potential to 
further increase the benefits brought by robot-assisted 
neuromuscular and virtual reality-assisted therapy.

Comparison of interaction modes during physical interaction 
is needed
Despite the increasing interest in comparing different 
interaction modes for non-physical interaction condi-
tions, no study compares how different physical interac-
tion modes affect task performance or individual motor 
learning. Moreover, no study has implemented competi-
tive physical interaction between subjects among the 
selected studies.

Even though competitive physical interaction would 
result in worse task performance during the training, it is 
quite promising for improved individual motor learning. 
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Considering the positive results obtained by haptic error 
modulation and resistive training studies [64–67], com-
petitive interaction can facilitate error-based motor 
learning. One possible way to implement competitive 
physical interaction is rendering virtual springs with neg-
ative stiffness between the subjects such that they push 
each other away while following the same target. It is also 
possible to facilitate competitive physical interaction by 
assigning conflicting goals while subjects haptically inter-
act with each other [48, 68].

Cooperative interaction in a teacher-student scenario 
can also be helpful for individual motor learning, espe-
cially for less-skilled subjects who are not able to com-
plete the task alone. One way to obtain this interaction 
is by implementing a virtual uni-directional spring where 
force is transmitted only to the student. For a perfect 
teacher, this interaction resembles assistive robotic train-
ing strategies [69–71].

Due to their relevance to different robot-aided physi-
cal therapy strategies, implementation of competitive, 
collaborative, and cooperative physical interaction in a 
single study to compare the effects on individual motor 
learning could be very beneficial to our understanding of 
HRH interaction. We believe that such results could be 
further translated to robotic controllers that can mimic 
human-like adaptability.

Effects of partner characteristics
The studies analyzed here were focused on either effects 
of partner skill level on task performance/individual 
motor learning or effects of partner relationship on exer-
cise intensity and motivation for rehabilitation scenarios.

Limited and conflicting results about the effects of partner 
characteristics on individual motor learning
Only three of the included studies investigated the effects 
of the training partner’s initial skill level on individual 
motor learning [6, 8, 37]. All of them implemented col-
laborative physical interaction between the subjects dur-
ing planar tracking/reaching tasks under visuo-motor 
disturbances [8, 37] or force field [6].

Kager et al. [8] and Mireles et al. [6] reported qualita-
tive trends and statistically significant results respectively, 
suggesting training with a partner that has a similar initial 
skill level improves individual motor learning more com-
pared to training with an expert. The reason behind these 
results might be that novice partner does not need to 
work hard when they are connected to an expert, which 
can negatively impact their learning of the task. On the 
other hand, Beckers et  al. [37] found that as the initial 
skill level of the training partner increases, individual 
motor learning increases. While the hypothesis behind 

this result might be that having a better teacher is bet-
ter for learning new tasks, it is worth noting that it was a 
collaborative task with no explicit roles (e.g., teacher-stu-
dent) given to the subjects. Another possible explanation 
is the fact that initially less-skilled partners, who are more 
likely to interact with better partners, have more room to 
improve their individual performance than initially more 
skilled partners. Another important difference between 
these studies is that Beckers et al. [37] use the same tra-
jectory for the dyadic and solo trials with only different 
starting points. Therefore, cognitive memory might play 
a role in their results. On the other hand, Kager et al. [8] 
and Mireles et al. [6] use different trajectories or random 
targets where results are more generalizable to different 
motions and depend less on the properties of the selected 
trajectory. Moreover, while Beckers et al. [37] measured 
motor adaptation, Mireles et  al. [6] and Kager et  al. [8] 
investigated mostly skill learning. We believe more work 
on this topic is warranted with different tasks, different 
disturbances, and more variety on the initial skill differ-
ences of the subjects to better understand the reasons 
behind the conflicting results.

Transferring results to rehabilitation environments
Long‑term effects need further investigation
Physical rehabilitation is usually a process that takes 
weeks, months, or even years. Among selected stud-
ies, only five of them implemented experimental setups 
where training takes place in multiple sessions during 
different days or weeks [5, 6, 22, 23, 45]. Moreover, only 
Mireles et  al. [6] implemented physical interaction and 
had a post-retention session on a different day from the 
last training session. Extending the number of studies 
involving physical dyadic training over a long period of 
time and investigating long-term retention could inform 
the application of results to rehabilitation scenarios.

Independent investigation of partner’s nature 
and environmental settings is missing
In rehabilitation settings, in addition to the partner’s 
nature, environmental settings can influence perfor-
mance and motor learning. In the studies of Gorsic et al. 
[3, 22], more positive results in terms of motivation and 
exercise intensity were obtained for participants inter-
acting with a friend/relative at home compared to inter-
acting with a stranger (another patient or therapist) at 
a clinic. However, it is worth noting that whether the 
increased motivation was due to interacting with a rela-
tive/friend or due to the environmental factors was not 
analyzed. Additional studies that independently investi-
gate the effects of the partner’s nature and environmental 
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settings are needed. Results from these studies can 
be translated to possible home or clinic-based dyadic 
rehabilitation.

Lack of studies on the effects of partner’s age and impairment
While there are studies analyzing different kinds of tasks, 
skill levels, and interaction environments, no study exam-
ined subjects’ ages among the selected references. We 
believe this factor should also be investigated in future 
studies considering that robotic haptic guidance results 
in different motor learning improvements among dif-
ferent ages [72, 73]. Another factor that might influence 
preference and motivation is the participants’ level of 
impairment. Clinical trials need to include more partici-
pants with different levels of impairment for a systematic 
investigation. Lessons learned regarding these factors can 
be applied in clinical scenarios where patients interact 
with each other during their training sessions.

Limited variation of interaction condition
Even though the effects of interaction type, interaction 
mode, and partner characteristics are investigated in 
different studies, only a couple of studies examine more 
than one of these three components with the same exper-
imental devices and procedure. Moreover, as shown in 
Fig. 3, there is no single study that systematically varies 
each interaction component. To have more generalizable 
results on task performance and individual motor learn-
ing, we believe that interaction types, characteristics, and 
modes should be systematically changed, and the effects 
of a wide variety of interaction conditions should be 
compared.

Does physical HH interaction improve task performance?
Many studies clearly conclude that collaboratively and 
physically interacting with a better partner results in 
better task performance than interacting with a worse 
partner for different tracking, reaching, or trajectory fol-
lowing tasks at upper limb with different physical inter-
action characteristics (i.e., stiffness, damping). This is 
not surprising due to the nature of collaborative physical 
interaction where the partner’s individual performance 
directly affects the dyadic task performance.

Interestingly, some studies found that even connecting 
with a worse partner can improve task performance [2, 
7]. Subjects using haptic forces to estimate their partner’s 
target to improve their own prediction of the target can 
be one explanation for that [11]. It is also possible that 
physical interaction corrects the “irregular or erratic 
tracking behaviours” of subjects [7]. Implicit role speciali-
zation [1] between subjects might be another explanation 

for the improved task performance compared to solo 
even if the partner’s skill level is worse.

Does physical HH interaction improve individual motor 
learning?
Unlike task performance, the results obtained on the 
effects of HH interaction on individual motor learning 
are more limited, contradictory, and hard to general-
ize. Three studies [2, 7, 37] that compared collaborative 
dyadic training with solo training did not report consist-
ent results with each other. Ganesh et al. [2] and Beckers 
et al. [37] implemented an almost identical experimental 
protocol for a target tracking task with visuo-motor rota-
tions. While Ganesh et al. [2] reported better individual 
motor learning with dyadic training than solo training, 
Beckers et al. [37] did not find any significant difference 
between the individual motor learning of the dyadic 
group or solo group.

One possible explanation for the different results might 
be the fact that different robotic devices were used. Nei-
ther article reported their haptic transparency or virtual 
environment rendering fidelity during solo and con-
nected trials, respectively. It is important that interaction 
forces are rendered with high accuracy to correctly com-
pare the results from different interaction conditions. For 
example, if parasitic forces felt by the user in solo mode 
(e.g., frictional and inertial forces) are significant com-
pared to the interaction forces in the connected mode, 
the comparison of solo and connected training can be 
misinterpreted. Similarly, if the stiffness felt by the users 
is not consistent during dynamic motion, the effects of 
the physical interaction might be misinterpreted.

Due to the conflicting and limited number of studies, 
we believe further systematic studies focusing on individ-
ual motor learning are warranted. Moreover, presenting 
haptic transparency, and rendering performances can be 
beneficial to prove solo and dyadic conditions are imple-
mented properly.

Human‑like robotic controllers
Further analysis of how humans move when they are 
coupled to others, and transferring this knowledge to 
human-robot systems, can lead to advanced human-
like robotic controllers. Human-like robot controllers 
based on improving motor learning could have signifi-
cant implications on rehabilitation robotics to achieve 
or perhaps improve the results obtained by conventional 
human therapists. Moreover, knowledge of HH interac-
tion on dyadic task performance can be used to develop 
robots that work together with humans in industry set-
tings, such as carrying a large object or performing 
assembly tasks together.
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We found several studies that did not meet our inclu-
sion criteria, but which did investigate HH interaction to 
develop human-like robotic controllers or to understand 
dyadic communication. One way to represent human 
motion is to model it as an optimal controller minimiz-
ing a cost function that penalizes error and effort [11, 
68, 74, 75]. Another less commonly used method is to 
represent the human as a first- or second-order system 
with delay [76, 77]. It is also important to take speciali-
zation, role sharing, and negotiation into account while 
modeling human behavior. Accelerator/decelerator [1], 
executor/conductor [78], and leader/follower [68] are 
some of the observed roles in human-human studies. In 
line with these results, Kucukyilmaz et  al. implemented 
a haptic role exchange mechanism on a dynamic human-
robot joint manipulation task and showed that the role 
exchange mechanism improves task performance and 
joint efficiency of the partners [79, 80].

Three studies used HH interaction-derived robot con-
trollers to substitute one of the peers [11, 81, 82]. In all 
of these studies the subjects either did not realize that 
they were interacting with a robot [81, 82] or their task 
performance or individual motor learning results with 
robot partners were similar to their results with human 
partners [11]. However, it is worth noting that it was not 
clear if substituting one of the peers had an effect on the 
motivation because the experimental procedures did not 
involve any social interaction component. We believe 
that these results are promising for obtaining human-like 
robotic controllers, and they should be supported with 
additional studies with different interaction conditions 
and tasks.

Conclusions
Many variables govern HH interaction, including inter-
action type (i.e., physical, non-physical or the combina-
tion), characteristics (i.e., interaction impedance between 
the individuals), mode (i.e., collaborative, cooperative, 
co-active, competitive), and partner characteristics (i.e., 
skill level, intimacy, personality). Over the past few dec-
ades, many researchers have been systematically inves-
tigating each variable to better understand why humans 
physically interact so effectively and to improve individ-
ual motor learning in HRH systems.

Studies on interaction type showed that additional 
physical interaction resulted in better task performance 
than visual interaction alone during tracking tasks. Some 
studies reported that the type of non-physical interaction 
(e.g., visual vs. auditory interaction) can greatly influence 
task performance. The combination of additional non-
physical communication channels (e.g., visual vs. visual 
and audio interaction) with physical interaction was also 
shown to influence the motivation level during a given 

task. Some studies also emphasized the significance of 
the characteristics of the physical interaction (e.g., inter-
action stiffness).

Similarly, the choice of interaction mode was also 
shown to have significant effects on task performance 
and engagement. Interaction modes were mostly studied 
during non-physical interaction, showing that despite the 
mode, all types of non-physical interaction can improve 
engagement and motivation when compared to perform-
ing the same task alone. Depending on the personality 
of the individual, competitive or cooperative modes led 
to enhanced motivation and movement intensity. Part-
ner characteristics also played a prominent role in task 
performance and motor learning. Interacting with rela-
tives and friends increases motivation when compared to 
interacting with a stranger. There were also several stud-
ies showing that physically interacting with a more skilled 
partner in a collaborative arm tracking task improves 
the task performance while interacting with a partner 
that has a similar skill level improves individual motor 
learning.

Although it is difficult to draw clear conclusions as to 
which interaction type, mode, or partner characteris-
tic may lead to optimal task performance or individual 
motor learning, these results show the possibility for 
improved motor learning during HH or HMH interac-
tion. By selecting the optimal combination and person-
alizing these variables, there is a clear opportunity to 
not only enhance motor learning during HH or HMH 
interactions but to also make the experience more 
enjoyable. Future studies could explore human interac-
tion with a multi-joint robot at multiple contact points 
(e.g., an exoskeleton) in order to analyze the motor 
task at the joint level. With the continuous advances 
in neuroimaging tools, such as EEG, it may be possible 
to monitor changes in the brain with high spatial and 
temporal resolution. Investigating the effects of interac-
tion type, mode, and partner characteristics at the cor-
tical level may provide insight into the mechanism of 
motor improvement during physical and non-physical 
interaction.
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