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Abstract 

Background: Smoothness is commonly used for measuring movement quality of the upper paretic limb during 
reaching tasks after stroke. Many different smoothness metrics have been used in stroke research, but a ‘valid’ metric 
has not been identified. A systematic review and subsequent rigorous analysis of smoothness metrics used in stroke 
research, in terms of their mathematical definitions and response to simulated perturbations, is needed to conclude 
whether they are valid for measuring smoothness. Our objective was to provide a recommendation for metrics that 
reflect smoothness after stroke based on: (1) a systematic review of smoothness metrics for reaching used in stroke 
research, (2) the mathematical description of the metrics, and (3) the response of metrics to simulated changes associ‑
ated with smoothness deficits in the reaching profile.

Methods: The systematic review was performed by screening electronic databases using combined keyword groups 
Stroke, Reaching and Smoothness. Subsequently, each metric identified was assessed with mathematical criteria 
regarding smoothness: (a) being dimensionless, (b) being reproducible, (c) being based on rate of change of position, 
and (d) not being a linear transform of other smoothness metrics. The resulting metrics were tested for their response 
to simulated changes in reaching using models of velocity profiles with varying reaching distances and durations, 
harmonic disturbances, noise, and sub‑movements. Two reaching tasks were simulated; reach‑to‑point and reach‑to‑
grasp. The metrics that responded as expected in all simulation analyses were considered to be valid.

Results: The systematic review identified 32 different smoothness metrics, 17 of which were excluded based on 
mathematical criteria, and 13 more as they did not respond as expected in all simulation analyses. Eventually, we 
found that, for reach‑to‑point and reach‑to‑grasp movements, only Spectral Arc Length (SPARC) was found to be a 
valid metric.

Conclusions: Based on this systematic review and simulation analyses, we recommend the use of SPARC as a valid 
smoothness metric in both reach‑to‑point and reach‑to‑grasp tasks of the upper limb after stroke. However, further 
research is needed to understand the time course of smoothness measured with SPARC for the upper limb early post 
stroke, preferably in longitudinal studies.
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Introduction
Stroke is one of the main causes of adult disability [7–9]. 
Goal-directed upper limb movements after stroke are 
characterized by slowness, spatial and temporal disconti-
nuity (i.e., lack of smoothness), and abnormal stereotypic 
patterns of muscle activation or movement synergies [10, 
11].

Currently, stroke literature offers several ways for 
objective measurement of upper limb movement, and 
standardization is lacking [12, 13]. Measuring changes in 
smoothness during reaching, pointing or grasping using 
the upper paretic limb is suggested to reflect quality of 
movement (QoM) early after stroke [5, 6]. Smoothness 
of movement is regarded as the result of ‘learned, coor-
dinative processes in sensorimotor control’, although 
the underlying neuronal and mechanical substrates that 
cause lack of smoothness in motor control are still poorly 
understood [14, 15]. Smoothness is therefore interpreted 
as a reflection of the level of sensorimotor coordination 
and movement proficiency [16, 17].

Balasubramanian and colleagues defined movement 
smoothness as continuity or non-intermittency of a 
movement, independent of its amplitude and duration 
[6]. Maximizing the smoothness of a movement is con-
sidered to be prioritized by the neuro-muscular system, 
as it reduces the control burden on the brain [18]. None-
theless, the neurophysiological mechanisms of smooth-
ness deficits after stroke are yet to be understood. Muscle 
activity patterns observed during reaching after stroke 
have been shown to be impaired [19]. Smoothness defi-
cits could, for example, be caused by the inability to 
synchronize motor units or control agonists and antag-
onists in the right proportions [14, 20], or may be due 
to changes in cortico-spinal tract excitability following 
stroke [21].

A prerequisite for investigating smoothness deficits 
after stroke is identifying a ‘valid’ smoothness metric. 
Unfortunately, there is currently no commonly accepted 
metric for quantifying movement smoothness, and many 
types have been used in the literature to investigate 
smoothness of reaching movements post stroke [13]. The 
use of many smoothness metrics in clinical research is 
limited by several methodological concerns. For instance, 
some metrics are not clearly described and therefore not 
reproducible. Other metrics depend on the duration or 
distance of reaching or are not dimensionless. In both 
cases, they could be confounded by the shape, i.e., the 
duration and amplitude, of the movement [16]. Some 
proposed smoothness metrics are based on position, 

and do not truly reflect smoothness per se [6, 22] as they 
do not measure the rate of change of position. Further-
more, some metrics are linear transformations of other 
smoothness metrics, and are therefore proxies of exist-
ing metrics. Finally, some metrics lack robustness against 
measurement noise [6].

Several narrative reviews about smoothness have dis-
cussed the strengths and weaknesses of a limited set of 
available metrics [6, 13, 14, 16]. The relations between 
these metrics and smoothness were assessed either by 
using simulation models, or by studying post-stroke 
correlations with clinical scales. However, these studies 
reviewed the literature narratively, rather than system-
atically. Therefore, a comprehensive overview of metrics 
used to measure smoothness after stroke is lacking. Fur-
thermore, these metrics have not been validated in terms 
of whether they reflect smoothness [23]. As a result, 
proper recommendations for a valid smoothness metric 
are currently lacking in the literature.

Our goal was to identify the most valid metrics for 
quantifying smoothness of upper paretic limb movement 
after stroke during reaching tasks [24]. Reaching can be 
used to extend or point the hand/arms (reach-to-point) 
or touch or grasp something (reach-to-grasp). To this 
end, several subsidiary questions were formulated. Firstly, 
to identify available metrics, we addressed the question 
‘Which metrics have been used in the literature to assess 
movement smoothness in reaching by persons with stroke?’. 
Secondly, we filtered metrics sequentially, using a set 
of criteria derived from the literature to assess whether 
their mathematical definitions regarding smoothness 
were sound [6, 14, 16]. This was done to answer the ques-
tion ‘Which of the available metrics are mathematically 
defined, reproducible, not linear transforms of another 
metric, dimensionless, and defined using the rate of 
change in position?’. Thirdly, we assessed how each met-
ric responds to smoothness deficits in the reaching task, 
to answer the question ‘How does each smoothness metric 
respond to a simulated change in the velocity profile of a 
reaching task?’. In this study, metrics that satisfy the two 
latter questions can be said to be valid smoothness met-
rics that have been applied in stroke research.

Materials and methods
Systematic literature review
The literature search was performed in accordance with 
the PRISMA statement, using keyword groups ‘Stroke’, 
‘Reaching’ and ‘Smoothness’ [25] (Full search query in 
Additional file 1.A). PubMed, Scopus, Cochrane Library, 
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EMBASE and CINAHL databases were searched for all 
records up to October 2019. The screening of the litera-
ture was performed by one author (BLS) and ambiguities 
were resolved with another author (MRMI). Articles were 
excluded if they were in a language other than English, or 
if they were reviews. Eventually, we included articles in 
which (1) reaching or aiming movements of persons with 
stroke were studied and (2) a metric was used to deter-
mine the smoothness of a reaching movement. The Inter-
national Classification of Functioning, Disability, and 
Health (ICF) definition of a reaching movement (code: 
d4452) is ‘Using the hands and arms to extend outwards 
and touch and grasp something, such as when reaching 
across a table or desk for a book’ [26]. The references of 
the included articles were scanned for additional suitable 
articles. The review has been registered in the PROS-
PERO registry under CRD42020173211.

Metrics mathematically reflecting smoothness
Metrics should reflect the definition of movement 
smoothness, i.e., the continuity or non-intermittency of 
the movement profile, independent of its amplitude and 
duration [6]. Additionally, as smoothness reflects conti-
nuity, it should be based on rate of change of position or 
a higher derivative. Based on the requirements stated in 
the introduction above, the definition of a metric was not 
sound if:

 E1. the metric was not dimensionless,
 E2. the metric was not reproducible from the litera-

ture,
 E3. the metric was not based on velocity or a derivative 

of velocity, or
 E4. the metric was linearly related to another metric by 

(a) scaling or (b) addition of a constant.

Response of metrics to changes in velocity profile
The response of each metric to four different types of 
simulated perturbations, applied to two reaching veloc-
ity profiles, viz. reach-to-point and reach-to-grasp, were 
studied. A reach-to-point movement was simulated using 
a minimal jerk model [27]:

where vmj is the minimal jerk velocity profile, dt is the 
total reaching distance, T is the total movement time and 
t is the time scale from 0 to T. Using this, a symmetrical 
velocity profile  (vsymm) was created with a dt of 0.3 m, and 
a T of 1 s. While this velocity profile reflects a reach-to-
point movement, it does not truly reflect reach-to-grasp 

(1)vmj(t) = dt

(

30t4

T 5
−

60t3

T 4
+

30t2

T 3

)

movements [28], as the latter movements have to account 
for a higher accuracy when nearing the target posi-
tion [28]. An initial analysis on healthy subjects showed 
that an asymmetrical velocity profile  (vasymm) was better 
suited for this purpose. This was modelled using a poly-
nomial curve (Additional file 1.B). Both velocity profiles 
are shown in Additional file  1.C, and have been further 
investigated.

Of the four simulated perturbations, the first three 
are analytical evaluations of the smoothness metrics, 
and the last one is specifically based on theories regard-
ing recovery of movement after stroke [14].

– Shape Simulation (SS) The movement duration and 
distance of the base velocity profiles were varied. 
The smoothness metric must not depend on either 
of these parameters.

The durations and distances of both velocity profiles 
were varied from 0.5 to 6.0 s in steps of 0.1 s, and from 
0.2 to 0.7 m in steps of 0.01 m. A total of 2856 combina-
tions were used to calculate the outcomes of the met-
rics. The ranges for movement duration and distance 
were chosen such that they were within the physiologi-
cal range of human reaching.

– Harmonic Disturbances (HD) In this analysis, 
tremor or weak control of reaching movement 
was simulated using harmonic disturbances added 
to the base velocity profiles [29]. This included 
sinusoids with varying amplitude and frequency. 
The relation between frequency or amplitude and 
the metric should be monotonic. Smoothness is 
expected to decrease with increasing amplitude 
for a given frequency, and also with increasing fre-
quency for a given amplitude.

Sinusoids of frequencies between 2 and 25  Hz in 
steps of 0.5 Hz, and amplitudes between 0 and 0.2 m/s 
in steps of 0.005  m/s were added to the base veloc-
ity profile. A total of 1927 unique combinations were 
explored. The ranges chosen were within the physiolog-
ical ranges of movement [4, 30].

– Measurement noise (MN) A more robust smooth-
ness metric is less sensitive to measurement noise 
[6]. The noise was modelled as normally distributed 
white noise (mean = 0, standard deviation = 1) and 
added to the base velocity profiles.

The root mean square (RMS) of the noise was varied 
from 0 to 0.08  m/s in steps of 0.002  m/s. Twenty-five 
different realizations for each RMS were generated, 
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and the metrics were estimated for each realization. 
The minimum, maximum, mean and standard devia-
tion of the metrics were calculated and reported. In an 
additional analysis of noise we filtered the noise-added 
velocity profile using a zero phase 4th order low pass 
Butterworth filter with cut off of 20  Hz [6]. The mean 
of the metric outcome across the 25 realizations after 
filtering was determined.

– Sub-movement Simulation (SMS) A smoothness 
metric must reflect movement intermittency, and 
the change in the progressive blending of sub-move-
ments [6, 31]. The smoothness metric should there-
fore decrease monotonically with increasing number 
of sub-movements and increasing delays between 
each sub-movement.

This is an extension of previous work applied to a set 
of metrics [4, 14]. The reaching profiles were modelled 
as a composition of two or more sub-movements, each 
defined as the base velocity profile with a duration of 
1  s. The sub-movements were separated by a varying 
lag, denoted as Ks. Ks ranged from 0  s, were the sub-
movements fully overlap, to 1.2 s, where there was 1.2 s 
between the starting points of the two sub-movements. 
The lag was increased in steps of 0.02 s. Note that when 
the lag was greater than 1 s, there were instances of zero 
velocity between subsequent sub-movements. The total 
duration of the movement increased with Ks. Simulations 
were performed for 2–4 sub-movements.

Analysis of the simulations
The responses of each metric to the four different simu-
lated perturbations were individually assessed. For the 
Shape Simulation and Harmonic Disturbances, the per-
centage change (%Δ) of the metric from its value esti-
mated using the respective base profile was identified as

where metrici corresponds to metric values for each com-
bination of parameters in the simulations, and metric1 is 
the value for the first combination used. For Shape Simu-
lation, metric1 corresponded to the smoothness of a base 
profile with reaching distance 0.2 m and duration 0.5  s. 
We considered a change of more than 10% as meaningful, 
and the maximum %Δ was identified.

For Harmonic Disturbances, metric1 corresponded to a 
base profile of reaching distance 0.3 m and duration 1 s. 
The %Δ was estimated for each combination of frequency 
and amplitude. Then, a Combinations Exceeded (CE) 
parameter was marked as the percentage of the combina-
tions that exceeded 10%. A higher value of CE meant that 

%� =
metrici −metric1

metric1
∗ 100

there were more combinations of frequency and ampli-
tude that caused a meaningful change in the value of the 
metric from its base velocity profile.

For the Measurement Noise simulation, the ratio of 
signal-to-noise power (SNR) was estimated to quantify 
the robustness to noise. First, the power of the measure-
ment noise was estimated. Then, the power of the signal 
was estimated as the power of the base velocity pro-
file with added measurement noise. The lowest RMS of 
added noise was 0.002 m/s, which corresponds to SNRs 
of 45.0 dB for  vsymm and 45.4 dB for  vasymm. Subsequently, 
the highest noise RMS added was 0.08  m/s, which cor-
responded to SNRs of 13.2 dB for  vsymm and 13.6 dB for 
 vasymm. The SNR at which the mean value of the metric 
differed from the base velocity profile by at least 10% is 
reported. Metrics that reached a 10% threshold only at 
a high RMS of added measurement noise, and therefore 
a low SNR, were deemed to be more robust to noise. 
On the other hand, metrics that crossed the threshold 
at lower RMS values, and therefore a higher SNR, were 
highly sensitive to noise. An SNR threshold to distinguish 
between high and low robustness was determined using 
the distribution of the SNR values obtained at the 10% 
cut-off for each metric. Metrics with an SNR lower than 
the 25th percentile were considered to have high robust-
ness to noise, and all others were deemed to have low 
robustness to noise.

Finally, in the Sub-movements Simulations, the change 
in the direction of the derivative of the metrics for 
increasing delays was assessed to study monotonicity. All 
computations were performed using MATLAB (2018b, 
The Mathworks, Natick, MA, USA).

Data availability
The MATLAB scripts used to generate the different 
simulations, the scripts for estimating the smoothness 
metrics, and the resulting metrics are provided with this 
manuscript (Additional file 4).

Results
Systematic literature review
A total of 476 unique articles were identified, 102 of 
which were found to be eligible for inclusion using 
Rayyan [32]. A total of 32 different metrics (Additional 
file 1.D, E) were identified. Figure 1 shows the PRISMA 
flow chart (Additional file  3 reports the PRISMA 
checklist).

Metrics mathematically reflecting smoothness
Table 1 shows an overview of all metrics identified from 
the literature, and the ones that did not meet the four 
exclusion criteria (E1–E4). The metrics identified in the 
systematic review were classified into categories based 
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on their mathematical definitions. Metrics defined in 
the time domain were classified as ‘Trajectory metrics’, 
or ‘Velocity metrics’, or ‘Acceleration metrics’, or ‘Jerk 
metrics’. Metrics defined in the frequency domain were 
classified as ‘Frequency metrics’. Metrics that did not fit 
in any of these categories, or fitted in more than one cat-
egory, were classified as ‘Other metrics’.

Trajectory-based smoothness metrics: The Index of 
Curvature (IC) [33] and the standard deviation of the 
position perpendicular to the movement direction 
(SD_XY) measured smoothness using only the discrete 
position information of the reaching movement. As 
these are not based on the rate of change of position as 
a function of time, they cannot be used to measure con-
tinuity and thereby smoothness of reaching (criterion 

E3). This holds for any proposed metric that belongs to 
this category.

Velocity-based smoothness metrics: Of the seven 
velocity-based metrics, Movement Arrest Period Ratio 
(MAPR), Speed Metric (SM), Number of Sub-move-
ments (NOS), Velocity Arc Length (VAL) and Corre-
lation Metric (CM) were found to be mathematically 
sound for measuring smoothness and were used for 
further analysis.

MAPR is the proportion of time that the movement 
speed exceeds a given percentage of the peak speed [34]. 
SM, defined as the mean speed of the whole movement 
normalized by the peak speed, was found to decrease 
with the severity of the stroke [14]. Normalized Reach-
ing Speed (NRS) is the ratio of the difference in peak and 

Fig. 1 PRISMA flow chart
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mean speed over the peak speed [35]. As NRS = 1 − SM, 
it is a linear transform of the SM metric, and is expected 
to behave congruently. Therefore, NRS was excluded 
from further analysis (criterion E4). The definition and 
mathematical description of the Tent Metric (TM) was 
incomplete in the study [14], and therefore could not be 
evaluated further (criterion E2). NOS counts the sub-
movements that make up the norm of the velocity profile 
[36] and has been used to assess smoothness in persons 
with stroke [37]. VAL [4] is based on the arc length of the 
speed profile normalized by the peak speed. It assumes 
that a bell-shaped velocity profile has a shorter arc length 
than one with velocity fluctuations. CM determines the 

correlation between the velocity profile extracted from 
the minimal jerk model and the actual hand velocity pro-
file during reaching [38].

Acceleration-based smoothness metrics: In this cate-
gory, six metrics were identified, of which peaks (Peaks) 
and Inverse Number of Peaks and Valleys (IPV) were ana-
lysed further.

Peaks was the most frequently used metric (61 cita-
tions). The metric reflects the number of local maxima in 
the velocity profile for a given movement [39], which is 
inversely proportional to the smoothness of a movement. 
Peaks can also be defined as zero crossings in the accel-
eration domain when the derivative of the acceleration 

Table 1 Overview of Smoothness metrics identified from the literature

a Number of articles in the systematic review that used the metric. bUnits were not available. Exclusion criteria include E1: metric was not dimensionless; E2: metric not 
reproducible from the literature; E3: metric not based on velocity or its derivative; and E4: metric linearly related to another metric (shown in brackets) by (a) scaling or 
(b) addition of a constant

Metric (Abbreviation) Units Articles  useda Exclusions Category Earliest citation

Index of curvature (IC) [] 1 E3 Trajectory [33]

Standard deviation in 2D plane (SD_XY) [] 1 E3 Trajectory [72]

Number of sub‑movements (NOS) [] 1 Velocity [37]

Speed metric (SM) [] 15 Velocity [14]

Normalized reaching speed (NRS) [] 2 E4 (SM) Velocity [35]

Movement arrest period ratio (MAPR) [] 3 Velocity [34]

Tent Metric (TM) [] 1 E2 Velocity [14]

Velocity Arc Length (VAL) [] 1 Velocity [4]

Correlation Metric (CM) [] 2 Velocity [38]

Peaks Metric (Peaks) [] 61 Acceleration [39]

Number of Movement Units (NMU) [] 3 E4a (Peaks) Acceleration [73]

Number of peaks normalized by movement duration (NPt) [s−1] 1 E1 Acceleration [40]

Number of peaks normalized by movement distance (NPd) [m−1] 3 E1 Acceleration [41]

Inverse number of peaks and valleys (IPV) [] 1 Acceleration [44]

Acceleration metric (AM) [] 2 E1 Acceleration [35]

Integrated absolute jerk (IAJ) [ms−2] 2 E1 Jerk [74]

Mean absolute jerk (MAJ) [ms−3] 2 E1 Jerk [33]

Mean absolute jerk normalized by peak speed (MAJPS) [s−2] 7 E1 Jerk [14]

Integrated squared jerk (ISJ) [m2s−5] 1 E1 Jerk [75]

Root mean squared jerk metric (RMSJ) [ms−3] 1 E1 Jerk [76]

Normalized integrated jerk (NIJ) [ms−3 
√
s] 1 E1 Jerk [77]

Dimensionless squared jerk (DSJt) [] 12 Jerk [3]

Log dimensionless squared jerk (LDSJt) [] 1 Jerk [5]

Dimensionless squared jerk (DSJm) [] 1 E4a (DSJt) Jerk [2]

Dimensionless squared jerk (DSJb) [] 1 Jerk [4]

Log dimensionless squared jerk (LDSJb) [] 1 Jerk [4]

Rotational jerk (RJ) [] 1 E3 Jerk [48]

Spectral metric (SPMR) [] 1 Frequency [49]

Spectral method (SPM) [] 1 Frequency [1]

Spectral arc length 2012 (SPAL) [] 8 Frequency [4]

Spectral arc length (SPARC) [] 1 Frequency [6]

Combined smoothness metric (CSM) [− −]b 1 E1 Other [78]
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is negative. Peaks were additionally normalized either to 
the movement duration (NPt) [40] or to the movement 
distance (NPd) [41]. However, doing so causes the met-
ric to be dependent on movement duration or movement 
distance. Therefore, these adapted definitions of Peaks 
(NPt and NPd) were excluded (criterion E1). Smoothness 
was also estimated using the Number of Valleys [42] or 
the Number of Valleys and Peaks [43]. Since these defini-
tions are linear transforms of Peaks, they are assumed to 
show congruent behaviour to Peaks, and were excluded 
from further analysis (criterion E4). IPV, on the other 
hand, is not a linear transform of Peaks, and was included 
in further analysis [44]. Although a few studies employed 
additional criteria for peak detection [45, 46], the choices 
for these criteria, and the difference with Peaks was not 
explicitly provided, and they were not considered for the 
present study. The Acceleration Metric (AM) is the ratio 
between the mean acceleration and the peak acceleration 
[35]. A point-to-point reaching movement should have 
zero velocity both at the beginning and end of the move-
ment, which implies that the mean acceleration over this 
movement must be zero. However, this was not the case 
in the referenced studies, suggesting that some aspect of 
its definition is missing [35, 47]. According to the textual 
description, the metric definition is not face-valid, and it 
was therefore excluded (criterion E2).

Jerk-based smoothness metrics: There were a total of 12 
different jerk-based metrics, of which only two types of 
dimensionless squared jerk metrics, DSJt and DSJb, and 
their respective log transformations, LDSJt, and LDSJb, 
were further analysed.

Jerk, the third derivative of position, has often been 
used as a measure of smoothness in different ways; either 
as the integral of the squared jerk or the integral of the 
absolute jerk [3, 14, 16]. Furthermore, the results were 
scaled using different terms, which introduces a unit to 
the metric. As smoothness metrics have to be dimension-
less (criterion E1), only the dimensionless jerk metrics 
were considered. Three types of dimensionless squared 
jerk metrics, DSJt [3], DSJb [4], and DSJm [2], were intro-
duced to measure smoothness. The suffixed letter cor-
responds to the author’s name. These jerk metrics differ 
in the normalizations used in their definitions. As DSJm 
is a linear transform of DSJt, it was excluded (criterion 
E4a). A natural logarithm transform of the DSJb metric 
was performed to improve its sensitivity (LDSJb) [4]. The 
same was applied to DSJt, thereby introducing LDSJt [5]. 
As LDSJb and LDSJt employ the peak velocity, and the 
average velocity respectively in their equations, they are 
not linear transformations of each other. Rotational Jerk 
(RJ) measures movement smoothness using the orienta-
tions of the wrist during the movement [48]. This form of 
smoothness quantifies the variability of hand orientation. 

However, as we analysed changes to a tangential velocity 
profile, we have no models for the changes in orientation 
during the reaching movement. Therefore, this metric 
was not analysed further.

Frequency-based smoothness metrics: All four metrics 
from this category, including Spectral Method (SPM), 
Spectral Arc Length 2012 (SPAL), Spectral Arc Length 
(SPARC ), and Spectral Metric (SPMR), were analysed 
further.

The SPM, SPAL, and SPARC  were developed by the 
same authors [1, 4, 6], and are directly proportional to 
the increase in smoothness of the movement. The SPM 
measures smoothness as the sum of all peaks in the 
amplitude-normalized Fourier transform of the velocity 
profile [1]. The SPAL uses the negative arc length of the 
amplitude and the frequency-normalized Fourier trans-
form of the velocity profile [4]. The frequency range used 
in SPAL was further limited in order to define SPARC  [6]. 
Finally, SPMR expresses smoothness using the energy 
within a 0.2  Hz bin around the dominant frequency in 
the Fourier transform of the accelerations, normalized by 
the entire energy [49].

Other metrics: Kostić and Popović [50] defined a 
smoothness metric (Combined Smoothness Met-
ric [CSM]) in the context of a drawing task in which 
a patient, while seated at a desk, draws a pre-defined 
square. The smoothness metric uses information from 
the movement velocity and jerk, and consists of four dif-
ferent terms. As the formula uses different dimensions 
incorrectly, the metric was excluded (criterion E1).

Response of metrics to changes in velocity profile
In the previous section, fifteen metrics were identified 
as mathematically sound, and therefore subjected to fur-
ther analysis: NOS, SM, MAPR, VAL, Peaks, IPV, DSJt, 
LDSJt, DSJb, LDSJb, CM, SPMR, SPM, SPAL and SPARC 
. Table 2 describes the selected metrics’ range of feasible 
mathematical values obtained for each type of perturba-
tion. The parameters used to interpret the response of 
metrics to the simulations (%Δ, CE, and SNR) are also 
shown. Metrics SM, MAPR, IPV, CM, SPM, SPMR, SPAL 
and SPARC  should decrease with decreasing smooth-
ness of movement. However, the other metrics increase 
with decreasing smoothness. To enable comparison 
across metrics, we append a * to these latter metrics. This 
includes NOS*, VAL*, Peaks*, DSJt*, LDSJt*, DSJb*, and 
LDSJb*.

In this section, we discuss the results of the simula-
tion analyses using  vsymm as the base velocity profile. As 
the changes in the values of the smoothness metrics for 
the  vasymm were similar, their results have been placed in 
Additional file  1.F. The main difference between using 
the two base velocity profiles was the magnitude of the 
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resulting values, as shown in Table  2. Where other dif-
ferences in the response to the simulation analyses were 
found, they are addressed in the following sections.

Shape simulation (SS)
Figure  2 shows the response of each metric to changes 
in movement duration and movement distance for the 
symmetric velocity profile. The percentage of change 
(%Δ) shows that NOS*, VAL*, SPAL, and SPMR were 
sensitive to changes in this simulation for both velocity 
profiles (Table  2). The inconsistencies in the number of 
sub-movements as measured by the NOS* shows that this 
metric is not suitable as a smoothness metric. Metrics 
SM, MAPR, Peaks*, IPV, LDSJt*, LDSJb*, CM, and SPM 
were truly insensitive to changes in this simulation.

Harmonic disturbances (HD)
Figure  3 shows the metric outcomes with added sines 
of varying frequencies and amplitudes. The algorithm 
used to estimate NOS* failed to converge to an optimal 
solution for higher frequencies (missing data in Fig.  3). 
All other metrics behave as expected to this simulation 
and show a lower smoothness outcome as the amplitude 
of the added sine increases. However, all metrics except 
SM, MAPR and CM showed lower smoothness outcomes 

at higher frequencies for the same amplitude. SPAL and 
SPARC  were insensitive to sine disturbances with fre-
quencies higher than 20 Hz, as their definitions include 
the use of a cut-off frequency. The CE values for NOS*, 
MAPR, VAL*, and CM are less than 50% (Table  2) sug-
gesting that these metrics are relatively less sensitive 
to harmonic disturbances, and might not be useful to 
reflect presence of tremor or weak control of reaching 
movement.

Measurement noise (MN)
NOS* is only capable of analysing the smoothness at low 
noise powers up to an RMS of 0.008 m/s (Fig.  4). For 
higher noise powers, the algorithm that counts NOS* 
fails to converge to an optimal solution (indicated by 
N.A. in Table  2 in the SNR column). The other metrics 
show lower outcomes of smoothness as the RMS of the 
noise is increased (Fig. 4). MAPR, CM, and SPAL did not 
cross the 10% threshold for any noise power included in 
the simulation (unfilled entries ‘–’ in Table 2). This indi-
cates that these metrics are robust to the range of meas-
urement noises added in this study. Peaks*, IPV, and all 
jerk-based smoothness metrics were very sensitive to 
measurement noise.

Fig. 2 Shape simulation. The vertical axis represents the metric value decreasing from yellow to blue. The horizontal axes represent the movement 
duration and movement distance. Metrics included are NOS* (number of sub‑movements), SM (speed metric), MAPR (movement arrest period ratio), 
VAL* (velocity arc length), Peaks* (number of peaks), IPV (inverse of number of peaks and valleys), DSJt* and DSJb* (Dimensionless squared jerk), 
LDSJb* and LDSJt* (log of DSJt* and DSJb*), CM (correlation metric), SPMR (spectral metric), SPM (spectral method), SPAL (spectral arc length 2012), 
and SPARC  (spectral arc length). By definition, the metrics with a * increase with decreasing smoothness
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Fig. 3 Harmonic Disturbances. The vertical axis represents the metric value decreasing from yellow to blue. Metrics included are NOS* (number 
of sub‑movements), SM (speed metric), MAPR (movement arrest period ratio), VAL* (velocity arc length), Peaks* (number of peaks), IPV (inverse of 
number of peaks and valleys), DSJt* and DSJb* (Dimensionless squared jerk), LDSJb* and LDSJt* (log of DSJt* and DSJb*), CM (correlation metric), 
SPMR (spectral metric), SPM (spectral method), SPAL (spectral arc length 2012), and SPARC  (spectral arc length). By definition, the metrics with a * 
increase with decreasing smoothness

Fig. 4 Measurement Noise. The thick blue line represents the mean value of 25 different realizations of the noise for each measurement noise 
level added, and the shaded area is the corresponding standard deviation. The dotted black lines denote the minimum and maximum values 
of the metric found at that RMS value. The dashed blue line shows mean values of the filtered noise sets. Metrics included are NOS* (number of 
sub‑movements), SM (speed metric), MAPR (movement arrest period ratio), VAL* (velocity arc length), Peaks* (number of peaks), IPV (inverse of 
number of peaks and valleys), DSJt* and DSJb* (Dimensionless squared jerk), LDSJb* and LDSJt* (log of DSJt* and DSJb*), CM (correlation metric), 
SPMR (spectral metric), SPM (spectral method), SPAL (spectral arc length 2012), and SPARC  (spectral arc length). By definition, the metrics with a * 
increase with decreasing smoothness
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Sub‑movements simulation (SMS)
The algorithm used to estimate NOS* calculated incor-
rect values at certain instances (Fig. 5). This was because 
the algorithm did not converge to an optimal solution 
within the provided boundary constraints with increas-
ing number of sub-movements. We found that only the 
VAL* was truly monotonic to changes in lag between 
sub-movements (Additional file 1.G). SPMR surprisingly 
increased with increasing numbers of sub-movements 
which shows that the metric fails in this analysis. All 
other metrics showed a lower outcome for smoothness 
with increasing number of sub-movements and increas-
ing delay between them. For Peaks* and IPV, a third 
peak was detected at 0.3 and 0.5 s (Fig. 5). Although non 
monotonic overall, the metrics Peaks*, IPV, SPM, SPAL, 
and SPARC  showed jumps only at certain discrete inter-
vals. The CM was seen to be monotonic only if the delay 
between sub-movements was larger than 0.2  s. Further, 
when considering increases in delays (Ks) of 0.06 s, the 
SPAL and SPARC  metrics also showed a monotonic 
change for delays larger than 0.2 s. Furthermore, the 
monotonicity was influenced by the base velocity pro-
file used for all metrics except VAL*, SPMR, and SPARC  
(Additional file 1.G).

Summary of findings
Table  3 summarizes the simulation analysis results and 
indicates whether the responses of each metric were 
as expected. For the measurement noise analysis, the 
robustness of each metric to added noise was stud-
ied. Descriptive statistics of the SNR values as shown in 
Table 2 were used to divide the metrics into two groups; 
high and low robustness to measurement noise. Note that 
a higher added RMS noise value corresponds to a lower 
SNR value, and hence to greater robustness to noise. We 
find that only SPARC  responded as expected to the Shape 
Simulation, Harmonic Disturbances, and Measurement 
Noise simulations. For the Sub-movement Simulation, 
SPARC  responded as expected by showing a monotonic 
change for increase in delays between sub-movements 
greater than 0.2 s (20% of sub-movement duration) only 
when the delay was increased in steps of 0.06  s (6% of 
sub-movement duration).

Discussion
The aim of this study was to identify valid smoothness 
metrics to investigate the QoM of the upper paretic limb 
during reaching tasks by persons with stroke. A smooth-
ness metric used in stroke research was valid if it was 
mathematically sound, and responded to the simulation 
analyses as expected. The systematic literature review 

Fig. 5 Sub‑movements simulation. The colours denote the number of sub‑movements. The horizontal axis represents the lag between two 
sub‑movements. Metrics included are NOS* (number of sub‑movements), SM (speed metric), MAPR (movement arrest period ratio), VAL* (velocity 
arc length), Peaks* (number of peaks), IPV (inverse of number of peaks and valleys), DSJt* and DSJb* (Dimensionless squared jerk), LDSJb* and LDSJt* 
(log of DSJt* and DSJb*), CM (correlation metric), SPMR (spectral metric), SPM (spectral method), SPAL (spectral arc length 2012), and SPARC  (spectral 
arc length). By definition, the metrics with a * increase with decreasing smoothness
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revealed 32 different metrics used in stroke research, 
however, only 15 unique metrics had a sound mathemati-
cal definition relating to smoothness [16]. Many metrics 
were sensitive to reaching distance and duration, or were 
not found to be useful to reflect presence of tremor or 
weak control of reaching movement, or were not robust 
to added measurement noise. We find that almost all 
metrics do not change monotonically to increasing delay 
between the sub-movements. Further, we observe in 
some cases (Table 3) that the reaching task influences the 
behaviour of smoothness metric, which was a disadvan-
tage to certain metrics. Our simulation analyses showed 
that Spectral Arc Length (SPARC ) responded favourably 
in all simulation analyses, for both base velocity profiles, 
and therefore is a valid metric to measure smoothness of 
reach-to-point or reach-to-grasp movements post stroke.

The simulation analyses performed in this study builds 
on and agrees with the trends for the shape, noise, and 
sub-movement simulations shown in literature [4, 6, 14, 
16]. However, this study offers an exhaustive analysis of 
all available smoothness measures and also offers insight 
on influence of added sinusoids.

Clinical relevance
Smoothness is considered a result of learned coordina-
tive processes, and increased motor control results in 
improved smoothness during reaching, pointing and 

grasping [5, 6, 14]. Identifying and using valid smooth-
ness metrics is essential for proper clinical research, and 
results in accurate observations of the recovery of motor 
control while improving the identification of true treat-
ment effects on QoM. The present study showed that 
only SPARC  is a valid smoothness metrics in spite of the 
plethora available in the literature.

Neurological recovery occurs spontaneously after 
stroke and results in normalization of neurological meas-
ures such as EEG patterns, whereas behavioural restitu-
tion is rather restricted to regaining normal behaviour, 
not denying that neuronal restitution is taking place [51, 
52]. Clinical assessments which are most closely related 
to behavioural restitution and thereby neurological 
recovery, take into account the ability to perform move-
ments outside the pathologic synergies [53]. Whether 
smoothness metrics reflect neurological recovery after 
stroke can be determined by investigating the longitudi-
nal association between clinical outcomes that measure 
behavioural restitution and smoothness metrics [54]. 
Furthermore, studying the associations between the 
recovery of neurological pathways and changes in move-
ment smoothness will reveal the influence of behavioural 
restitution and compensation on smoothness. Addition-
ally, identifying neurological recovery along with changes 
in movement smoothness post stroke and eventually 
the underlying physiology that governs smoothness, will 

Table 3 Summary of the analysis results

‘Yes’ means that the metric responded to the perturbations as expected, whereas ‘No’ means otherwise. 1There was no instance in the analysis where the metric value 
crossed the 10% threshold. 2The metric showed monotonic change for lag values greater than 0.2 s. 3The metric showed monotonic change when the derivative was 
estimated using steps of 0.06 s for the lag between sub-movements. 4 The metric was robust to all noise values added in the simulation. +Incomplete data. Metrics 
included are NOS* (number of sub-movements), SM (speed metric), MAPR (movement arrest period ratio), VAL* (velocity arc length), Peaks* (number of peaks), IPV 
(inverse of number of peaks and valleys), DSJt* and DSJb* (Dimensionless squared jerk), LDSJb* and LDSJt* (log of DSJt* and DSJb*), CM (correlation metric), SPMR 
(spectral metric), SPM (spectral method), SPAL (spectral arc length 2012), and SPARC  (spectral arc length)

Metric Duration/distance 
independence

Harmonic disturbances Sub-movements Robustness

vsymm vasymm vsymm vasymm vsymm vasymm vsymm vasymm

NOS* No No No No No No No  data+

SM Yes1 Yes1 Yes Yes No No High High4

MAPR Yes1 Yes1 No No No No High4 High4

VAL* No No No No Yes Yes High High

Peaks* Yes1 Yes1 Yes Yes No No Low Low

IPV Yes1 Yes1 Yes Yes No No Low Low

DSJt* Yes1 Yes Yes Yes No No Low Low

LDSJt* Yes1 Yes1 Yes Yes No No Low Low

DSJb* Yes Yes Yes Yes No No Low Low

LDSJb* Yes1 Yes1 Yes Yes No No Low Low

CM Yes1 Yes No No No2 No2 High4 High4

SPMR No No Yes Yes No No Low Low

SPM Yes1 Yes1 Yes Yes No No Low Low

SPAL No No Yes Yes No2,3 No2,3 High4 High4

SPARC Yes Yes Yes Yes No2,3 No2,3 High High



Page 13 of 16Mohamed Refai et al. J NeuroEngineering Rehabil          (2021) 18:154  

provide an indication whether smoothness can be used as 
a target or outcome measure in training and in designing 
rehabilitation robotics. In these cases, smoothness meas-
ured during reaching in healthy age- and gender-matched 
individuals can be used as reference values [54].

This study used simulations to offer a systematic 
analysis of changes to the reaching profiles. In case of 
harmonic disturbance analysis, the upper limit of the 
sinusoidal frequency range tested (25  Hz) was beyond 
known frequencies in stroke, and therefore covers all 
potential disturbances [55]. In case of noise simulation 
analysis, the robustness of metrics to added measurement 
noise was tested. However, if the noise is a result of weak 
human control, the resulting movement would be less 
smooth, as reflected by the smoothness metric. There-
fore, efforts to distinguish between measurement noise 
and perturbations due to actual human motion control 
must be undertaken in order to distinguish abnormal, 
pathologically reduced movement smoothness from that 
seen in healthy, age- and gender-matched subjects.

Practical barriers
In order to measure smoothness, the measurement sys-
tem should be capable of measuring velocity (or a higher 
derivative) of reaching. Measuring smoothness using 
motion tracking systems or high-end kinematic measure-
ment sensors is relatively simple using the SPARC  metric. 
However, practical requirements need to be considered 
when the metric is applied in either a clinical setting or 
an ambulatory or daily life setting. For ambulatory or 
daily life settings, metrics that can be estimated using 
wearable on-body sensors are preferred. Inertial and 
Magnetic Measurement Units (IMUs) are commonly 
used as wearable sensors for measuring the kinematics of 
movement. However, as an IMU measures accelerations, 
estimating velocity from it would require additional pro-
cessing and is usually prone to drift [56]. In this study, we 
measured SPARC  using linear velocities [6]. Alternatively, 
in a recent study, Melendez-Calderon and colleagues sug-
gest that during reaching, SPARC  can be measured using 
angular velocities obtained from IMUs [22]. However, 
techniques to correct drift due to strapdown integration 
[56] were not employed in their study, as the authors sug-
gest that it warrants a systematic analysis of the errors 
introduced in the smoothness estimate [22]. Therefore, 
if the errors are accounted for, it should be possible to 
reliably measure SPARC  using corrected linear veloci-
ties obtained from IMUs for a standardized pre-defined 
movement with a clear start and end posture. Given the 
advantages of using IMUs, their validity in measuring 
QoM after stroke requires further research [57].

Generalizability of current findings
Besides stroke, smoothness is highly relevant for study-
ing the impact of neurological disease in other popula-
tions, such as those with Parkinson’s and Huntington’s 
disease [16]. For instance, smoothness has been used to 
study fluidity of movement in the upper limb, reflecting 
bradykinesia and rigidity in patients with Parkinson’s dis-
ease [58]. Furthermore, the generalizability of smooth-
ness should be investigated for the lower limb allowing to 
differentiate between affected and healthy gait, as well as 
to examine effects of medication on smoothness, and to 
identify fall risk [59]. In addition, the level of smoothness 
is highly relevant in sports as a measure of proficiency 
[60, 61]. The present findings may serve as inspiration for 
related fields to determine how smoothness varies for the 
movement task they analyse.

Limitations and future directions
The first limitation of the current review was that it 
was restricted to smoothness metrics investigated in 
post-stroke reaching. Additional metrics for measuring 
movement smoothness could have been identified if our 
review was not limited to stroke studies. Generalization 
to other neurological diseases is therefore limited. The 
same is true for other movement tasks such as rhythmic 
drinking tasks [62] or self-paced, isolated elbow flexion 
movements [63]. Secondly, only English language articles 
were considered for our systematic review.

Thirdly, we model different reaching tasks with dif-
ferent velocity profiles; reach-to-point or aiming move-
ments with symmetrical velocity profiles based on 
minimum jerk models [27], and reach-to-grasp move-
ment with an asymmetrical velocity profile based on 
a polynomial curve [28]. The minimum jerk profile 
was shown to be a good approximation for reaching in 
healthy individuals [14, 64–69]. The asymmetric profile 
was modelled by applying a polynomial fit to reach-to-
grasp movements in healthy individuals using a polyno-
mial fit. This fit was found to be better than averaging the 
reaching profiles from the healthy individuals (Additional 
file 1.B). However, a true measure of smoothness should 
not be influenced by the movement profile.

Fourthly, the sub-movement analysis shows that a 
minimum detectable change in smoothness as meas-
ured by SPARC  reflects a change in delay between sub-
movements that were at least 6% of the sub-movement 
duration or longer. Furthermore, as the metric is non-
monotonic for delays less than 20% the duration of a 
sub-movement, it should be used with caution when 
studying differences in smoothness amongst fully recov-
ered or healthy individuals. This needs to be considered 
when studying populations with good recovery. Finally, 
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smoothness metrics such as RJ are based on rotational 
movements and had to be rejected as they could not be 
tested with the current simulations.

As QoM is studied by comparing task performance 
with normative values, CM could have been a suitable 
metric [70]. It is defined using correlation with a mini-
mal jerk profile and it might be interesting to consider 
a CM measure that takes account of correlation with a 
velocity profile that models the reaching task. However, 
in our analysis, we saw that the metric might not be 
useful in measuring tremor or weak control of reaching 
movement. Additionally, the need for prior knowledge 
of the intended reaching task is a big drawback of the 
metric.

Although our simulations mimicked features of 
reaching in persons with stroke, such as varying dura-
tion or distance, and sub-movement segmentation [11], 
they cannot truly replace actual reaching by subjects 
who have suffered a stroke. Moreover, longitudinal 
studies of patterns of smoothness metrics in patients 
early post stroke will show how sensitive the smooth-
ness metric over time and how these values relate to 
values measured in healthy age- and gender-matched 
subjects. We performed this analysis in our companion 
paper [71], where SPARC was seen to be responsive to 
change over time in the early phase post stroke and lon-
gitudinally associated with clinical measures of motor 
impairment within subjects.

Conclusion
We recommend the use of SPARC as a valid metric to 
measure the smoothness of the upper limb reaching 
after stroke. Longitudinal studies are further required to 
understand the relationship between the time course of 
recovery and smoothness early post stroke.
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