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Abstract

Background: Resting motor threshold is an objective measure of cortical excitability. Numerous studies indicate that
the success of motor recovery after stroke is significantly determined by the direction and extent of cortical excitabil-
ity changes. A better understanding of this topic (particularly with regard to the level of motor impairment and the
contribution of either cortical hemisphere) may contribute to the development of effective therapeutical strategies in
this cohort.

Objectives: This systematic review collects and analyses the available evidence on resting motor threshold and hand
motor recovery in stroke patients.

Methods: PubMed was searched from its inception through to 31/10/2020 on studies investigating resting motor
threshold of the affected and/or the non-affected hemisphere and motor function of the affected hand in stroke
cohorts.

Results: Overall, 92 appropriate studies (including 1978 stroke patients and 377 healthy controls) were identified. The
analysis of the data indicates that severe hand impairment is associated with suppressed cortical excitability within
both hemispheres and with great between-hemispheric imbalance of cortical excitability. Favorable motor recovery is
associated with an increase of ipsilesional motor cortex excitability and reduction of between-hemispheric imbalance.
The direction of change of contralesional motor cortex excitability depends on the amount of hand motor impair-
ment. Severely disabled patients show an increase of contralesional motor cortex excitability during motor recovery.
In contrast, recovery of moderate to mild hand motor impairment is associated with a decrease of contralesional
motor cortex excitability.

Conclusions: This data encourages a differential use of rehabilitation strategies to modulate cortical excitability.
Facilitation of the ipsilesional hemisphere may support recovery in general, whereas facilitation and inhibition of the
contralesional hemisphere may enhance recovery in severe and less severely impaired patients, respectively.

Keywords: Resting motor threshold, Hand motor recovery, Stroke

Introduction
Stroke is the leading cause of long-term disability in
adults world-wide [1]. In consequence, rehabilita-
. — R tion and optimized care of stroke survivors is of high
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cerebro-vascular incident 60 to 70 percent of stroke
survivors suffer from motor impairment of one hand
which significantly impacts disability and activities of
daily living [2, 3]. Up to now, tens of studies have shown
that motor recovery after stroke is accompanied by reor-
ganization of the functional network architecture within
both the lesioned and the non-lesioned hemisphere [4,
5]. Nevertheless, the mechanism underlying recovery of
motor function after a focal lesion is still not sufficiently
understood.

Transcranial magnetic stimulation (TMS) is a neuro-
physiological method often used to probe neural process-
ing related to hand motor function/recovery after stroke.
A comprehensive analysis of these data may help to foster
our understanding of the neurophysiological changes in
cortical excitability accompanying motor recovery and, at
the same time, may contribute to optimize stroke reha-
bilitation. For this reason, we performed a review on the
relationship of changes in corticospinal excitability within
the ipsi- and contralesional hemisphere (as measured by
TMS) and the functional outcome of the affected hand
after stroke. This review summarizes current data on
resting motor threshold and hand motor function over
the course of recovery after stroke and compares these
data with the data of healthy subjects. Following issues
need to be clarified: (1) Is the cortical excitability of the
ipsi- and the contralesional hemisphere in stroke patients
higher or lower in comparison to a healthy brain? (2) Is
the between-hemispheric balance of cortical excitability
in stroke subjects shifted toward the contra- or ipsile-
sional hemisphere? (3) Is there a relationship between the
level of cortical excitability within either hemisphere and
the between-hemispheric imbalance? (4) Is there a rela-
tionship between the level of cortical excitability within
either hemisphere and/or the between-hemispheric
imbalances, and the motor function/motor recovery of

the affected hand?

Neural plasticity following stroke

A focal brain lesion causes disturbance of functional and
structural architecture within both the ipsilesional and
contralesional hemisphere [4, 5]. Motor recovery results
from the reorganization of neural interconnection within
intact neuron pools, and causes alterations of movement-
related neural activity within perilesional and more
distant brain areas [4, 5]. This process is thought to com-
pensate and adjust functional brain capacities to the new
situation. “Adaptive/positive plasticity” means reorgani-
zation within neural tissue to optimize neural resources
for recovery of function. However, such brain plasticity is
not always “adaptive/positive” The idea of “maladaptive/
negative plasticity’, which may hamper motor recovery
after stroke, is based on the theory of interhemispheric
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rivalry [6, 7]. In a healthy brain, neural activity in the
motor areas of both hemispheres is functionally coupled
and equally balanced in terms of mutual inhibitory con-
trol. An active movement of a hand is associated with an
enhanced neural activity in contralateral motor areas and
increased inhibitory influence toward homologous areas
of the ipsilateral hemisphere [8, 9]. In stroke patients,
a shift of the between-hemispheric balance detrimen-
tal to the affected hemisphere can be observed. Several
fMRI and PET studies have shown that during an active
movement of the affected hand there is increased neu-
ral activity within motor areas of both the lesioned and
the non-lesioned hemisphere and describe a link to hand
motor disability [10-13]. Patients with a favorable func-
tional outcome show lateralized activation within the
contralateral hemisphere (comparably to healthy sub-
jects) during active movement of the affected hand. In
contrast, patients with a poor motor outcome show bilat-
eral recruitment of motor-related brain regions when
moving the affected hand [10-13]. Based on this data,
a maladaptive role of the contralesional (i.e., ipsilateral)
hemisphere for motor recovery after stroke has been
postulated. It has been assumed that the “overactive”
non-lesioned hemisphere exerts an increased inhibitory
influence towards the homologous areas of the lesioned
hemisphere and hampers in this way the motor recovery
of the affected hand. However, the general validity of this
theory is still under debate. In contrast to fMRI and PET
trials [10-13], TMS studies showed no clear evidence for
increased excitability of the unaffected hemisphere or
imbalanced interhemispheric inhibition. Moreover, no
differences were detected between the unaffected hemi-
sphere and healthy brains [14]. Furthermore, recent EEG-
TMS studies provide contrasting findings with regard to
interhemispheric interactions in chronic stroke cohorts.
One study detected increased TMS-evoked interhemi-
spheric beta coherence during ipsilesional M1 stimu-
lation. This was associated with reduced intracortical
inhibition within both the ipsi-and the contralesional
hemisphere as compared to healthy subjects [15]. In
contrast, another study found decreased TMS-evoked
interhemispheric beta coherence during ipsilesional M1
stimulation and detected a correlation to the amount of
hand motor disability [16]. Both studies have not found
any relevant differences between the contralesional hem-
isphere in stroke patients in comparison to healthy con-
trols. These findings indicate that the changes of neural
processing following stroke are complex and not well
understood.

Resting motor threshold
Over the past decades, tens of TMS-studies have inves-
tigated reorganization within the motor cortex after
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stroke as well as its relationship to hand motor recov-
ery. We performed a comprehensive review on the rest-
ing motor threshold measure (an objective assessment of
cortical excitability) and its relationship to motor reha-
bilitation. The resting motor threshold (rMT) is consid-
ered as the stimulus intensity that causes a “minimum
motor response” in a resting muscle during single tran-
scranial magnetic stimulation (TMS) pulses applied over
the “motor hotspot” [17]. In literature, the “minimum
motor response” is defined as the lowest stimulator out-
put intensity that elicits a motor evoked potential (MEP)
with a peak-to-peak amplitude of at least 50 1V in at least
50% of 8, 10 or 20 consecutive stimuli [17]. The “motor
hotspot” is defined as the position on the scalp where the
greatest amplitude and minimum latency of the motor
evoked potential can be elicited [17]. A low resting motor
threshold is associated with a high cortical excitability,
a high resting motor threshold with a low cortical excit-
ability. A recent review that investigated whether the
rMT is a suitable biomarker for predicting post-stroke
upper limb function found a correlation between rMT
and upper limb motor function after stroke [18]. How-
ever, it needs still to be clarified how the rMT in either
hemisphere changes in the course of motor recovery to
identify potential mechanisms of functional restoration.

Methods

Data source

The PubMed research database was searched from its
inception through to 31 October 2020 for studies inves-
tigating resting motor threshold as measured by TMS
and motor function of both hands in stroke patients. The
search terms “stroke’, “transcranial magnetic stimulation”
and “motor” were used. The screening was performed
by one reviewer. Figure 1 illustrates the actual search

strategy.

Study selection

Studies matching the following criteria were included: (1)
study on humans, (2) diagnosis of stroke with the con-
sequence of a hemiparesis/hemiplegia, (3) assessment of
motor function of both the affected and the non-affected
hand, (4) assessment of resting motor threshold of the
ipsilesional and/or contralesional hemisphere, (5) pro-
spective study and (6) more than four patients included.
The appropriate studies were included, regardless of
study design used (interventional—observational, crosso-
ver—longitudinal, different number of groups).

Data extraction

The primary data extracted from the selected publica-
tions were (1) the hand motor function of the affected and
non-affected hand and (2) the resting motor threshold of
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the affected and/or the non-affected hemisphere. For lon-
gitudinal studies, the baseline data, and the data of two
last follow-up evaluations were extracted. If a healthy
control group was available, the resting motor thresh-
old of the non-dominant and the dominant hemisphere
was extracted for a comparison with stroke subjects. The
secondary selected data were (1) subjects characteris-
tics (number, age, gender, time since stroke, stroke etiol-
ogy and location), (2) methodological approach (study
design, interventions, evaluations scheduling) and assess-
ments (targeted muscle, stimulator and coil type, hand
motor assessment) (Tables 1, 2, 3).

Hand motor function

Table 2 summarizes data on hand motor function of the
affected and the non-affected hand. In case a study pro-
vided more than one hand motor function assessment,
we selected those involving motor activities of daily living
(e.g., Flugl-Meyer assessment or Wolf Motor Function
Test) for our analysis. To account for differences in hand
motor assessments used across studies, a laterality quo-
tient was calculated for each study. The laterality quotient
was calculated as follows:

Non—affected Hand—affected Hand .
(Non—aﬂected Hand+affected Hand) *100. The laterahty quo-

tient varies between 0 and +100. The greater the lateral-
ity differences, the stronger the hand motor disability.
Depending on the test used, motor impairment of the
affected hand is associated with either a positive (e.g.,
Wolf Motor Function Test) or a negative value (e.g., Nine
Hole Peg Test). To account for these differences, absolute
values of the laterality quotient were used for the analysis
of hand motor function.

Resting motor threshold

Table 3 summarizes data on resting motor threshold of
the ipsilesional (non-dominant) and the contralesional
(dominant) hemisphere. If the MEP was not evocable,
rMT was set to 100. If data for both hemispheres were
available, we calculated laterality quotients for the resting

motor threshold as:
Contralesional hemisphere—ipsilesional hemisphere 100 £
contralesional hemisphere-tipsilesional hemisphere * or

stroke patients, and as:
Dominant hemisphere—non—dominant hemsiphere 100 £
Dominant hemisphere+non—dominant hemisphere * or

healthy controls. Negative values are associated with a
between-hemispheric imbalance towards the contrale-
sional (dominant) hemisphere, positive values with a
between-hemispheric imbalance towards the lesioned
(non-dominant) hemisphere.

Data synthesis and statistical analysis
Data was analyzed using SPSS Statistic 21 (IBM Corpora-
tion, USA). “Post—pre” differences between baseline and
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R-Values > 0.3 and p-values <0.05 are considered to be
statistically relevant [19].

Results

We identified 92 studies that matched our inclusion cri-
teria. The studies show large variability of methods, par-
ticipants, and results.

Methods

Study design

57 studies have a cross-sectional observational study
design. The remaining 35 studies were either observa-
tional (21 studies) or interventional randomized (10
studies) or interventional non-randomized (4 studies)
longitudinal trials that investigated hand motor func-
tion and cortical excitability for up to one year. 25 stud-
ies included a healthy control group for resting motor
threshold comparison. Table 1 illustrates study design of
studies enrolled.

Hand motor function assessments

Overall 17 different hand motor assessments were used:
Action Research Arm Test, Box and Block Test, Cana-
dian Neurological Scale, Frenchay Arm Test, Flugl Meyer
assessment, Grip strength, Jebsen Taylor Hand Func-
tion Test, Manual Ability Classification System, Motor
Activity Log, Motor Assessment Scale, Motoricity Index,
British Medical Research Council, Nine Hole Peg Test,
National Institutes of Helth Stroke Scale, Rivermead
Motor Assessment, Scandinavian Stroke Scale, Wolf
Motor Function Test. Table 2 shows the overview of hand
motor assessments applied.

Resting motor threshold assessments

13 different upper limb muscles were targeted to inves-
tigate resting motor threshold: abductor digiti min-
imi, abductor pollicis brevis, musculus biceps brachii,
extensor carpi radialis, extensor carpi ulnaris, extensor
digitorum, extensor digitorum communis, first dorsal
interosseous muscle, flexor digiti minimi, flexor carpi
ulnaris, flexor pollicis brevis, flexor carpi radialis, the-
near muscles. Two studies did not specify which upper
limb muscle has been targeted. Ten different stimulator
types from five different manufacturers were used: Mag-
stim 200, Magstim BiStim 200, Magstim Rapid, Magstim
Super Rapid, Magstim Novamentric 2000 (MagStim
Co., Withland, Dyfed, UK), Magpro X100, Magpro R30
(Mag Venture, Farum, Denmark), Maglit 200 (Dantec
Dynamics Ltd, Bristol, UK), Nexstim eXimia (Nexstim
Ltd, Helsinki, Finland) and Cadwell high-speed magnetic
stimulator (Cadwell Inc., Kennewick, Washington, USA).
Most studies used a figure-of-eight shaped coil with
a double 70 mm winding or a round coil with a single
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90 mm winding. A figure-of-eight shaped coil with a dou-
ble 50 mm [20] and 25 mm [21] winding, a round coil
with a single 120 mm winding [22] and a parabolic coil
type [23] were only sporadically used. A few studies did
not specify the type of stimulator or coil. Table 3 shows
the overview of targeted muscles as well as of stimulators
and coils used.

Participants

Overall, 1978 stroke patients and 377 healthy con-
trols were enrolled. Table 1 summarizes patients
characteristics.

Patient gender

Five studies (n=100) did not report data about gender
of the included subjects. All remaining studies included
mixed patient cohorts. Overall, 1205 males and 674
females were investigated.

Time since stroke

time since incident varied considerably among study
cohorts (between<1 day and 16 years at mean). 14
studies (n=444) tested stroke subjects in the acute
phase (within 2 weeks since symptom onset). 20 studies
(n=353) included stroke patients in the subacute phase
(2 weeks to 2 months since symptom onset). 59 studies
(n=1182) investigated stroke subjects in the chronic
phase (more than 2 months since symptom onset).

Stroke etiology

24 studies (n=498) did not report data about stroke
etiology. 19 studies investigated mixed (ischemic and
hemorrhagic) patient cohorts. The remaining 49 stud-
ies included ischemic stroke subjects only. Overall, 1345
patients with an ischemic stroke and 135 patients with a
hemorrhagic stroke were enrolled.

Stroke location

24 studies (n=662) did not report data about stroke
location. Most remaining studies included patients with
a subcortical stroke as well as patients with a cortical
involvement. Overall, 772 patients with a subcortical
stroke and 545 patients with a cortical involvement were
investigated.

Site of lesion

Information about the site of the lesion was absent in
11 studies (n=352). The remaining studies included
744 right hemispheric and 881 left hemispheric stroke
patients.
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Motor function of the affected hand

Table 2 summarizes mean values of hand motor func-
tion tests and their laterality quotients across studies.
There was a wide spectrum of motor disability of the
affected hand across studies. The laterality quotient var-
ied between 100 (severe hand impairment) and 1 (mild
hand impairment).

Resting motor threshold

Table 3 summarizes mean values of resting motor thresh-
old and their laterality quotients across studies. Corti-
cal excitability of the ipsilesional and the contralesional
hemisphere, as well as the between-hemispheric balance
varied strongly across studies.

Relationships between hand motor impairment/hand
motor recovery and rMT
Ipsilesional hemisphere
Figure 2A illustrates overall data on ipsilesional rMT in
stroke subjects and non-dominant rMT in healthy con-
trols. Figure 2B demonstrates direct comparison of ipsile-
sional rMT in stroke patients and non-dominant rMT in
healthy controls for studies that included healthy control
group. Both illustrations indicate that ipsilesional rMT is
increased in most stroke patients. Significant correlations
were found between ipsilesional rMT and the amount of
hand motor disability at BL (r=0.558, p<0.001) and 1 FU
(r=0.359, p=0.011) in stroke subjects. Furthermore, the
amount of increase (in comparison to healthy) correlates
with hand motor disability on BL (r=0.587, p=0.001)
and 1 FU (r=0.884, p=0.008). Thus, the higher the hand
disability, the stronger the increase of ipsilesional rMT.
Longitudinal data shows a decrease of ipsilesional
rMT over time in most of the studies (Fig. 2C). Signifi-
cant correlations were found between changes of ipsile-
sional rMT and changes of hand disability from BL to 1
FU (r=0.326, p=0.024) and from BL to 2 FU (r=0.365,
p=0.050). A favorable hand motor recovery was associ-
ated with a decrease, an unfavorable recovery with an
increase of ipsilesional rMT.

Contralesional hemisphere

Figure 2A shows overall data on contralesional rMT
in stroke subjects and dominant rMT in healthy con-
trols. Figure 2B demonstrated a direct comparison of
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contralesional rMT in stroke patients and dominant rMT
in healthy controls for studies that included healthy con-
trol groups. The illustrations indicate both an increase
and a decrease of contralesional rMT in stroke subjects
in comparison to healthy subjects. No significant corre-
lations were found between contralesional rMT (or the
amount of its changes in comparison to healthy) and the
amount of hand motor disability on BL and both FUs.
Longitudinal data demonstrated both an increase and
a decrease of contralesional rMT over time (Fig. 2C). No
significant correlations were found between changes of
contralesional rMT and hand motor recovery.

Between-hemispheric imbalance
Most studies show a between-hemisphere imbalance of
rMT in favor of the contralesional hemisphere in stroke
patients (Fig. 2A). Its amount correlates significantly with
hand motor disability at baseline (r=—0.543, p<0.001).
The poorer the motor function of the affected hand, the
greater the between-hemispheric imbalance to the disad-
vantage of the ipsilesional hemisphere. In contrast, mild
hand impairment is associated with a slight interhemi-
spheric imbalance towards the ipsilesional hemisphere.
Longitudinal data demonstrates either partial or com-
plete recovery of between-hemispheric balance of rMT
over time in most studies (Fig. 2A). However, no signifi-
cant correlations to hand motor recovery were detected.

Relationships between ipsilesional rMT, contralesional rMT
and between-hemispheric imbalance of rMT

Significant correlations were found between ipsilesional
rMT and contralesional rMT at BL (r=0.627, p<0.001),
1 FU (r=0.520, p=0.001) and 2 FU (r=0.472, p=0.031).
The higher the ipsilesional rMT, the higher the contral-
esional rMT (Fig. 3).

Ipsilesional rMT correlated significantly with the lat-
erality quotient of rMT at BL (r=—0.527, p=0.001) and
1 FU (r=-0.418, p=0.011). The higher the ipsilesional
rMT, the greater the between-hemispheric imbalance to
the disadvantage of the ipsilesional hemisphere (Fig. 3).

Contralesional rTMS correlated significantly with
the laterality quotient of rMT at baseline (r=0.320,
p=0.004), 1 FU (r=0.546, p=0.001) and 2 FU (p = 0.670,
r=0.001). High contralesional rMT was associated with
small between-hemispheric imbalance (Fig. 3).

(See figure on next page.)

output; 1 FU =first follow-up; 2 FU = second follow-up

Fig. 2 A Overall data on resting motor threshold in healthy subjects and stroke patients. Negative values of laterality quotient are associated with
a between-hemispheric imbalance towards the contralesional (dominant) hemisphere, positive values with a between-hemispheric imbalance
towards the lesioned (non-dominant) hemisphere; B Resting motor threshold in stoke patients in comparison to healthy controls (only for studies
which included healthy control group). Positive values re associated with a higher, negative values with a lower resting motor threshold in stroke
patients (in comparison to healthy controls); C Longitudinal changes of rMT in stroke patients. Positive values are associated with an increase,
negative values with a decrease of resting motor threshold over time. Notes: BL =baseline; RMT/rMT = resting motor threshold; SO = stimulator
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Relationship between ipsi- and Relationship between ipsilesional rMT —  Relationship between contralesional
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Fig. 3 Relationships between ipsilesional rMT, contralesional rMT and between-hemispheric imbalance of rMT at the baseline. Notes: MT = resting
motor threshold; SO = stimulator output

Discussion

This systematic review aims to evaluate the neural back-
ground of hand motor disability/hand motor recovery in
stroke patients, based on resting motor threshold data. In
total, 92 studies including 1411 stroke subjects and 331
healthy controls were enrolled and analyzed. The avail-
able data demonstrates several relevant relationships
between the neurophysiological and the behavioral data.
These results may contribute to a better understanding of
the neural background of motor recovery after a stroke
and support the development of innovative therapies in
this cohort.

Cortical excitability during motor recovery after stroke

Our data shows that severe hand motor impairment in
stroke patients is associated with a suppressed cortical
excitability within the ipsilesional hemisphere as well as
with between-hemispheric imbalance to the disadvan-
tage of the ipsilesional hemisphere. A favorable motor
recovery is associated with an increase of ipsilesional
cortical excitability and with a reduction of this between-
hemispheric imbalance. Completely recovered patients
show ipsilesional cortical excitability and between-hem-
ispheric balance comparable to healthy controls. These
findings are supported by individual studies reported in
our review. Nineteen studies demonstrate within their
patients cohort, (1) that low ipsilesional cortical excit-
ability is associated with poor motor function and/or (2)
that favorable hand motor recovery is associated with
an increase of ipsilesional cortical excitability [20, 21,
23-39]. Similarly, ten trials indicate that large between-
hemispheric imbalance to the disadvantage of the ipsile-
sional hemisphere is associated with severe hand motor
impairment, and slight between-hemispheric imbalance

in favor of the ipsilesional hemisphere is associated with
mild hand impairment [21, 32, 36, 38, 40—44].

With regards to the contralesional hemisphere, our
data reveals both higher and lower cortical excitability in
stroke patients in comparison to healthy subjects. None-
theless, the correlation analyses show no significant link
to hand motor impairment/hand motor recovery. How-
ever, three of the studies (included in our review) found
significant relationships in this regard [24, 34, 45]. On
the one hand, severely impaired patients in the acute
phase (10 days after symptom onset) showed an increase
of cortical excitability in both the contra- and the ipsile-
sional hemisphere, in the course of hand motor recovery
[34]. On the other hand, moderately impaired patients
in the chronic phase (5 months after the incident) dem-
onstrated a decrease of contralesional cortical excitabil-
ity over time [45]. Furthermore, chronic stroke patients
(>6 months after the incident) with mild residual hand
impairment showed higher contra- and ipsilesional corti-
cal excitability in comparison to severely affected patients
[24].

Cortical excitability versus neuroimaging

Figure 4 illustrates the evolution of cortical excitability in
the course of hand motor recovery after stroke, as meas-
ured with resting motor threshold data. These observa-
tions receive support from a previous systematic review
that investigates the neural background of stroke motor
recovery with regard to the size and location of hand
motor representation as measured by TMS [46].

Our findings differ somewhat from the traditional
view of neural processing after stroke on the basis of
fMRI and PET data [11-13]. A longitudinal fMRI study
demonstrated in severely impaired patients a bilat-
eral increase of task-related neural activation within
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Fig. 4 lllustration of (1) changes of the cortical excitability within the ipsilesional and the contralesional hemisphere during motor recovery after a

motor areas during the first two weeks after stroke. The
movement-related BOLD activity in mildly impaired
stroke patients did not differ from healthy subjects
[11]. A cross-sectional study that recruited patients at
least three months after stroke revealed similar results.
Patients with less favorable hand motor recovery were
more likely to recruit several motor-related brain regions
over and above those recruited in healthy controls dur-
ing a hand motor task [12]. In contrast, patients with
favorable hand motor recovery showed a brain activa-
tion pattern similar to that found in healthy subjects [12].
Motor outcome correlated negatively with task-related
activation in various brain regions, such as supplemen-
tary motor area, cingulate motor area, premotor cortex,
posterior parietal cortex, and cerebellum of both ipsilat-
eral and contralateral hemispheres [12]. In accordance
with this data, a PET study demonstrated a significant
increase of cerebral blood flow in several brain regions
of both the contralateral and ipsilateral hemispheres
(primary sensorimotor cortex, cerebellar hemispheres,
insular cortex, inferior parietal, and premotor cortices)
when stroke survivors moved their affected hand [13]. In
contrast, active movement of the non-affected hand was
associated with a significant increase of regional cerebral
blood flow within the contralateral primary sensorimo-
tor cortex and the ipsilateral cerebellar hemisphere [13].
Taken together fMRI and PET data showed a profound
lateralization of neural activation within motor areas of
the contralateral hemisphere in healthy subjects moving

one hand. Similar brain activation patterns were found
in stroke subjects moving a mildly impaired hand. Severe
hand motor impairment was associated with increased
neural activation within both the contralesional and
ipsilesional hemispheres, which deceased over time when
motor recovery proceeded. Up to now, it is still not clear
if the increased compensatory recruitment of intact
brain regions is an effective strategy to overcome motor
impairment. A stroke incident activates a cascade of cel-
lular and molecular processes within the peri-lesional
tissue and remote brain regions [47]. Initial loss of func-
tional and structural integrity of neural networks is fol-
lowed by sprouting of axons and dendrites and formation
of new synapses. The “rewiring” of neurons is expected
to compensate for the stroke-induced loos of brain tis-
sue [48]. However, aging-related decline of neural pro-
cessing, such as dysfunctional activation spreading [49,
50] or poor network segregation [51, 52] may interfere
with an efficient reorganization of the neural network.
Elderly people, for example, show less segregated func-
tional networks in comparison to young elderly. Multi-
ple studies indicate the existence of multiple segregated
functional networks within the human brain that exhibit
correlated activity and are assumed to be functionally
connected [53]. Young adults demonstrate quite dense
connections within these functional networks and more
sparse connections between different networks. In con-
trast, elderly people show weaker functional connec-
tivity within the same functional network but stronger
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functional connectivity between regions belonging to dif-
ferent networks [52]. This phenomenon may be the rea-
son for the increase recruitment of contralesional brain
regions after stroke. It has been repeatedly demonstrated
that a less segregated brain network is associated with
worse motor and cognitive performance, independent
of age [51, 52]. An important and potentially causal role
in this context plays the brain’s major inhibitory neuro-
transmitter, gamma aminobutyric acid (GABA). Pre-
sent data demonstrates reduced GABA levels in elderly
people, which is correlated with both less segregated
sensorimotor networks and worse sensorimotor perfor-
mance in comparison to young adults [51]. The GABA-
eric system in particular plays a crucial role during the
repair phase of stroke [54]. Another cause of extensive
network activation in stroke patients may be dysfunc-
tional activation and deactivation of specific brain areas
as a result of aging. Young adults show task-related acti-
vation (increase of signal) in specific brain regions, and
simultaneously deactivation (decrease of signal) in other
areas as detected by PET and fMRI [49, 50]. Interestingly,
consistent deactivation patterns (within large areas of the
lateral parietal cortex, medial parietal, and medial fron-
tal cortex) can be observed across a wide range of tasks
and stimulus modalities [50, 55]. A hypothesis suggests
that these regions constitute a “default network” which is
active when a person is not focused on the outside world,
e.g., during remembering, thinking about the future, and
mind wandering [50, 56]. Elderly people show in com-
parison to young adults an increased spread of activa-
tion within the “task-positive areas” but a reduced spread
deactivation within the “task-negative network” [49].
Such changes are typically explained as upregulation of
resources, or alternatively as the reduced suppression of
distracting mental processes.

In accordance with our findings, some reviews on this
topic question the general validity of the simplified inter-
hemispheric competition model—which posits that sup-
pressing the excitability of the contralesional hemisphere
will enhance recovery by reducing interhemispheric
inhibition of the stroke hemisphere [57, 58]. An earlier
review, for example, analyzed the proposed mechanisms
of synaptic and functional reorganization after stroke and
suggests a bimodal balance-recovery model that links
interhemispheric balancing and functional recovery to
the structural reserve (i.e., remaining functional motor
output) spared by the lesion [57]. Another review focused
on the role of ipsilateral motor pathways during stroke
recovery and its implications for non-invasive brain
stimulation. Its results emphasize that contralesional M1
suppression may also reduce excitability of ipsilateral
descending pathways that may be important for paretic
upper limb control for some patients [58].
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Conclusions

This review provides information about the relation-
ship between hand motor function and motor cortex
excitability changes within and across both hemispheres
during recovery. In particular, the amount of motor cor-
tex excitability of both hemispheres depended on the
amount of hand motor function. In comparison to cor-
tical excitability within the ipsilesional hemisphere,
which was uniquely suppressed, motor cortex excitabil-
ity within the contralesional hemisphere was reduced in
those with severe hand dysfunction but enhanced in
those with a less severe motor disability. Based on these
findings, specific rehabilitation approaches may be devel-
oped to account for these differential changes in motor
cortex excitability for mildly and severely affected stroke
subjects. For example, more disabled patients may ben-
efit from therapy strategies, which enhance motor cortex
excitability within both hemispheres, e.g., a bilateral hand
motor training. In contrast, mildly impaired patients
may benefit from strategies that enhance motor cortex
excitability within the ipsilesional hemisphere but sup-
press excitability within the contralesional hemisphere.
This may be achieved by constraint induced movement
therapy [59]. Also, within the context of non-invasive
brain stimulation, the present set of data may be benefi-
cial to develop a specific application of these techniques
in dependence of the individual time-point and extent
of hand motor recovery. Figure 4 illustrates how inhibi-
tory or facilitatory rehabilitation techniques may be used
in a specific fashion depending on the amount of motor
impairment of the affected hand during recovery after
stroke.

Strength and limitations

This is the first systematic review on rMT and hand
motor function in stroke subjects. Thus, its results may
contribute to a better understanding of the neural princi-
ples of motor recovery after stroke and support the appli-
cation of appropriate therapeutical strategies. However,
our analysis has limitations related to the reviewed data:
i.e., the inconsistency of methods (diverse hand motor
assessment scores, different targeted muscles, different
types of stimulators and coils), subjects (different stroke
states, etiologies, locations), and study designs (obser-
vational versus interventional studies, different follow-
up timings). This may hamper the interpretation of the
results.
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