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Abstract

Background: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method able to modu-
late neuronal activity after stroke. The aim of this systematic review was to determine if tDCS combined with robotic
therapy (RT) improves limb function after stroke when compared to RT alone.

Methods: A search for randomized controlled trials (RCTs) published prior to July 15, 2021 was performed. The main
outcome was function assessed with the Fugl-Meyer motor assessment for upper extremities (FM/ue) and 10-m walk-
ing test (10MWT) for the lower limbs. As secondary outcomes, strength was assessed with the Motricity Index (MI) or
Medical Research Council scale (MRC), spasticity with the modified Ashworth scale (MAS), functional independence
with the Barthel Index (BI), and kinematic parameters.

Results: Ten studies were included for analysis (n =368 enrolled participants). The results showed a non-significant
effect for tDCS combined with RT to improve upper limb function [standardized mean difference (SMD) =— 0.12; 95%
confidence interval (Cl): — 0.35-0.11)]. However, a positive effect of the combined therapy was observed in the lower
limb function (SMD=0.48; 95% Cl: — 0.15-1.12). Significant results favouring tDCS combined with RT were not found
in strength (SMD=—0.15; 95% Cl: — 0.4-0.1), spasticity [mean difference (MD)= — 0.15; 95% Cl: — 0.8-0.5)], functional
independence (MD=2.5; 95% Cl: — 1.9-6.9) or velocity of movement (SMD = 0.06; 95% Cl: — 0.3-0.5) with a ‘moder-
ate”or"low”recommendation level according to the GRADE guidelines.

Conclusions: Current findings suggest that tDCS combined with RT does not improve upper limb function, strength,
spasticity, functional independence or velocity of movement after stroke. However, tDCS may enhance the effects of
RT alone for lower limb function. tDCS parameters and the stage or type of stroke injury could be crucial factors that
determine the effectiveness of this therapy.
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Background

Globally, cerebrovascular accident or stroke is a lead-
ing cause of death and disability among the adult pop-
ulation according to the latest estimates by the Global
Burden of Disease (GBD) [1]. Most stroke patients
live with disabilities affecting their quality of life, such
as limb weakness or paralysis; deficits in balance,
vision, or speech; and cognitive and psychological
impairments [2, 3]. The rehabilitation process of these
patients shows a nonlinear evolution, the clinical recov-
ery period is shorter and the prognosis is better during
the first weeks after the event (subacute phase), and the
recovery is minimal or non-significant after the sixth
month (chronic phase) [4—7]. For this reason, an early
and intensive neurorehabilitation approach, consisting
of functional and repetitive movements, should be car-
ried out to restore normal function [8-13].

The robotic devices can provide repetitive, high-
intensity and task-specific treatment of the affected
limbs and measure and quantify patient progress [14].
Along with previous identified advantages, robotic
therapy (RT) allows stroke survivors to perform inde-
pendent training with less supervision, receive timely
feedback and greater adherence to treatment [15].
However, it has been demonstrated that RT alone is not
superior to other conventional rehabilitation methods,
and it may be necessary to optimize its effectiveness by
including complementary therapies [16].

Transcranial direct current stimulation (tDCS) is a
non-invasive brain stimulation method that has been
shown to be a promising neurorehabilitation interven-
tion [17]. Its principal action mechanism is to modulate
neuronal excitability networks of the affected and non-
affected hemisphere after stroke through the applica-
tion of low intensity direct current through superficial
electrodes applied on the scalp [18]. Previous system-
atic reviews and meta-analyses have investigated the
effects of tDCS as therapy alone or in combination with
other treatments [19-22]. However, no meta-analyses
have been conducted to specifically analyse the effects
of tDCS as an adjunct of robotic therapy on upper and
lower limb function after stroke.

The aim of this systematic review and meta-analysis
was to determine whether the combined use of tDCS
and robotic therapy enhances the function of the upper
and lower limbs in people with stroke compared to
robotic-assisted rehabilitation alone. The secondary
objective was to assess the safety of tDCS and the effec-
tiveness in combination with RT in improving strength,

spasticity, functional independence and movement
velocity.

Methods

This systematic review and meta-analysis followed the
protocol developed in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Anal-
ysis (PRISMA) guidelines [23] and it was registered in
PROSPERO (reference number: CRD42020186963).

Search strategy

Two independent researchers (AMG and NCS) per-
formed an independently searched in the following
databases: PubMed, Physiotherapy Evidence Database
(PEDro) and the Cochrane Library. Moreover, the refer-
ence lists of all relevant articles were manually searched
to identify studies that may have not been identified by
the database search (Additional file 1). The databases
were searched for articles published from the start of
the databases until July 15th, 2021.Combinations of the
following keywords were used to search the abovemen-
tioned databases: “Transcranial direct current stimula-
tion”, “tDCS’, “non-invasive brain stimulation’, “robotic’,
“robot”, “ S neurological disease’,

” o«

‘exoskeleton”, “Lokomat’,

and “stroke”.

Eligibility criteria and study selection

The study selection process is shown in the flowchart in
Fig. 1. The studies were selected based on the PRISMA
checklist’s PICOS method (P—participants; I—inter-
ventions; C—comparators; O—outcome and S—study
design). We included studies in accordance with the fol-
lowing criteria: (1) the patients were diagnosed with a
cerebrovascular accident or stroke; (2) the study was a
randomized control trial (RCT); (3) transcranial direct
current stimulation combined with robotic therapy was
performed; (4) the intervention was compared with a
control or conventional therapy; (5) the function of the
upper/lower limbs was measured; and (6) the article was
written in English or Spanish. Studies were excluded if
they met the following criteria: (1) abstracts or congress
conference papers; (2) non-human studies or preclinical
trials; and (3) studies applying additional electrical stim-
ulation as therapy. Two independent researchers (AMG
and NCS) selected the studies based on the inclusion/
exclusion criteria. Disagreements were resolved by con-
sensus with a third researcher (JGS).
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Fig. 1 PRISMA_flow_chart

Data extraction

The data were extracted by two researchers (AMC and
NCS) using a chart designed for this purpose. A third
researcher (JAC) compared both charts and presented
the final data collected. This information was divided
into two tables: Table 1, which includes basic information

from the selected articles and Table 2, which includes the
sociodemographic and clinical characteristics of the sub-
jects in each study.

Regarding the primary outcome, we analysed the
effect of the combined therapy on limb function using
scales and functional tests. According to our previous
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Table 2 Sociodemographic and clinical characteristics of the subjects with stroke
Author Participants (n) Gender Age Classification Type Pathology characteristics Duration
(year) [enrolled] M/F Mean (SD) I/H Mean (SD)
Affected side Right/left Location of lesion
C/sc
Geroin C.etal. n=30 tDCS:  tDCS:63.6(6.7)  Chronic - - tDCS: 4/3 tDCS:25.7 (6.0)
(2011)%° tDCS (n=10) 8/2 Sham: 63.3 Sham:5/2  Sham:26.7 (5.1)
Sham (n=10) Sham:  (64) Control:3/4  Control: 26.9 (5.8)
Control (n=10) 6/4 Control:61.1 months
Con- 6.3)
trol:
9/1
HesseS.etal. n=96 Anodal  Anodal tDCS: Subacute Anodal tDCS:  Anodal tDCS: 14/18 Anodal Anodal tDCS:
(2011?30 Anodal tDCS (n=32)  tDCS:  63.9(19.5) 32/0 Cathodal tDCS: 15/17 tDCS:25/7  344+£18
Cathodal tDCS 20/12  Cathodal tDCS: Cathodal tDCS: Sham: 16/16 Cathodal Cathodal tDCS:
(n=32) Cathodal 654 (8.6) 32/0 tDCS: 24/8 38+14
Sham (n=32) tDCS: Sham: 65.6 Sham: 32/0 Sham: 26/6  Sham:3.8=+1.5
18/14  (10.3) weeks
Sham:
21/11
Danz M. et al. n=38 tDCS: tDCS: 64.75 Chronic tDCS: 2/2 tDCS: 0/4 - tDCS: 4.78 (4.6)
(2013)?%! tDCS (n=4) 3/1 (14.86) >12months  Sham: 4/0 Sham: 0/4 Sham: 3.22 (2.73)
Sham (n=4) Sham:  Sham:70.75 years
1/3 (11.14)
TriccasT.etal. n=23 tDCS:  tDCS:62.5 Subacute and  tDCS: 9/3 tDCS: 11/2 tDCS: 3/8 19.6 (25.7)
(2015)%%32 tDCS (n=12) 7/5 (143) chronic Sham: 9/2 Sham: 11/0 Sham:4/6 months
Sham (n=11) Sham:  Sham: 64.3 >2 months
7/4 (9.94)
Straudi.Setal n=23 tDCS: tDCS:52.7 Subacuteand  tDCS: 10/2 tDCS: 3/9 tDCS: 9/3 tDSC: 40.7 (35.1)
(2016)%'%2 tDCS (n=12) 5/7 (16.0) chronic Sham: 9/2 Sham: 5/6 Sham:5/6  Sham: 782 (61.9)
Sham (n=11) Sham:  Sham:64.3 weeks
7/4 9.7)
Seo HG et al n=21 Sham:  Sham: Chronic Sham: 7/3 Sham: 8/2 - Sham:
(2017)3234 tDCS (n=11) 7/3 62.9+89 tDCS: 9/2 tDCS: 5/6 1525£1228
Sham (n=10) tDCS: tDCS: tDCS: 75.5+£834
9/2 61.1+£89 months
Mazzoleni S n=24 Sham:  Sham: Subacute Sham: 11/1 Sham: 6/6 - Sham:
etal tDCS (n=12) 6/6 75254801 tDCS: 7/5 tDCS: 6/6 2417 +£14.02
(2017)3% Sham (n=12) tDCS: tDCS: tDCS:26.58+£11.86
/1 70.004+12.80 days
Dehem et al n=21 15/6 Total: 60.5 (9.5)  Chronic Total: 15/6 Total: 11/10 14/7 Total: 386 (57.0)
(2018)3+6 Crossover months
Edwards et al n=282 50/32 678 Chronic Ischaemic Right (82) - 1317 days
(2019)%% Robot +tDCS (n=41) 3.6 years
Robot+sham (n=41)
Mazzolenietal n=40 Sham:  Sham: Subacute Sham: 16/3 Sham: 11/8 - 2547 days
(2019)%6%8 tDCS (n=20) 7/12 687441583  Stroke tDCS: 13/7 tDCS: 11/9
Sham (n=20) tDCS: tDCS:
8/12 67.50+16.30

Male (M); Female (F); Standard Deviation (SD); Ischaemic (I); Haemorrhagic (H); Cortical (C); Subcortical (SC); Group (G); Transcranial direct current stimulation (tDCS)

protocol, when a study included more than one func-
tional scale for upper limbs, the Fugl-Meyer motor
assessment of the upper extremities (FM/ue) was con-
sidered first, which is a scale designed to assess reflex
activity, movement control and muscle strength in the
upper limbs [24]. For the lower limbs, the 10-m walking
test (LOMWT) was chosen preferably. During this test,
the subject had to walk a distance of 10 m as quickly as
possible [25].

The secondary variables adverse effects and patients
lost to follow-up were measured as the number of

participants who suffered adverse effects within each
group and the number of participants lost to follow-up.
In addition, we analysed the strength using the Motricity
Index (MI) or the Medical Research Council scale (MRC);
spasticity with the modified Ashworth scale (MAS);
functional independence with the Barthel Index (BI); and
kinematic parameters were assessed. Regarding the kin-
ematics, only the velocity of movement data (degrees per
second or cm per second) could be extracted. To measure
the intervention effect, post-intervention scores instead
of change scores were chosen. In the studies where it
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was necessary to obtain or clarify missing data, the cor-
responding authors were contacted for additional infor-
mation. Data that were only represented by graphs were
extracted using Graph Grabber v 2.0.1 software for graph
digitalization (https://www.quintessa.org/software/).

Risk of bias assessment

The potential risk of bias was assessed on the basis of
Cochrane Collaboration’s guidelines [26]. This ques-
tionnaire was performed by two independent reviewers
(MAM and DSM). Disagreements were resolved by a
third senior researcher (JGS). Review Manager (RevMan)
software (computer program, version 5.3, Copenhagen:
The Nordic Cochrane Centre, The Cochrane Collabora-
tion, 2014) was used to perform the analysis. Six items
were addressed, and the relevant risk was expressed
as three levels (unclear, low, and high). The researchers
agreed prior to the assessment that for the item “blinding
of the participants and personnel’, the level of risk would
be rated as unclear when the participants or personnel
were not blinded, and for the item “selective reporting’,
studies without a registered protocol would be qualified
as having unclear or high risk, depending on the final
report. Additionally, funnel plots for the main variable
(function) were assessed to evaluate publication bias.

Data synthesis and analysis

The inverse variance method and a fixed-effects model
were used for the 7 assessed variables. The standard-
ized mean difference (SMD) was used to express the
results for upper and lower limb function, strength and
movement velocity since these variables are sometimes
reported with different scales or units. Lower limb func-
tion was assessed by the 10MWT, which measures the
time an individual takes to walk 10 m. A higher score
indicates more severe disability, so this value was multi-
plied by — 1 to align the effect direction. The mean dif-
ference (MD) was used for the spasticity and functional
independence results, which were expressed on the same
scale in the included studies. The risk difference (RD)
was calculated for the adverse events and loss to follow-
up variables. The 95% confidence interval (95% CI) were
calculated for all outcomes. Statistical heterogeneity was
evaluated using the chi-squared test (with statistical sig-
nificance set at p <0.10) and was measured by calculating
the I?, with values of 25%, 50%, and 75% representing low,
moderate, and high heterogeneity, respectively [27].

The results corresponding to the longest follow-up
period were analysed for each of the included stud-
ies. In the studies where the results were reported by
the intention-to-treat and by protocol, the data from
the intention-to-treat analysis were used. If participant
data were available and the authors did not present the
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intention-to-treat results, this analysis was also per-
formed. In the three-arm studies, the shared group was
split according to the Cochrane Group guidelines [26]
to avoid data being counted twice. In addition to the
global analysis, an analysis by subgroups was con-
ducted for the main variable, limb function (lower limb
vs upper limb), the time from stroke onset (<16 weeks
vs > 16 weeks), and the tDCS current density (> 0.05 mA/
cm? vs<0.05 mA/cm?). The analysis by subgroups was
not performed based on the follow-up period as in the
previous protocol because all but one study had a short
follow-up period equal to or less than 3 months. RevMan
software was used for quantitative analysis. The qual-
ity of evidence was classified for each outcome as high,
moderate, low, or very low following the Grades of Rec-
ommendation Assessment, Development and Evaluation
(GRADE) method [28].

Results

After the duplicates were removed, 445 articles were
identified as eligible, and 389 were excluded after the
titles and abstracts were read. Finally, after the full texts
were read, 10 RCTs [29-38] that met the inclusion cri-
teria were included in this systematic review and meta-
analysis (Fig. 1). Additional information was requested
from the authors of five studies [29, 31-34], but a
response was received from only one author [34].

Qualitative summary of the included studies
All included studies were sham controlled. The effect of
active anodal tDCS was compared with those of sham
tDCS and both therapies combined with robot-assisted
rehabilitation. Of the included studies, seven were aimed
at treating the upper limbs [30, 32, 33, 35-38], and
three [29, 31, 34] were aimed at treating the lower limbs
(Table 1). The sample size comprised 368 enrolled partici-
pants (n=207 in active tDCS groups and n=173 in sham
tDCS groups); n=159 were women (43.2%), n=299 had
ischaemic stroke (81.25%), n=122 had cortical lesions
(33.15%) and n=60 had subcortical lesions (16.3%). The
average age ranged between 52.7 and 75.25 years. The
time since stroke onset was <6 months (subacute stroke)
in three studies [30, 35, 38],> 6 months (chronic stroke)
in five studies [29, 31, 34, 36, 37], and both subacute and
chronic stroke were assessed in two studies [32, 33]. For
these studies on two types of stroke, we contacted the
authors to request the results of separate subacute and
chronic analysis. The sociodemographic and clinical
characteristics of the patients in the included studies are
shown in Table 2.

In all included studies, tDCS was performed with
anodal stimulation over the primary motor cortex (M1)
from the stroke-affected hemisphere. Hesse et al. [30]
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included a third group in which a cathode over the M1
of the unaffected hemisphere was used as the active
electrode in one of the three study arms. The cathode
electrode was placed on the contralateral supraorbital
area in all studies except in two studies [33, 36] where
was applied over M1 of the unaffected hemisphere. In
eight studies [30-32, 34-38], the tDCS session lasted
for 20 min, and in the two remaining studies, the ses-
sion lasted for 7[29] and 30 min [33]. tDCS was deliv-
ered simultaneously during RT (online stimulation) in
six studies[29, 30, 32, 35, 36, 38]. The most common fre-
quency of sessions was five sessions per weeks [29, 30,
33-35, 38]. The total number of sessions ranged from
two to thirty-six. The electrode area was 35 cm? in most
of the studies [29, 30, 32-38], and only one study [31]
used electrodes of 25 cm?® The current intensity ranged
between 1 and 2 mA, and the current density ranged
between 0.03 and 0.08 mA/cm?.

In the robot-assisted protocol, the duration of the ses-
sion ranged from 20 to 60 min. The robots used for gait
training were the Gait Trainer GT1 (Reha-Stim, Berlin,
Germany) [29], Lokomat (Hocoma Inc, Switzerland) [31],
and Walkbot (P&S Mechanics, Seoul, Republic of Korea)
[33]. For upper limb therapy, the robot-assisted Bi-Manu
Track (Reha-Stim Bi-Manu Track, Berlin, Germany) [30],
Armeo® Spring (Hocoma AG, Switzerland) [32], REO
Therapy System (Motorika, LTD, Israel) [33], InMotion
wrist robot (Interactive Motion Technologies, Inc., Cam-
bridge, MA, USA) [35], REAplan robot (Axinesis, Wavre,
Belgique), MIT Manus (planar robot) [37] and InMotion
WRIST robot (Bionik Laboratories Corp., Watertown,
MA, USA) [38] were used (see Table 1).

The change in upper limb function was measured with
the FM/ue scale in six studies [30, 32, 33, 35, 37, 38] and
the Box & Block test in five studies [30, 33, 35, 36, 38].
The effect on lower limb function was analysed by the
10 MWT in three studies [29, 30, 34]. With regard to
the secondary variables, six studies assessed strength by
the MRC scale in upper [30, 37] and lower limbs [34] or
MI scale in two studies for upper limbs [35, 38] and one
study for lower limbs [29], four studies assessed spastic-
ity by the MAS scale in the upper [30, 35, 38] and lower
limbs [29], two studies [30, 37] assessed functional inde-
pendence for upper limbs by the BI scale, and three stud-
ies [35, 36, 38] assessed upper limb velocity. Additionally,
some studies assessed other variables and/or scales that
were not within the objectives of the registered protocol
of this review (see Table 1). The longest follow-up period
was 6 months [37]. The follow-up period was less than
or equal to three months (2 to 12 weeks) in five studies
[29-32, 34], and in the remaining four studies [33, 35, 36,
38], there was no follow-up period (Table 1). Five stud-
ies reported lost to follow-up [30-32, 34, 36, 38]: a total
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of n=30 (8.6%), with n=17 from the experimental group
(tDCS) and n=13 from the control group Adverse effects
and/or complications were specifically stated in nine of
the ten included studies [29-33, 35-38]. Of these nine
studies, five did not report any adverse events, and the
other four [30, 32, 33, 37] reported mild adverse effects
related to tDCS (Table 1).

Risk of bias in the included studies

Figure 2 shows the risk of bias for the ten included stud-
ies. Four trials presented an unclear selection bias [31,
35, 36, 38] since the way in which the participants were
randomized to groups was not described in detail. In
terms of performance bias, six studies [30-33, 35, 38] had
an unclear risk since the blinding of the participants but
not the blinding of the personnel was possible. However,
the study by Geroin et al. [29] was assessed as having a
high risk of bias regarding the blinding of the participants
and personnel, as the researchers kept the device turned
off throughout the session in the sham group instead
of using ramps at the beginning and end of the session.
Eight of the ten assessed trials were rated as having a low
risk of detection bias.

Only the two studies carried out by Mazzoleni et al.
[35, 38] were rated as having an unclear and high risk of
bias because the authors did not specify whether assessor
blinding was conducted and because the study was single
blinded, respectively. Regarding the outcome data, only
the study published by Danz et al. [31] was considered to
have a high risk of attrition bias, as the authors reported
only the change scores for the main variable to measure
the intervention effect. Four studies [35—-38] were consid-
ered to have a low risk of reporting bias due to the pro-
tocols being previously registered, and three studies [30,
31, 35] were considered to have an unclear risk since the
protocols had not been previously registered. Three stud-
ies were rated as having a high risk; Geroin et al. [29] did
not report the results of the spasticity outcome, Triccas
el al. [32] reported some secondary variables that were
different from those registered in the previous protocol,
and Straudi et al. [33] did not report spasticity or motor-
evoked potential outcomes, although these outcomes
were included in the previous protocol.

The risk of publication bias was considered low since
the distribution of the main variable (function) in the
funnel plots was not asymmetrical (Fig. 3).

Quantitative summary: effects of active tDCS versus sham
tDCS both methods combined with robotic-assisted
rehabilitation

According with the objective of this meta-analysis and
the protocol published in PROSPERO, a quantitative
analysis of the main variable function was performed.
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This effect was investigated in ten studies, seven for
upper limbs [30, 32, 33, 35-38] and three for lower
limbs [29, 31, 34]. The secondary outcome strength
was investigated in six studies [29, 30, 35, 37, 38], the
spasticity in three studies [30, 35, 38], the functional
independence in two studies [30, 37], and the velocity
of upper limb movements in three studies [35, 36, 38].

Effect on function
Figure 4 summarizes the trials that assessed the effect
of the combination of active tDCS and robotic-assisted

rehabilitation compared with that of the combination of
sham tDCS and robotic-assisted rehabilitation on function.
The study by Danz et al. [31] was excluded from this analy-
sis, as the authors reported the results as change scores. No
differences were observed in the magnitude of improve-
ment in function between the experimental group (active
tDCS) and the control group (sham tDCS) (SMD =- 0.05;
95% CI: — 0.27-0.16), and there was a low level of hetero-
geneity (I2=0%, p=0.61). In addition, no differences were
observed between the experimental and control groups in
the individual analysis of the included studies (Fig. 4).
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In the subgroup analysis of function, a potential
effect of the tDCS combined with robotic-assisted
rehabilitation was observed in the lower limb func-
tion (SMD =0.48; 95% CI: — 0.15-1.12), which was lim-
ited by only two studies. A non significant effect of the
combined therapy was found in the upper limb function
(SMD=— 0.12; 95% CI: — 0.35-0.11) (Table 2). When
this effect was compared in people with chronic stroke
(> 6 months) and with subacute stroke (<6 months), no
differences were found (Chi2=0.8, p=0.36) (Table 2).
For this analysis, the study by Straudi et al. [33] was
excluded since the results for subacute and chronic
patients were reported together. In addition, no differ-
ences were observed in the results between different
dosages or current densities applied regarding the sub-
groups of > 0.05 mA/cm? and <0.05 mA/cm? (Chi2=0.0,
p=0.99) (Table 2). The quality of the evidence for this
outcome according to the GRADE guidelines was moder-
ate, considering a serious risk of bias as a factor that rat-

ing down.

Effect on strength
Figure 5A summarizes the trials that assessed the effect

of the interventions on strength. The overall strength
score did not differ between the active and sham tDCS
groups (SMD=- 0.15; CI 95%: — 0.4-0.1) and showed

a moderate level of heterogeneity (I2=53%, p=0.05).
The individual results of the included studies showed
that only Geroin et al. [29] reported differences between
the active and sham groups favouring the sham group
(Fig. 5). The quality of this evidence, according to the
GRADE guidelines, was considered low, considering a
serious risk of bias and heterogeneity of results as factors

that rating down.

Effect on spasticity
Figure 5B summarizes the trials that assessed the effect

of the interventions on spasticity by the modified Ash-
worth scale. The overall effect on spasticity showed no
differences between the active and sham tDCS groups
(MD=-0.15; 95% CI: — 0.8-0.5) and showed a low level
of heterogeneity (12=0%, p=0.82). In addition, no dif-
ferences were observed between the experimental and
control groups in the individual results of the included
studies (Fig. 5). The quality of this evidence, according to
the GRADE guidelines, was moderate, considering a seri-
ous risk of bias as a factor that rating down.

Effect on functional independence

Figure 5C summarizes the trials that assessed the effect
of the interventions on functional independence by the
Barthel Index. The overall effect on this outcome did not
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differ between the active tDCS and sham tDCS groups
(MD=2.5; 95% CIL: — 1.9-6.9) and showed a low level
of heterogeneity (I12=0%, p=0.72). No differences were
observed between the experimental and control groups
in the individual results of the included studies (Fig. 5).
The quality of this evidence, according to the GRADE
guidelines, was moderate, considering a serious risk of
bias as a factor that rating down.

Effect on velocity of upper limb movements

Figure 5D summarizes the trials that assessed the effect
of the interventions on upper limb movement velocity.
The overall effect on this outcome did not differ between
the active tDCS and sham tDCS groups (SMD =0.06;
95% CI: — 0.3-0.5) and showed a low level of heteroge-
neity (I2=0%, p=0.80). In addition, no differences were
observed between the experimental and control groups
in the individual results of the included studies (Fig. 5).
The quality of this evidence, according to the GRADE
guidelines, was moderate, considering a serious risk of
bias as a factor that rating down.

Adverse events and lost to follow

Figure 6 summarizes the trials that reported adverse
events and the number of patients lost to follow-up. The
overall analysis showed no risk difference for adverse
events (RD=0.04; 95% CI: — 0.02—0.1) and number of
patients lost to follow-up (RD=0.00; 95% CI: — 0.05—
0.06) between the active tDCS and sham tDCS groups.
Regarding the individual results of the included studies,
only the study carried out by Edwards et al. [37] showed a
high risk for adverse events in the active tDCS group. The
quality of this evidence, according to the GRADE guide-
lines, was moderate, considering a serious risk of bias as a
factor that rating down.

Discussion

This systematic review and meta-analysis included 10
RCTs and 368 participants and was conducted to inves-
tigate the effects of tDCS as an adjunct to robotic therapy
on limb function after stroke. In addition, the safety of
tDCS and its effectiveness to improve strength, spasticity,
functional independence and movement velocity were
analysed. Currently, the evidence about the effectiveness
of tDCS in previous systematic reviews and clinical tri-
als is contradictory. The results obtained in the present
meta-analysis showed non-significant improvement for
the main variable (function) and secondary variables
(strength, spasticity, functional independence and move-
ment velocity), with a “moderate” to “low” recommen-
dation level according to the GRADE guidelines. These
results reveal that tDCS does not have an additional
effect to RT alone on these outcomes.

A recently published guidelines and a meta-analy-
sis on the use of tDCS for neurological and psychiatric
disorders [39] found that when tDCS was combined
with other therapies in the treatment of subacute and
chronic stroke, patients showed improvements, and
tDCS enhanced the effects of the adjuvant therapy. How-
ever, tDCS combined with intensive RT did not improve
motor recovery to a greater extent than did RT. Our
results are consistent with this guidelines, the subgroup
analysis results showed no statistically significant differ-
ences between the experimental and the control tDCS
groups, and both groups experienced improvements in
clinical and kinematic variables.

Regarding other factors that may influence the effec-
tiveness of tDCS, we can find the type and stage of
the lesion, which can affect stroke evolution. A case-
controlled study showed that when two patients had
the same basal neurological severity, same functional
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disability, age and sex, haemorrhagic stroke patients had
better prognosis than ischaemic ones [40]. In our review,
of the 368 enrolled patients, 81.25% had ischaemic stroke,
and most of the participants suffered from chronic-stage
stroke and cortical lesions. Several studies have shown
larger improvements with rehabilitation in the subacute
stage (<6 months) than in the chronic stage (>6 months).
These benefits may be related to spontaneous recovery,
which is usually observed over third month after stroke
onset. This period could be extended, depending on the
severity, type and intensity of the intervention [32, 41,
42).

Factors including tDCS parameters, electrode size,
electrode location, stimulation duration and the number

of sessions could also affect the effectiveness of the inter-
vention [43]. The tDCS protocols of the included studies
in this review are too heterogeneous. The current density
has been described as one of the main parameters that
determine the effectiveness of tDCS. Two systematic
reviews and meta-analyses showed a positive relation-
ship between current density and the recovery of motor
function. The current density determines the electrical
field strength, which depends on the current intensity
and electrode size. Higher current densities or smaller
electrodes are associated with a higher efficacy of tDCS,
which means a deeper penetration of the current into
the scalp changing the excitability of the neurons under
the electrode [19, 43]. Traditionally, intensities ranging
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between 1 and 2 mA are used in human studies. To date,
the effects of current densities greater than 0.08 mA/cm?
are unknown.

Regarding adverse events, tDCS can be considered a
safe therapy with some mild adverse effects observed in
the included studies. It is necessary to perform studies
where adverse events are actively assessed, as half of the
included studies in this review did not report any adverse
events, and one of the studies did not mention adverse
events.

This systematic review and meta-analysis has limi-
tations that could affect the obtained results: (1) due
to differences in the patient characteristics, the study
population is heterogeneous. The results obtained in
this review cannot be generalized to haemorrhagic or
subacute stroke patients because most of the enrolled
participants had ischaemic or chronic stroke. (2) The
sample sizes of the included studies were larger than 30
in only 3 studies [32, 39, 40]. This factor may influence
the results, as studies with larger sample sizes, in which
tDCS combined with other therapies, found significant
differences in the variables analysed in stroke patients.

(3) The heterogeneity in the tDCS parameters assessed
made it difficult to compare the results. (4) There was
variability in the number of sessions, the intervention
protocol and the devices used for upper and lower
limbs RT. (5)Most of the included studies had a short
follow-up period, with only one study including a
longer follow-up period of 6 months. (6) The study out-
comes monitored differed across studies, which limited
the ability to compare outcomes across studies.

Conclusion

The reported findings suggest that the application of
tDCS as an adjunct to RT does not enhance the effect
of RT alone on upper limb function after stroke. This
meta-analysis revealed that tDCS combined with RT
may favour the lower limb function, however these
results should be interpreted with caution because
there were analysed by only two studies. Furthermore,
positive results favouring tDCS combined with RT were
not found in strength, spasticity, functional independ-
ence or movement velocity with an evidence confidence
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graded as “moderate”. Regarding adverse effects, tDCS
can be considered a safe and well tolerated therapy with
minor side effects. It is of relevance considering that
most of the studies analysed were underpowered due
to small sample sizes. It is also evident that the subject
heterogeneity, the variability in the tDCS parameters
and RT devices and the inconsistency of outcomes
made difficult the comparison among studies. Further
research studies should stratifying participants accord-
ing to the type and stage of stroke including larger
sample sizes, longer follow-up evaluation periods and
adverse effects should be assessed to determine the
optimal tDCS dose and parameters combined with RT.
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