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Abstract 

Background:  Many of the available gait monitoring technologies are expensive, require specialized expertise, are 
time consuming to use, and are not widely available for clinical use. The advent of video-based pose tracking provides 
an opportunity for inexpensive automated analysis of human walking in older adults using video cameras. However, 
there is a need to validate gait parameters calculated by these algorithms against gold standard methods for measur-
ing human gait data in this population.

Methods:  We compared quantitative gait variables of 11 older adults (mean age = 85.2) calculated from video 
recordings using three pose trackers (AlphaPose, OpenPose, Detectron) to those calculated from a 3D motion capture 
system. We performed comparisons for videos captured by two cameras at two different viewing angles, and viewed 
from the front or back. We also analyzed the data when including gait variables of individual steps of each participant 
or each participant’s averaged gait variables.

Results:  Our findings revealed that, i) temporal (cadence and step time), but not spatial and variability gait measures 
(step width, estimated margin of stability, coefficient of variation of step time and width), calculated from the video 
pose tracking algorithms correlate significantly to that of motion capture system, and ii) there are minimal differences 
between the two camera heights, and walks viewed from the front or back in terms of correlation of gait variables, 
and iii) gait variables extracted from AlphaPose and Detectron had the highest agreement while OpenPose had the 
lowest agreement.

Conclusions:  There are important opportunities to evaluate models capable of 3D pose estimation in video data, 
improve the training of pose-tracking algorithms for older adult and clinical populations, and develop video-based 3D 
pose trackers specifically optimized for quantitative gait measurement.
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Background
Clinically established techniques for examining gait 
quality in older adults typically require technologies 
such as motion capture systems which are expensive 
and time consuming, require specialized expertise and 
staff to operate, and are not widely available for clinical 
use. As a result, gait monitoring practices have mainly 
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involved cross-sectional gait assessments in laboratory 
settings or under experimental conditions which do not 
reflect the cognitive and physical demands of natural 
walking or usual locomotion [1].

With the advent of commercially available depth 
cameras, specifically the Kinect sensor (Microsoft, 
Redmond, WA), researchers were able to monitor natu-
ral walking of participants [2–7]. However, the Kinect 
camera has a limited depth of field (0.5 to 4.5 m) which 
can only capture few steps. This limitation, along with 
concerns about cost and potential hardware obsoles-
cence (the sensor was commercially unavailable for an 
extended period until a newer version was released) 
motivate adopting other technologies for the purpose 
of natural gait monitoring. Although other depth sens-
ing cameras are available, it would be ideal if technolo-
gies can make use of regular videos from cameras that 
are ubiquitous, such as surveillance cameras.

Advances in computer vision technology and human 
pose estimation in image/video data can address these 
limitations. A number of algorithms have been devel-
oped for human pose tracking that are capable of auto-
mated analysis of human walking using only standard 
RGB camera videos [8–15]. These algorithms use 
deep learning models that are trained on a large cor-
pus of annotated videos, resulting in models capable 
of detecting body segments (head, hands, knees, feet, 
etc.) in new videos outside of the training dataset. 
These packages are freely available and can be used to 
process videos of human walking in any setting with 
minimal cost and technical expertise [15]. Gait param-
eters can subsequently be computed from the sequence 
of tracked body parts [16]. However, for use in clinical 
applications, there is a need to validate gait variables 
calculated from pose tracking data against gold stand-
ard methods for measuring human gait data, e.g., three-
dimensional (3D) motion capture systems [15].

Previous studies on the validation of video pose 
tracking algorithms mainly used a single pose tracking 
algorithm, mainly OpenPose [8], in sagittal view, and 
healthy young adults [9, 11, 12, 15, 17]. Less is known 
about the performance of other publicly available pose 
tracking algorithms such as AlphaPose [13] or Detec-
tron [14] particularly for pose tracking of gait in a 
frontal view and in older adult populations. There are 
several reasons that this analysis is valuable and nec-
essary: i) comparison of different pose trackers allows 
researchers to choose the most appropriate one for the 
purpose, ii) recording walks in a frontal view allows the 
capture of more steps and an analysis of stability in the 
frontal plane, and iii) pose tracking algorithms require 
validation in older adults as their posture and gait are 

different to that in young adults and is characterized by 
lower speed, and greater variability [18].

The aim of this study was, therefore, to investigate the 
concurrent validity of spatiotemporal gait measurement 
in the frontal plane based on three common pose track-
ers (AlphaPose [13], OpenPose [8], and Detectron [14]) 
against a 3D motion capture system by doing a correla-
tion analysis between the gait variables calculated from 
the two systems in older adults.

Methods
Participants
Participants were residents (older adults age > 65 years) of 
a retirement home who were able to provide consent to 
participate in the study. The University of Toronto Eth-
ics Board approved the study protocol. Residents of the 
retirement home were sent a recruitment letter briefly 
describing the study, and expressed their interest in 
participation by calling the research assistant. Partici-
pants provided written consent before participating in 
the study. The inclusion criteria were being older than 
65 years and an ability to walk independently over a dis-
tance of 20 m. There were no exclusion criteria. Partici-
pants declared that did not have any pain or fatigue that 
could affect their walking at the time of experiments. The 
following clinical tests were performed by the research 
assistant: the Mini-Mental State Examination [19], the 
Tinneti performance-oriented mobility assessment 
(POMA) for balance and gait [20], the Berg balance scale 
[21], and timed-up-and-go [22].

Task
Participants walked back and forth for one minute along 
the long axis of large room. The walking distance was 
approximately 13  m and the walking surface was flat. 
Participants were instructed to walk at their normal pace 
with the ‘go’ signal from the assessor and stopped walking 
with the ‘stop’ signal. A clinical assistant walked beside 
the participants at a safe distance but did not provide any 
pacing or physical support.

Motion capture system
An Xsens MVN Awinda system (Xsens, Enschede, Neth-
erlands) comprising of seven wireless inertial measure-
ment units (IMUs), a receiver hub and straps was used to 
record participants’ walking at 100 Hz. The seven lower 
body IMU sensors were attached to the right and left feet, 
shanks, thighs and the sacrum. The participants’ height 
was measured and the sensors were calibrated before 
starting the walking task. The MVN Analyze software 
(Xsens, Enschede, Netherlands) was used to record the 
walking tasks. The Xsens IMU system is valid and reliable 
3D motion capture system with the accuracy comparable 
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to traditional optical motion capture systems [23, 24] 
with the added benefit of not being constrained to the lab 
space, which was required for this project. In particular, 
the concurrent validity of the Xsens system compared 
to 3D marker-based motion capture was reported to be 
greater than 0.8 for the sagittal and frontal joint angles 
[23, 24]. Teufl, Lorenz [25] also reported that gait event 
detection accuracy of the Xsens system was about 99% 
with a relative root mean square error of 0.90–4.40% for 
most gait variables.

Cameras
Two Motorola Moto G5 Play cell phones (Motorola, Chi-
cago, IL), equipped with a 13 mega pixel camera capa-
ble of recording videos at 30 frame per second at 1080p 
resolution, were used to record the walking videos. These 
cameras were placed at two different heights of 111 cm 
(approximately eye-level) and 205  cm, chosen to mimic 
wall-mounted (straight) and ceiling-mounted (tilted 
down) camera viewing angles.

Video pose tracking
The recorded videos were first cropped temporally, 
selecting only the sections of the recordings where the 
participant was continuously walking towards (front 
view) or away (back view) from the cameras. The sec-
tions of the recordings where the participant was turning 
were excluded from analysis because the pose tracking 
algorithms could not accurately estimate body landmarks 
during the turns. Open-source human pose estimation 
libraries were then used to extract the joint positions 
in each frame of the cropped videos. The three libraries 
investigated were OpenPose [8](Windows demo release 
1.5.1), Detectron [14] (R-CNN R101-FPN pretrained 
model backbone), and AlphaPose [13] (YOLOv3-spp 
detector, pretrained ResNet-50 backbone). All these three 
predict the location of key joints independently for each 
frame of an input video. OpenPose uses a bottom-up 
approach that first predicts part affinity fields (PAFs) and 
confidence maps of joints. The PAFs are subsequently 
used to perform part association and prediction of over-
all body poses. Conversely, Detectron and AlphaPose 
both implement top-down designs. Detectron employs 
an architecture that simultaneously predicts bounding 
boxes, segments, and joint keypoints. AlphaPose uses a 
sequential architecture that first places bounding boxes 
around each person in the image and then performs key-
point prediction within the bounding box.

The pose estimation models provide the lateral and ver-
tical positions (in the frontal view) of body joints in each 
frame of the input video, as well as a score representing 
the model’s confidence in its prediction of the joint posi-
tion. The predicted joint positions in each frame were 

aggregated temporally to obtain joint trajectories of the 
participant’s movement in each video. The confidence 
scores provided by the pose estimation libraries were used 
to identify and remove and linearly interpolate joint posi-
tions at time steps where the pose estimation library pre-
dicted a joint with low confidence. As the confidence scores 
output from the different pose estimation libraries are not 
calibrated, the threshold used to denote low confidence 
varied for each library (0.3 for OpenPose, 0.5 for Alpha-
Pose, and 0.15 for Detectron). These threshold values were 
chosen by trial and error to make sure that the keypoints 
in less than 10 percent of the frames were missing or had 
low confidence. As also noted by Stenum,  et al. [15], the 
pose estimation libraries may sometimes erroneously label 
a joint on the left side of the body as the corresponding 
joint on the right side. To address this, the joint trajectories 
were visually inspected and these errors where manually 
corrected. Finally, a zero-lag second-order low-pass But-
terworth filter with a cut-off frequency of 8 Hz was used 
to temporally smooth the joint positions [26]. Note that no 
synchronization between the two systems were required 
for the purpose of this study as we compare gait parameters 
calculated from the two systems and not the pose estima-
tion at each time frame. However, we ensured that the first 
and last steps of each walking bout (front or back view) 
were the same to make sure that step-wise gait measures 
were calculated from the same sequence of steps.

Gait variables
Gait variables were calculated for the recorded gait from 
the two systems, i.e. i) using the 3D joint coordinates 
extracted using the MVN Analyze (Xsens, Enschede, 
Netherlands), and ii) by processing the recorded color 
videos via the pose tracking algorithms to obtain 2D joint 
(pixel) coordinate. Spatial gait variables (e.g. step width) 
calculated from the video were normalized by hip width 
to account for the perspective. Gait variables used were 
cadence (number of steps per minutes), step time (the time 
between two consecutive foot strikes) and step width (the 
distance medial distance between the left and right feet at 
the time of foot strike) and their variability (coefficient of 
variation, CV, defined as the standard deviation divided by 
the mean), and estimated margin of stability (eMOS). The 
eMOS is the distance between velocity–corrected centre of 
mass from the foot at stance in the lateral direction). The 
eMOS is based on the margin of stability measure intro-
duced initially by Hof [27]. It is calculated using Eq. (1):

where XCOM  is called the extrapolated centre of mass 
and is calculated as XCOM = COM + VCOM/ω. Here, 
the COM is the position of the body centre of mass 
(sacrum in our study) in the mediolateral direction, VCOM 

(1)eMOS = XCOM − BOS
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is the velocity of the centre of mass in the medio-lateral 
direction, and ω is the frequency of the leg (distance from 
scrum to the foot in our study) oscillation and is deter-
mined as ω =

√

g/l  where g is the gravity and l is the leg 
length. The BOS in Eq. (1) is the lateral boundary of the 
base of support which, in our study, is the lateral position 
of the foot when in stance. Due to the necessary adjust-
ments made to Hof [27]’s measure of margin of stability, 
we named it estimated margin of stability (eMOS). These 
gait variables have been shown to be correlated with fall 
risk in the literature [28, 29]. The details of calculating 
these variables are presented in our previous papers [3, 6, 
16, 30]. To calculate these gait variables, the steps in each 
walking bout were first identified. For the Xsens data, 
this was provided by the MVN Analyze software (Xsens, 
Enschede, Netherlands). For time series from the videos, 
this was done by detrending the vertical position of the 
ankle, and finding the local extrema and were compared 
to those provided by the IMU system (considering the 
different recording sampling rates) for all pose tracking 
algorithms and corrections were made when necessary. 
Gait variables for front view and back view walks were 
analyzed separately. Custom codes written in Matlab ver-
sion R2018a (Mathworks, Natick, MA) was used to cal-
culate all gait variables.

Statistical analysis
Pearson’s correlation coefficients (R) were used to deter-
mine the correlation between the gait variables calcu-
lated from the video and from the inertial motion capture 
system as the gold standard. We compared these two sets 
of gait variables in 24 different conditions: 3 pose track-
ing algorithms (AlphaPose, OpenPose, and Detectron), 
2 camera heights (eye-level and top), 2 walking views 
(front and back), and 2 calculation methods (individual 
steps and mean values of all steps over a walking bout). 
“Individual steps” refer to including gait variables of each 
individual step in the correlation analysis while “mean of 
all steps” refers to averaging gait variables over all of the 
steps of each walking bout of each participant. The cor-
relation coefficients (R) and p-values were reported. The 
significance level was 0.05.

While we were not able to measure and compare the 
accuracy of the three vision-based pose tracking algo-
rithms against our IMU system due to having different 
units (i.e. the gait measures from the IMU system are in 
meters while they are unitless in the pose tracking algo-
rithms), we compared the performance of the three pose 
tracking algorithms with respect to each other by cal-
culating (i) precision—the dispersion around the mean 
using coefficient of variation (CV), and (ii) the degrees of 
agreement between pairs of the pose tracking algorithms 
using Bland–Altman plots. Because the gait events 

calculated from the three pose trackers were similar to 
each other, Bland–Altman agreement plots were the 
same for the temporal gait variables (cadence and step 
time) calculated for the three trackers. We have thus pre-
sented the results of the Bland–Altman analysis for the 
spatial gait variables only (i.e. step width and eMOS).

Results
While the initial plan was to recruit 20 participants, the 
experiments were discontinued after recruiting 14 par-
ticipants due to the Covid-19 pandemic. Out of the 14 
participants who took part in the study, data for three 
were not suitable for analysis (their motion capture data 
had calibration problems) and thus discarded, leaving 
the data of 11 participants for analysis (mean age = 85.2). 
The demographics of the participants are presented in 
Table  1. In total, participants had 26 front and 20 back 
view walks, an average of 2.3 and 1.8 walking bouts per 
participant for front and back view walks, respectively. 
In addition, participants had a total of 354 steps in the 
front view walk and 244 in back view walk, equal to aver-
age of 32.2 and 22.2 steps per participant for front and 
back view walks, respectively. These equal to, on average, 
14 (32.2/2.3) and 12.3 (22.2/1.8) steps per each front and 
back view walks, respectively. The average values of the 
six gait measures for the motion capture (Xsens) and the 
three pose tracking algorithms are presented in Table 2. 
A snapshot of the three pose tracking algorithms overlaid 
on one frame of the videos is presented in Figs. 1 and 2. 
An example of scatter plots for one temporal (step time), 
and one spatial (step width) gait variable, for the eye-level 
camera videos is presented in Fig. 3.

The pattern of correlations was similar between the 
three pose tracking algorithms and the motion capture 
and there were no major differences amongst the three 
algorithms. That is, for all three algorithms, the temporal 

Table 1  Demographic results of the participants

SD standard deviation, POMA Tinneti performance-oriented mobility 
assessment, TUG​ time up-and-go, BBS Berg balance scale, MMSE Mini-Mental 
State Examination

Age (mean years ± SD) 85.2 ± 5.6

Number of men (%) 2 (18.1)

Weight (mean kg ± SD) 63.2 ± 12.2

Height (mean cm ± SD) 163.6 ± 9.7

Number of falls in past 6 months (%) 0 (0)

POMA-balance 12.8 ± 1.6

POMA-gait 11.7 ± 0.6

TUG (s) 12.2 ± 4.2

BBS 45.0 ± 6.3

MMSE 28.09 ± 3.5
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gait measures (cadence and step time) had high (R > 0.7) 
to very high (R > 0.9) correlations to the motion capture 
values in most conditions, while the spatial measures 
mainly had low (R < 0.5) or moderate (0.5 < R < 0.7) corre-
lations to the motion capture. In addition, averaging the 
gait measures over the steps of each participant (mean 
values in the tables) improved the correlations, but spa-
tial gait measures remained non significant (p > 0.05), 
possibly because the number of samples also reduced 

by a large factor because of averaging. The details for all 
pose tracking algorithms are provided below.

AlphaPose
When considering all individual steps (Table 3), cadence 
had the correlation of 0.99 (p < 0.001) and 1.00 (p < 0.001) 
for the front and back view walks of the eye-level cam-
era, respectively. These values were 0.97 (p < 0.001) for 
both front and back view of the top cameras. In addition, 

Fig. 1  The pose tracking skeletons overlaid on the eye-level camera video for front (top row) and back (bottom row) view walks, A AlphaPose, B 
OpenPose, C Detectron
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step time had a correlation of 0.71 (p < 0.001) with the 
motion capture for both front and back view walks of the 
eye-level camera. All other correlations were low (R < 0.5) 
according to classification of correlation values suggested 
by [31]. Regarding eMOS results, the values of front 
view (R = 0.45, p < 0.001 for both cameras) walks was 
higher than back view walks (R = 0.14, p = 0.03 for eye-
level camera and R = 0, p = 0.95 for top camera) in both 

eye-level and top cameras although the correlation were 
poor (R < 0.5) in all cases.

Calculating the correlations for averaged gait variables 
(mean values in Table  3) increased the correlation val-
ues. However, note that although several gait variables– 
front view step width (R = 0.57, p = 0.07) in the eye-level 
camera and step width (R = 0.58, p = 0.06) and eMOS 
of back view walk (R = 0.60, p = 0.09) in the top camera 

Fig. 2  The pose tracking skeletons overlaid on the top camera video for front (top row) and back (bottom row) view walks, A AlphaPose, B 
OpenPose, C Detectron
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Fig. 3  Scatter plots for one temporal (step time, left column), and one spatial (step width, right column) gait variable, including each individual step 
captured in the front view walking bout with the eye-level camera, A AlphaPose, B OpenPose, C Detectron. The colors are associated with different 
participants’ data. The thick red line is the fitted line. The correlation values are also shown in the figures
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– had a moderate correlation (R > 0.5) with nonsignificant 
p-values.

OpenPose
When including all individual steps (Table  4), cadence 
had the correlation of 0.99 (p < 0.001) and 1.00 (p < 0.001) 
for both front and back view walks of the eye-level cam-
era, respectively. These values were 0.97 (p < 0.001) for 
both front and back view of the top cameras.

Similar to AlphaPose, here also averaging the gait vari-
ables over all steps for each participant increased the 
correlation values. Cadence and step time had the corre-
lation of 1.00 (p < 0.001) for eye-level and 0.99 (p < 0.001) 
for top cameras in both front and back view walks, and 
MOS of the back view walk in eye-level camera had the 
correlation of 0.79 (p = 0.02). Variables with moder-
ate correlations included step widths (R = 0.56, p = 0.07, 
and R = 0.54, p = 0.09 for the front and back view 
walks, respectively), and back view walk step width CV 
(R = 0.60, p = 0.05) in the eye-level camera and front view 
walk step width (R = 0.55, p = 0.08) in the top camera.

Detectron
Cadence had a correlation of 0.99 (front view) and 1.00 
(back view) in the eye-level camera (p < 0.001) and 0.97 

(in both front and back views) in the top camera using 
the Detectron pose tracking algorithm (Table  5). Step 
time’s correlation was 0.71 (p < 0.001) for the eye-level 
camera, step width of front view walk had a correla-
tion of 0.54 (p < 0.001) for the eye-level camera and 0.64 
(p < 0.001) for the top camera, and the correlation was 
0.51 (p = 0.02) for the step width CV of the back view 
walk in the eye-level camera.

Similar to other two pose tracking algorithms, averag-
ing the gait variables over all steps for each participant 
increased the correlation values. That is, cadence and 
step time had a correlation of 1.00 (p < 0.001) for the 
eye-level camera and 0.99 (p < 0.001) for top camera. The 
correlation for the eMOS of back view walk in the eye-
level camera was 0.76 (p = 0.01) while this value was 0.74 
(p = 0.01) for the step width of front view walk in the top 
camera. Other moderate correlations include step time 
CV of front view walk in the eye-level camera (R = 0.53, 
p = 0.09) and step width of the back view walk in the top 
camera (R = 0.53, p = 0.09) although their p-values were 
not significant.

Comparing the three pose‑tracking algorithms
The three pose tracking algorithms had similar precision 
(CV) as depicted in Table 6. For example, for the eMOS 

Table 3  Results of correlation analysis between gait variables calculated from the motion capture and from the AlphaPose pose 
tracking

Gait variable Eye-level camera Top camera

R p R p R p R p

Front view walks Back view walks Front view walks Back view walks

Individual steps Individual steps

Cadence 0.99  < 0.001 1.00  < 0.001 0.97  < 0.001 0.97  < 0.001

Step time 0.71  < 0.001 0.71  < 0.001 0.48  < 0.001 0.31  < 0.001

Step width 0.54  < 0.001 0.31  < 0.001 0.62  < 0.001 0.25  < 0.001

Step time CV 0.17 0.40 − 0.05 0.85 0.03 0.87 0.30 0.20

Step width CV 0.45 0.02 0.36 0.12 0.36 0.07 0.30 0.20

eMOS 0.45  < 0.001 0.14 0.03 0.45  < 0.001 0 0.95

Gait variable Eye-level camera Top camera

R p R p R p R p

Front view walks Back view walks Front view walks Back view walks

Mean of all steps Mean of all steps

Cadence 1.00  < 0.001 1.00  < 0.001 0.99  < 0.001 0.98  < 0.001

Step time 1.00  < 0.001 1.00  < 0.001 0.99  < 0.001 0.99  < 0.001

Step width 0.57 0.07 0.42 0.20 0.66 0.03 0.58 0.06

Step time CV 0.52 0.10 0.22 0.51 0.13 0.71 0.50 0.12

Step width CV 0.38 0.25 0.41 0.21 0.33 0.33 0.23 0.50

eMOS 0.61 0.11 0.66 0.04 0.58 0.13 0.60 0.09
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of the front view walks in the top camera, the CV val-
ues were 0.48 (0.15), 0.42 (0.08), and 0.48 (0.14) for Alp-
haPose, OpenPose and Detectron, respectively, which 
indicates the similarity in precision between the three 
algorithms.

The Bland–Altman plots for the three pairs of compari-
son between the pose trackers are presented in Figs.  4 
and 5. Accordingly, for both step width (Fig.  4) and 
eMOS, there is more agreement between the AlphaPose 
and Detectron (middle columns) compared to between 
OpenPose and AlphaPose (left columns) or between 
OpenPose and Detectron (right columns). This is evident 
from the AlphaPose-Detectron pair’s narrower limits of 
agreement band (± 1.96*standard deviation) which con-
tains 95% of the values.

Discussion
We compared the gait variables calculated from 2D vid-
eos of standard RGB cameras using three pose tracking 
algorithms to those calculated from a 3D motion capture 
system. We performed the comparisons for videos of two 
cameras at two different heights, for front and back view 
walks, and when including gait variables at all steps of 
each participant or each participant’s averaged gait vari-
ables. Our findings revealed that, i) temporal (cadence 

and step time) calculated from the video pose tracking 
algorithms have a high correlation to that of 3D motion 
capture, but spatial (step width, eMOS) gait variables and 
gait variability (step time and width CV) are more weakly 
correlated, and ii) there are minimal differences between 
the three trackers evaluated, between the top and eye-
level camera, and between the front and back view walks 
in terms of correlation of gait variables to the motion 
capture.

The standard RGB cameras have longer field of view 
compared to Microsoft Kinect (0.5 to 4.5  m) and this 
allows recording higher number of walking steps. Using 
standard RGB video cameras in this study, we were able 
to capture, on average, 14 and 12.3 steps per participant 
for each front and back view walking bouts, respectively. 
These numbers are significantly higher than that Micro-
soft Kinect camera can normally capture (3–6 steps) [3]. 
This highlights the importance of considering normal 
RGB cameras together with the pose tracking algorithms 
for quantitative gait tracking purposes as an alternative 
to Microsoft Kinect. It is nevertheless required to vali-
date the pose tracking algorithms before using them in 
the clinical settings.

While previous studies on the validation of video 
pose tracking algorithms mainly used OpenPose and/or 

Table 4  Results of correlation analysis between gait variables calculated from the motion capture and from the OpenPose pose 
tracking

Gait variable Eye-level camera Top camera

R p R p R p R p

Front view walks Back view walks Front view walks Back view walks

Individual steps Individual steps

Cadence 0.99  < 0.001 1.00  < 0.001 0.97  < 0.001 0.97  < 0.001

Step time 0.71  < 0.001 0.71  < 0.001 0.48  < 0.001 0.31  < 0.001

Step width 0.42  < 0.001 0.34  < 0.001 0.44  < 0.001 0.17 0.01

Step time CV 0.17 0.40 − 0.05 0.85 0.03 0.87 0.30 0.20

Step width CV 0.27 0.18 0.60  < 0.001 − 0.16 0.43 0.27 0.26

eMOS 0.30  < 0.001 0.09 0.17 0.27  < 0.001 0.03 0.68

Gait variable Eye-level camera Top camera

R p R p R p R p

Front view walks Back view walks Front view walks Back view walks

Mean of all steps Mean of all steps

Cadence 1.00  < 0.001 1.00  < 0.001 0.99  < 0.001 0.98  < 0.001

Step time 1.00  < 0.001 1.00  < 0.001 0.99  < 0.001 0.99  < 0.001

Step width 0.56 0.07 0.54 0.09 0.55 0.08 0.39 0.24

Step time CV 0.52 0.10 0.22 0.51 0.13 0.71 0.50 0.12

Step width CV 0.18 0.61 0.60 0.05 − 0.06 0.87 0.15 0.65

eMOS 0.17 0.78 0.79 0.02 − 0.25 0.63 0.30 0.43
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in sagittal view [9, 11, 12, 15], our study included three 
different pose trackers, videos from the front view, and 
in a sample population from older adults. We found 
that there is no difference between the three trackers 
in terms of the correlation of the gait variables to the 
3D motion capture systems. This could be due to the 
similar training dataset these algorithms are pretrained 
on to identify body keypoints. That is, all these mod-
els were trained on the open-source Common Objects 
in Context (COCO) keypoint dataset [32]. Although 
there are technical differences in these algorithms (e.g. 
the bottom-up approach used in the OpenPose vs. the 
top-down approach in the Aplphapose and Detectron), 
it seems these differences had little effect on the quality 
of gait analysis in video pose tracking (see also Figs. 1 
and 2). However, our findings indicated that among the 
three commonly used 2D pose trackers, there is more 
agreement between the gait variables calculated from 
AlphaPose and Detectron and less agreement between 
OpenPose and the other two algorithms (Figs.  4 and 
5). While this finding does not mean that any of these 
three algorithms is more accurate (as we were not able 
to measure their accuracy against the IMU system), 
it can help future researchers with selecting the right 
pose trackers for their needs. It also remains to be 

investigated why OpenPose has less agreement with 
other two algorithms.

Our results also indicated that while the temporal gait 
variables of the video pose tracking have high correlation 
to the 3D motion capture, this was not the case for the 
spatial gait variables. Temporal gait variables are deter-
mined as the time difference between foot–ground con-
tact and this requires relatively accurate determination of 
the foot contact moments. Thus, accurate estimation of 
temporal gait variables depends on identifying discrete 
events (e.g. peaks) in the time series of the segment and 
the relative time between these discrete events. Whether 
the value of these peaks in the time series accurately 
represent actual values is not important for calculating 
temporal gait variables. For the spatial gait variables, on 
the other hand, a more accurate localization of the body 
joints/segments is required. These findings are in line 
with the findings of [15]; when using OpenPose, they 
also found higher accuracy of temporal compared spa-
tial gait measures in different camera views. Our results 
thus indicate that the three video pose tracking packages 
may not have enough accuracy in frame-by-frame track-
ing of walking videos. This could be because these pack-
ages are not specifically developed for quantitative gait 
monitoring purposes and are more for general gait pose 

Table 5  Results of correlation analysis between gait variables calculated from the motion capture and from the Detectron pose 
tracking

Gait variable Eye-level camera Top camera

R p R p R p R p

Front view walks Back view walks Front view walks Back view walks

Individual steps Individual steps

Cadence 0.99  < 0.001 1.00  < 0.001 0.97  < 0.001 0.97  < 0.001

Step time 0.71  < 0.001 0.71  < 0.001 0.48  < 0.001 0.31  < 0.001

Step width 0.54  < 0.001 0.38  < 0.001 0.64  < 0.001 0.19  < 0.001

Step time CV 0.16 0.43 − 0.05 0.85 0.03 0.87 0.30 0.20

Step width CV 0.36 0.07 0.51 0.02 0.32 0.11 0.07 0.76

eMOS 0.44  < 0.001 0.12 0.05 0.44  < 0.001 0.01 0.83

Gait variable Eye-level camera Top camera

R p R p R p R p

Front view walks Back view walks Front view walks Back view walks

Mean of all steps Mean of all steps

Cadence 1.00  < 0.001 1.00  < 0.001 0.99  < 0.001 0.98  < 0.001

Step time 1.00  < 0.001 1.00  < 0.001 0.99  < 0.001 0.99  < 0.001

Step width 0.66 0.03 0.51 0.11 0.74 0.01 0.53 0.09

Step time CV 0.53 0.09 0.22 0.51 0.13 0.71 0.50 0.12

Step width CV 0.25 0.46 0.48 0.13 0.31 0.35 0.24 0.47

eMOS 0.61 0.11 0.76 0.01 0.59 0.12 0.33 0.35
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estimation. This raises the need for developing video-
pose tracking algorithms that are designed and trained 
for quantitative gait measurement purposes [33].

Consistent with the findings of [15], we also found 
that averaging gait variables over all steps of each par-
ticipant improved the correlations although, the nonsig-
nificant p-values of the correlations (except for cadence 
and step time and the back view eMOS of the eye-level 
camera) indicate that our sample size (n = 11) might not 
be enough for our conclusions. This improvement in cor-
relation of the averaged values is understandable from a 

statistical point of view as individual gait variables have 
higher variance that results in lower correlation coef-
ficients. This corresponds with the Robinson’s paradox, 
which states that the correlation of aggregate quantities 
is not equal to the correlation of individual quantities 
[34]. This finding thus implies that the values these video 
pose tracking algorithms provide are more reliable at the 
average level compared to individual step level and thus 
provide an estimate of overall quality of the participant’s 
walking in a specific walking bout. The step-to-step 
values of the gait variables estimated from video pose 

Fig. 4  the Bland–Altman plots between pairs of the pose tracking algorithms for the step width from the videos of the top (A) and eye-level (B) 
cameras. The top row in each panel is for the front view walks and the bottom row is for the back view walks. The dashed lines are the lower and 
upper limits of agreement (1.96*standard deviation) as well as the zero line
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tracking is thus less reliable and might not be used for 
clinical decision making.

There are a number of correlation values, mostly in the 
variability measures (i.e. step time CV and step width 
CV) where the correlation values are close to zero or 
even negative (Tables  3, 4 5). This is primarily due to 
low number of data points where each individual data 
point can contribute to the variance of dataset and thus 
have a strong effect on the correlation value. Note that 
to calculate variability, CV in this study, first the average 
of all data points of a walk (front or back view) of each 

participant is calculated that results in one value per par-
ticipant. These findings imply that spatiotemporal vari-
ability measures cannot reliably be measured using the 
video pose tracking algorithms. However, consistent with 
other gait measures, this problem is lessened when calcu-
lating the variability measures over all walks of each par-
ticipant (the “mean of all steps” in the Tables 3, 4 and 5) 
where the correlation values are increased.

There are several reasons why gait variables calculated 
from a 2D video pose tracking algorithm does not exactly 
match those calculated from a 3D motion capture. First, 

Fig. 5  the Bland–Altman plots between pairs of the pose tracking algorithms for the estimated margin of stability (eMOS) from the videos of the 
top (A) and eye-level (B) cameras. The top row in each panel is for the front view walks and the bottom row is for the back view walks. The dashed 
lines are the lower and upper limits of agreement (1.96*standard deviation) as well as the zero line
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the body keypoints identified by pose tracking algorithms 
are not necessarily equivalent to the marker landmarks 
in the 3D motion capture systems. Second, the 2D video 
pose tracking algorithms could have parallax or perspec-
tive issues, which is not the case in the 3D motion capture 
systems [15]. Third, due to automatic focusing of video 
cameras, some frames could be blurred that negatively 
affects the capability of the pose tracking algorithms to 
identify body keypoints. Finally, in the back view walk-
ing videos, the trailing leg obscured the leading leg in a 
number of frames and thus leaving the pose tracking of 
the leading leg inaccurate. This, for example, caused inac-
curate estimation of the foot contact time and position. 
For these reasons, it should not be expected that current 
video pose tracking algorithms have high correlations to 
the 3D motion capture systems.

Quantitative gait monitoring requires accurate esti-
mates of the kinematics (i.e. position, velocity, and accel-
eration) of the joints and also accurate estimation of 
the gait events such as foot strike and foot off for its full 
potential. Current video pose tracking packages do not 
seem to prioritize measuring these quantities [33]. Thus, 
it seems reasonable to add kinematics as the labels to the 
training phase of the pose tracking algorithms. In addi-
tion, in most video pose tracking algorithms, sequential 
video frames are treated as independent frames (like 
static images) and the dynamics of the pose is ignored. A 
better approach could be treating the videos as dynamic 
images where the past and future frames of movement 
could be used to improve pose estimation in a given 
frame [33] and also to accurately detect gait events. 
Finally, human walking and movement, in general, are 
three-dimensional whereas most currently available pose 
tracking algorithms are two-dimensional. While there are 
attempts for 3D video pose tracking algorithms [35, 36], 
the accuracy and implementation of these algorithms for 
quantitative gait monitoring are still to be investigated 
[33].

One limitation of our study was that we tested only 
older adults who were able to walk independently for 
20  m. Therefore, future studies should include older 
adults who have mobility problems and evaluate the 
feasibility of using vision-based systems for gait moni-
toring in these populations. In addition, we tested the 
performance of 2D pose estimation algorithms and the 
validity of the available 3D pose estimation packages is 
yet to be investigated, for example, in calculating joint 
angles in addition to gait measures. In addition, future 
studies should also consider assessing the validity of the 
pose tracking algorithms in more natural walking gaits 
where there are turns and stops. Finally, the sample size 
of 11 participants might be considered small, although 
it is in the range of studies on human walking. The 

initial plan was to recruit 20 older adults for this study. 
However, we had to stop data recording due to Covid-
19 pandemic. Nevertheless, we were able to record a 
total of 373 and 241 steps for the front and back view 
walks, respectively, which is approximately equivalent 
to 34 and 22 steps per person for the front and back 
view walks, respectively.

Conclusions
In this study, for the first time, we compared the valid-
ity of the three available pose tracking algorithms in a 
population of older adults in frontal view walking. Based 
on the findings of this study, we have the following rec-
ommendations for the use of 2D video pose tracking 
algorithms for gait monitoring purposes in older adults: 
(i) they should be mainly used for quantifying temporal 
gait variables, such as step time, and cadence, (ii) there 
are no major differences between top and eye-level cam-
era viewing angles, and between the front and back view 
walks in terms of correlation of video gait variables to 
that of the motion capture, and (iii) these pose trackers 
provide better estimates of gait variables when averaged 
over all steps of each participant, and (iv) AlphaPose 
and Detectron showed more agreement, whereas Open-
Pose has a lower agreement with the other two algo-
rithms. Future studies should engage in developing and 
validating video pose tracking algorithms that provide 
three-dimensional kinematics of body keypoints and are 
specifically designed and optimized for quantitative gait 
monitoring.
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