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Abstract 

Background:  Spatial filtering of multi-channel signals is considered to be an effective pre-processing approach for 
improving signal-to-noise ratio. The use of spatial filtering for preprocessing high-density (HD) surface electromyo-
gram (sEMG) helps to extract critical spatial information, but its application to non-invasive examination of neuromus-
cular changes have not been well investigated.

Methods:  Aimed at evaluating how spatial filtering can facilitate examination of muscle paralysis, three different 
spatial filtering methods are presented using principle component analysis (PCA) algorithm, non-negative matrix 
factorization (NMF) algorithm, and both combination, respectively. Their performance was evaluated in terms of 
diagnostic power, through HD-sEMG clustering index (CI) analysis of neuromuscular changes in paralyzed muscles 
following spinal cord injury (SCI).

Results:  The experimental results showed that: (1) The CI analysis of conventional single-channel sEMG can reveal 
complex neuromuscular changes in paralyzed muscles following SCI, and its diagnostic power has been confirmed to 
be characterized by the variance of Z scores; (2) the diagnostic power was highly dependent on the location of sEMG 
recording channel. Directly averaging the CI diagnostic indicators over channels just reached a medium level of the 
diagnostic power; (3) the use of either PCA-based or NMF-based filtering method yielded a greater diagnostic power, 
and their combination could even enhance the diagnostic power significantly.

Conclusions:  This study not only presents an essential preprocessing approach for improving diagnostic power 
of HD-sEMG, but also helps to develop a standard sEMG preprocessing pipeline, thus promoting its widespread 
application.
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Introduction
Spinal cord injury (SCI) is a leading cause of adult dis-
ability worldwide [1]. The disruption of communication 
between the brain and the spinal cord results in both loss 

of voluntary movement (i.e., paraplegia) and loss of sen-
sation [1, 2]. However, the effect of a paraplegia on the 
survival and function of motor unit (MU) in pathologi-
cal muscles remains unclear. Since the MU is regarded 
as the basic functional unit and the final pathway of the 
neuromuscular control system, it is of great importance 
to identify MU changes induced by specific mechanisms 
following the SCI [3], which can offer guidance for the 
design of effective SCI rehabilitation protocols.
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In clinical routine, an invasive approach using concen-
tric needle is applied to electrophysiological examination 
of MU properties [4, 5]. The insertion of the needle, how-
ever, has to deal with various issues including the invasive 
discomfort, a requirement of medical supervision and a 
risk of infection, limiting its wide applications including 
long-term monitoring and repetitive investigations [6]. 
In addition, the subjectivity during diagnostic evalua-
tion based on the experience of the professional clini-
cians remains the most important factor when it comes 
to examine neuromuscular changes [7]. As a result, there 
is a huge demand for an objective, quantitative and non-
invasive approach for convenient examination of neuro-
muscular diseases and injuries.

Surface EMG (sEMG) is a technique to record the elec-
trical activity of muscle using electrodes placed over skin 
surface. Due to the benefits of non-invasive and low-cost 
properties, sEMG recording has been used in examin-
ing neuromuscular activities [8–10]. However, tradi-
tional bipolar electrode configuration of recording sEMG 
may suffer from difficulties such as noise contamina-
tion, cross-talks from a neighboring muscular activities, 
attenuated motor unit action potential (MUAP) wave-
forms due to the low-pass filtering effects of skin and 
subcutaneous body tissues, and the failure to discern or 
characterize individual MUAP waveforms due to their 
severe superposition. As a result, conventional sEMG has 
not been well accepted by clinicians towards diagnostic 
applications. High-density (HD) electrode grid has been 
playing an increasingly important role in the collection of 
sEMG signals. Although any individual surface electrode 
within the grid works as the regular single-channel, the 
grid formation warrants collection of important spatial 
information concerning muscle activation. Therefore, 
the HD-sEMG measurement is able to better character-
ize the muscle’s structural and functional heterogeneity, 
which is regarded as the reflection of activities from dif-
ferent sources such as subcomponent muscles [11–13], 
muscle–tendon units [14–16], and even microscopic 
MUs [17–20]. Such spatial information is also helpful in 
suppressing muscular cross-talks within channels so as 
to improve the signal–noise ratio. All these prominent 
features of applying the HD-sEMG techniques can be 
exploited and further promoted by the use of appropriate 
spatial filtering methods.

The spatial filtering technique can be employed to 
remove artifacts of HD-sEMG data and to retain useful 
information given the muscular activation heterogene-
ity. Its basic principle is to preserve the sources of inter-
est and suppress unwanted components from signals 
[21–26]. Various matrix factorization algorithms [15, 
16, 27–35] relied on different criteria concerning inher-
ent structure of the input multivariate data. Among 

them, both principle component analysis (PCA) [27–29] 
and nonnegative matrix analysis (NMF) [14, 29, 33–35] 
algorithms have been commonly used due to their signal 
component separation capability, with successful appli-
cations in the field of decoding motor intentions includ-
ing muscle strengths and patterns [27, 29, 36, 37]. The 
PCA is the most fundamental multivariate data analysis 
algorithm that can find a new set of projection direc-
tions called principle components (PCs) that explain 
the maximum variability of the original data. This pro-
jection allows specific manipulation of individual data 
components, and it is used to remove artifacts (i.e., com-
mon mode redundancy across multiple sEMG channels) 
and to retain useful information associated with specific 
projected data components. In addition, the NMF algo-
rithm uses a non-negativity constraint that makes its 
outcomes physiologically meaningful [33]. Since NMF 
is commonly used to extract muscle synergies driven by 
the central nervous system to formulate muscle activities 
from multi-muscle sEMG recordings, it is more reason-
able to extract and locate composing sources (i.e., mus-
cle–tendon units [14, 19] or muscle belly regions [38, 39]) 
from heterogeneous muscle activation characterized by 
the HD-sEMG [34, 35]. Therefore, it facilitates to deter-
mine the task-related region within the coverage of the 
entire HD-sEMG array [14, 29]. In summary, relying on 
different criteria, both the PCA and NMF algorithms are 
expected to emphasize different signal components or to 
filter out different noises in the recorded HD-sEMG sig-
nals. Considering their own strengths and relative weak-
nesses, it is worth an attempt to use the combination of 
both algorithms due to their functional complementarity 
for motivating a better preprocessing outcomes.

It is hypothesized that spatial filtering can help to 
enhance and mine useful diagnostic-related information 
of HD-sEMG, thus improving diagnostic power of the 
sEMG examination. The purpose of this study is to verify 
this hypothesis by the means of testing it on the SCI data. 
Both the PCA and the NMF algorithms were selected 
for performing the spatial filtering due to their artifact 
removal and task-related region localization capabili-
ties, respectively. Their combination was used as well by 
considering their functional complementarity. Cluster-
ing index (CI) analysis [40] was adopted as a representa-
tive and convenient approach for conducting the sEMG 
examination in this study due to its capability of revealing 
complex neuromuscular changes associated with the MU 
property alterations underlying paralyzed muscles. The 
CI analysis was originally designed to process routine 
single-channel sEMG signal for discriminating between 
neurogenic and myopathic diseases [40] and thereafter 
it has achieved great success in non-invasive diagnosis 
of amyotrophic lateral sclerosis [41], spinal and bulbar 
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muscular atrophy [42] and stroke [43]. Our work not 
only applies the sEMG CI examination to the SCI data 
to investigate neuromuscular changes, but also proves 
the benefit of applying spatial filtering to HD-sEMG data 
for improving CI diagnostic power. Meanwhile, it evolves 
a series of PCA-based and NMF-based spatial filter-
ing methods, which help to form a standard pipeline for 
HD-sEMG preprocessing before its clinical applications 
including diagnosis of neuromuscular changes.

Methods
Subjects
Nine subjects with incomplete cervical SCI (S1-S9, ASIA 
C or D) were recruited from the Clinical Neuroscience 
Research Registry at the Chicago Rehabilitation Institute 
(Chicago, IL, USA). Demographic and clinical measures 
for the subjects with SCI are summarized in Table 1. In 
addition, thirteen neurologically intact subjects and (C1–
C13) without any neuromuscular disorder or injury also 
participate into the experiments.

Experiments
The abductor pollicis brevis (APB) muscle was examined 
in this study. It is the largest and superficial muscle within 
the thenar muscle group on the palm with a distinct and 
simple function of thumb abduction. This distal muscle 
on the hand is representative for reflecting motor impair-
ments [9, 10, 41, 43]. These features make it convenient 
to be examined following clinical routine. The data col-
lection experiments were conducted on both sides of 
the subjects with SCI respectively, in a random order. 
The same experimental procedure was just applied to a 
randomly selected side of each control subject. On this 
basis, all the tested muscles can be categorized into three 
groups: the muscles on the left side of subjects with SCI 
(denoted as SCI-left group), the muscles on the right side 
of subjects with SCI (denoted as SCI-right group) and the 

control muscles from the neurologically intact subjects 
(denoted as control group). A flexible electrode array 
consisting of 64 electrodes in an 8 × 8 grid formation was 
used to target at the examined APB muscles, as shown in 
Fig. 1. Each electrode had a round recording probe in a 
diameter of 1.2  mm, and the center-by-center distance 
was 4  mm between two consecutive electrodes. The 
surface EMG signals were collected by a Refa128 EMG 
Recording System (TMS International BV, Enschede, 
The Netherlands) in 64 recording channels as a result 
of mono-polar configuration. The sampling rate was set 
at 2  kHz per channel. There is another round electrode 
(Dermatrode; American Imex, Irvine, CA, USA) placed 
over olecranon of the tested arm as the ground reference 
for the recording system.

The experiment was carried out in a quiet room in 
order to reduce the impact of the environmental noises. 
During the experiment, subjects were seated in a com-
fortable mobile chair. Their tested arm was bent approxi-
mately 90° and was placed on a height-adjustable desk. In 
the beginning of the experiment, the subject was encour-
aged to perform three maximal voluntary contractions 
(MVCs). The maximum value of these trials determined 
by monitoring the EMG amplitude was taken as a valid 
MVC. Then the subject was asked to generate an isomet-
ric contraction by abducting the thumb with increas-
ingly graded force levels, roughly corresponding to 10%, 
30%, 50%, 70%, submaximal (90%) and maximal volun-
tary contraction (MVC) in terms of the MVC percentage 

Table 1  Physical characteristic of subjects with spinal cord 
injury

ID # Gender Age (years) Level of injury ASIA Class Years 
since injury

S1 F 37 C7 C 4

S2 M 57 C7 D 17

S3 M 32 C6 C 11

S4 F 42 C4 D 7

S5 M 62 C4 D 8

S6 M 44 C5 C 11

S7 M 54 C4 D 12

S8 M 38 C7 C 12

S9 F 50 C8 D 7
Fig. 1  The flexible electrode array of 64 monopolar electrodes 
arranged in an 8 × 8 grid formation
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via the EMG amplitude. The subject was encouraged to 
remain at least 3 s as stable as possible for each contrac-
tion level. Sufficient rest was also allowed to avoid muscle 
fatigue between two consecutive trials.

The raw HD-sEMG data collected from the APB mus-
cles on both sides of subjects with SCI and on a random 
side of control subjects were imported to the MATLAB 
(Version R2016a, MathWorks, Natick, MA, USA) soft-
ware for analysis. Figure  2 shows the entire framework 
for examining neuromuscular changes through spatial 
filtering analysis and subsequent CI analysis of the HD-
sEMG data, with more details described as follows.

Signal preprocessing
A fourth-order Butterworth band-pass filter at 
20–500  Hz was applied to eliminate potential low-fre-
quency noises (e.g., motion artifacts) and high-frequency 
interferences. Then, a set of second-order notch filters 
were used to remove the 50-Hz power line interference 
and its harmonics. Subsequently, the spatial filtering 
methods could be applied to the HD-sEMG data.

Spatial filtering using PCA
In the PCA algorithm, the calculation of PCs is realized 
by diagonalization of the covariance matrix of data. The 
relevance of the PCs can be ranked in terms of the eigen-
values and reflect its contribution to the data in terms 
of variance for every PC. Suppose that the original sig-
nal Mm×t

0  is in a form of m rows and t columns, where 
m represents the number of channels (64 in this study), 
and t is the sEMG signal sampling points. The transpose 
matrix M of observation matrix Mm×t

0  can be decom-
posed as Eq. (1).

where D = diag(�1, . . . , �m) is the m × m diagonal 
matrix with ordered eigenvalues, the columns of the 

(1)M = UDVT ,

t × m orthogonal matrix U are the corresponding eigen-
vectors, and the m × m orthogonal matrix V satisfies 
UUT = VTV = 1. Thus the eigenvalue � and the eigen-
vector U were calculated to decompose 64-channel 
sEMG signals into 64 PCs [U1,U2, . . . ,U64] correspond-
ing to their eigenvalues ( �1 ≥ �2 ≥ · · · ≥ �64 > 0 ) in a 
descending order. The eigenvectors describe the spatial 
distribution of the projected EMG over the grid that 
evolves in time. It has been supposed that the high eigen-
values of the first two components carry a substantial 
amount of redundant information (i.e., common mode) 
among multiple channels, and the components corre-
sponding to the smallest few eigenvalues contain noises 
unrelated to EMG signals [28, 29, 44]. Therefore, it is nec-
essary to remove these components. The PCs with the 
largest two eigenvalues and a number of smallest eigen-
values were intentionally selected and discarded, and 
therefore the remaining PCs were used to reconstruct the 
filtered signal M ′ . An sensitivity analysis was conducted 
to determine the number of components with the small-
est eigenvalues to be removed, according to the diagnos-
tic performance.

Spatial filtering using NMF
The NMF algorithm is formulated as a solution to a mini-
mization problem with nonnegative bound constraints 
[45]. In this study, the multi-channel normalized and 
rectified sEMG matrix X ∈ Rm×t (m channels, t sam-
ples) was decomposed into two non-negative matrices 
W ∈ Rm×s and C ∈ Rs×t (where s < m) by the NMF algo-
rithm according to Eq. (2):

The matrix W can be interpreted as a number s of 
activation patterns, while the matrix C represents their 
corresponding time-varying activation coefficients. For 
processing the HD-sEMG data recorded on an entire 

(2)Xm×t
= Wm×sCs×t .

Fig. 2  Block diagram of the framework for examining neuromuscular changes using the CI method and the spatial filtering analyses
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muscle, each column of W here represents a spatially cor-
related activation pattern over the m-channel electrode 
array, anatomically reflecting the localization of a specific 
signal source. Thus, each row of the matrix C here speci-
fies how an activation pattern is modulated during the 
task performance. The variable s varies from 1 to m, rep-
resenting the number of activation patterns. In practice, 
the average variability accounted for (VAF, ranges from 
0 to 1) between the original matrix ( X ) and the recon-
structed one ( Xr ) was calculated to determine the least 
number of activation patterns.

The value of VAF should be as large as possible while 
retaining original data information. Previous studies 
explained the success of reconstruction when the VAF 
reaches to 95% [29, 46]. Similarly, the number s was 
searched within a range between 0 and 6 and determined 
in this study when the VAF value was beyond 95%.

For each activation pattern, its corresponding time-
varying coefficients were summed up and defined as acti-
vation intensity, according to Eq. (4):

where Ci

(

j
)

 represents the time-varying coefficients for 
the ith activation pattern, and t indicates the length of 
samples indexed by j. Among s activation patterns, the 
one corresponding to the highest Intensity value was con-
sidered to be the major activation pattern. In the major 
activation pattern, a number of channels with top-ranked 
weighting factors were considered to form a major acti-
vation region, and the channels of the input sEMG in 
such major activation region were just selected for fur-
ther processing.

It was very critical to determine the number of chan-
nels to be selected in the major activation region. Simi-
larly, a sensitivity analysis was conducted in this study 
by varying the number from 14 to 18, and this number 
was appropriately set according to the optimal diagnostic 
performance.

Data segmentation and CI analysis
The data (in a form of multiple channels regardless of 
whether they were spatially filtered or not) presented 
several segments of sEMG activities according to the 
experiment protocol. The onset and offset of each sEMG 
activity burst can be easily determined. For CI analysis, 
a series of 1-s epochs (equivalent to 2000 sample points 
at the sampling rate of 2000  Hz) need to be segmented 

(3)VAF = 1−

∑

i,j (X − Xr)2ij
∑

i,j X
2
ij

.

(4)Intensity(i) =

t
∑

j=1

Ci

(

j
)

,

from the EMG activity. Since actual muscle force was 
not recorded in this study, the generally observed sEMG 
amplitude intensities were used to roughly estimate the 
muscle force fluctuations. The force was considered to be 
relatively stable when the sEMG intensity remained at a 
consistent level. Otherwise, the corresponding epochs 
would be discarded especially at the switch of two con-
secutive force levels. Thus, the number of epochs in a 
multi-channel form ranged from 20 to 40 over all force 
levels for each of all subjects.

CI is a non-invasive quantitative method for analyzing 
uneven distribution and cluster of the processed signal 
to different neurogenic and myopathic changes [43]. To 
calculate CI, the signal in each epoch was divided into 
several non-overlapping consecutive windows in length 
of 15  ms, which is regarded to approximately cover an 
individual MUAP [40]. Suppose that there are K windows 
in total derived in an epoch and Ai was the area of each 
window. The differential sequences between every con-
secutive area value ( DAi ), between every second window 
( DBi ) and between every third window ( DCi ) can be cal-
culated. Then the CI of each epoch is defined as:

The CI has a value between 0 and 1, and a relatively 
high value represents a highly clustered signal, appear-
ing with isolated large action potentials. If the EMG 
epoch carries multiple channels (it is always the case in 
this study), the average CI value was calculated from all 
chosen channels. While the values of CI depended on 
the contraction level: the increase in contraction levels 
resulted in a lower value, the area of each epoch, that is 
the area of all windows, was used to estimate the mus-
cle contraction level [40]. It had been proven to be lin-
early related to CI values using double logarithmic scale 
[47]. Hereafter, the average areas for all selected channels 
on each epoch were calculated. For each analysis epoch 
on the same muscle, two values were obtained: a mean 
log (area) and a mean log (CI), which were expressed as 
a point in the CI-area plot. The points derived from the 
analysis epochs can be scattered to form a cloud over the 
CI-area plane.

The quantification of the normal data reference in the 
CI-area plot is the prerequisite to subsequent diagnosis. 
To establish the distribution of the normal cloud, a linear 
regression analysis was performed on all analysis epochs 
(1 ≤ area ≤ 100µV · sec)from the healthy subjects was 
performed for both log(CI) and log(area). For each epoch, 
the deviation of the log (CI) scale from the linear regres-
sion line was calculated. Then these deviation values were 
averaged to obtain a mean residual (denoted as Rm), 

(5)

CI =

{

K−1
∑

i=1

DA2
i +

K−2
∑

i=1

DB2
i +

K−3
∑

i=1

DC2
i

}

/

(

6 •

K
∑

i=1

Ai

)

.
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which can be used to assess the presence of abnormality 
for each subject. The mean u and standard deviation ( σ ) 
of the Rm values on the two sides of all the subjects were 
calculated and then a Z score was computed as the final 
quantify indicator for the evaluation.

A Z score between ±2.5 was defined as abnormal. A 
tested muscle with a Z score higher than + 2.5 indicated 
neurogenic changes while a Z score lower than − 2.5 was 
diagnosed as being myopathic changes.

Performance evaluation and statistical analysis
To evaluate the effect of spatial filtering in HD-sEMG-
based diagnosis, the PCA-based method, the NMF-based 
method and their combination termed the PCA-NMF-
based method were applied for spatial filtering of the 
HD-sEMG signals, with comparison of the original HD-
sEMG without any spatial filtering approach. These three 
spatial filtering methods were shown together in Fig.  2, 
where the PCA-based method and the NMF-based 
method can be used optionally and separately (each in a 
dotted block representing an optional procedure). In the 
PCA-NMF-based method, both the PCA-based method 
and the NMF-based method were implemented sequen-
tially. Regardless of whether the data were spatially fil-
tered or not, the diagnostic analyses relied on application 
of the CI method to HD-sEMG data recorded from three 
muscle groups: SCI-left group, SCI-right group and con-
trol group.

Given a certain group of examined muscles, both the 
abnormal CI Z score increase and decrease can be simul-
taneously observed due to diversity of abnormality fol-
lowing SCI. This was the case in this study (as reported 
in the following “Results” section). For a specific muscle 
with certain abnormal changes, the greater Z score dis-
persion from the normal range was yielded by the exami-
nation approach (including the signal pre-processing 
method), the higher its diagnostic sensitivity became 
according to the CI calculation. Given a group of tested 
muscles expected to have changes in various type and 
degree, the variance of Z scores over this group could 
be used to evaluate the diagnostic sensitivity of the CI 
indicators, after different spatial filtering methods. Sup-
pose the Z score variance was aSCI and acontrol calculated 
over a group of tested muscles from subjects with SCI 
and healthy controls, respectively. The value of acontrol of 
each tested muscle is 1 due to the defined normalization 
of diagnostic criteria in the CI method. The evaluation 
criterion abnormality discriminating index (ADI) was 
defined as a quantitative indicator of evaluating diagnos-
tic power of the entire examination approach according 

(6)Z =
Rm−µ

σ
.

to Eq. (7), which represents the sensitivity of identifying 
various types of neuromuscular changes from abnormal 
signals.

The ADI values were calculated respectively under 
different conditions. In this study, the condition was 
defined by the use of both the channel and the spatial fil-
tering method for data analysis. A special condition was 
designed as a representative approach without any spa-
tial filtering method for the comparison purpose, which 
simply averaged CI values over all used channels when 
HD-sEMG data were used. The higher an ADI value 
was yielded, the greater diagnostic sensitivity (to various 
alterations in the given subject population) the corre-
sponding method had.

In order to verify the generally sequential consistency 
of individual muscles’ diagnostic outcomes, a series of 
linear regression analyses were performed on the CI 
Z scores derived from both the SCI-left and SCI-right 
groups, between any two different conditions. Two sep-
arate two-way repeated-measure ANOVAs were per-
formed on the Z score, with the group (two levels: the 
control muscle group versus each of two muscle group 
with SCI, respectively) considered as the between-subject 
factor and the condition (four levels: the simply averaging 
approach and three spatial filtering methods) considered 
as the within-subject factor, to simultaneously examine 
their effect on the Z score group means. Another two-
way repeated-measure ANOVA was performed, with 
both the side/group (two levels: the SCI-left group versus 
the SCI right group) and the condition (four levels) con-
sidered as within-subject factors. The level of statistical 
significance was set to p < 0.05 for all above analyses. All 
statistical analyses were completed using SPSS software 
(ver. 22.0, SPSS Inc. Chicago, IL, USA).

Results
Figure  3 shows the resultant CI-area plot of the scat-
tered data points from three muscle groups in the dou-
ble logarithmic scale, when the data were only from a 
deliberately selected channel. For the normal cloud con-
sisting of all data points from the control muscle group, 
the CI showed a decreasing trend as the contraction level 
increased. This was suitable for a linear regression analy-
sis ( y = −0.0631x − 0.5470 ). Along the regression line, 
there is a banding region that can well characterize the 
distribution region of the normal cloud.

Figure  4 reports the CI Z scores when using data 
from each of four different channels (channel 28, chan-
nel 31, channel 37 and channel 64). It can be seen that 
although different CI Z scores and the corresponding 

(7)ADI = aSCI
acontrol

.
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diagnostic results obtained from different channels, 
the order of the CI Z scores was substantially the same. 
For example, for the left muscle of S8, data from chan-
nel 31 gave a diagnosis of abnormal increase, but the 
other three channels failed to report any abnormality. 
Using data from channel 37, the left muscle of S8 had 
a CI value that approximated to the upper limit of the 
normal boundary. It is surprisingly to find that the CI Z 
score value of S8 was always the highest on the SCI-left 
group. Similar observations can also be found in mul-
tiple cases such as S2, S7 and S9 on the SCI-left group 
and S1 on the SCI-right group. Further, for different 
channels, the data of the same group exhibited different 
degrees of dispersion. More abnormal diagnostic con-
clusions could be found for the group with high disper-
sion. It was confirmed that the ADI value was able to 
be used to judge the diagnostic power. Therefore, using 
four different channels had an impact on the diagnos-
tic power, quantified by the ADI ranging from 2.3160 
to 14.0252 for the SCI-left muscle group and 2.5341 to 
5.7445 for the SCI-right group.

The PCA-based method yielded varying ADI values 
when the number of components to be removed cor-
responding to smallest eigenvalues was set from 0 to 
6, respectively, as shown in Table  2. It can be found 
that although the resultant ADI values of both SCI-left 
and SCI-right groups were extremely closed, the high-
est ADI values were yielded by removing the 4 com-
ponents with the smallest eigenvalues. Therefore, for 
implementing the PCA-based spatial filtering method, 
the number of PCs corresponding to the smallest 

eigenvalues to be removed was determined to be 4 in 
the following analysis throughout the study.

Figure 5 shows the mean VAF values averaged over all 
muscles in three groups (SCI-left, SCI-right, and con-
trol group) when the number s of activation patterns 
was set at 1, 2 and 3, respectively. Evidently, the mean 
VAF exceeded over 95% when the number of patterns 
was increased from 1 to 2, and the addition of the 3rd 
activation pattern (the number is three) did not help to 
increase the VAF much. Therefore, the variable s was set 
to 2 in the NMF algorithm implementation.

Another sensitivity analysis was also performed to 
determine the number of selected channels optimally for 
implementing the NMF-based spatial filtering method, 
according to the diagnostic power. The ADI results were 
shown in Table 3 when the number ranged from 14 to 18. 
It can be observed that the number set at 16 led to the 
highest level of the ADI values for both muscle groups. 
Although the ADI was found to vary slightly with the 
number of selected channels, the actual filtering effect 
was insensitive to this number. Without loss of general-
ity, this number was finally fixed to 16 (a quarter of the 
total channel number) in the following analyses when 
the NMF algorithm was involved for any spatial filtering 
(including the PCA-NMF-based method).

Figure  6 reports the resultant Z scores derived from 
multi-channel data for all three examined muscle 
groups when different spatial filtering methods were 
used respectively. The CI Z scores from the same group 
of muscles almost had a consistent order even compar-
ing to that at any single channel in Fig. 4, regardless of 
whether the data were filtered by any spatial filtering 
method or not. When different spatial filtering meth-
ods were applied, however, the muscle with an abnor-
mal decision had varied dispersions from the normal 
boundary. Specifically, the Z scores obtained by simply 
averaging CI values over all used channels were shown 
in Fig. 6 a. Although some muscles were reported to be 
abnormal, their Z scores were extremely close to the 
normal boundary, and the ADI value was reported to 
be 2.4936 for the SCI-left group and 2.1671 for the SCI-
right group. Both ADI values were found to remain at 
a median level of the values derived from individual 
channels. After spatially filtering the HD-sEMG data 
using three methods, more abnormal Z scores are 
exhibited in Fig.  6b–d, and their dispersions from the 
normal boundary are relatively expanded as well. Thus, 
it is not accidentally that the ADI values were improved 
to 3.1488 for the SCI-left muscle group and 3.8785 
for the SCI-right muscle group using the PCA-based 
method. Both values were 8.0397 and 3.8033 using 
the NMF-based method. Apparently, the PCA-NMF-
based method presented the highest degree of Z score 

Fig. 3  The CI-area plot of a deliberately channel presented in double 
logarithmic scale for the three groups: SCI-left group, SCI-right group 
and control group. The normal range (dotted line) is presented 
within + 2.5 of the standard error of the linear regression. The red dots 
and black circles represent the epochs of SCI-left group and SCI-right 
group were found to be outside the banding region
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dispersion, and meanwhile it was able to reveal more 
abnormal muscles. For example, the use of the PCA-
NMF-based method successfully produced abnormally 
high Z scores for the S3 and S5 on the SCI-right group, 
whereas the use of any other spatial filtering method 
or any single channel failed to reveal any abnormality. 
Finally, the ADI values yielded by the PCA-NMF-based 
method reached to 13.9157 for the SCI-left group and 
11.7014 for the SCI-right group, which approximated 
into or even exceeded the maximal level of the ADI val-
ues derived from individual channels.

The linear regression analyses reported strong corre-
lations (R2 from 0.80 to 0.93) between the CI Z scores 
made by any spatial filtering method and the simply 

Fig. 4  Z scores derived from four selected channels: a channel 28, b channel 31, c channel 37 and d channel 64. The Z scores from SCI-left group, 
SCI-right group and control group are shown separately. The normal range (solid line) is presented within ± 2.5

Table 2  The ADI values derived from  removing 
different numbers of  the  components with  the  smallest 
eigenvalues, using the PCA-based filtering method

The number of 4 leads to the maximal ADI values for both data groups (in bold)

The number ADI (SCI-left) ADI (SCI-right)

0 3.1439 3.8592

1 3.1457 3.8628

2 3.1446 3.8654

3 3.1459 3.8681

4 3.1488 3.8785
5 3.1349 3.8663

6 3.1327 3.8632
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averaging approach (i.e., no spatial filtering method), 
and estimates of coefficients were all statistically signif-
icant (p < 0.001). The ANOVAs revealed no significant 
main effect of the group and no significant difference 
in group means of the CI Z score between any muscle 
group following SCI and the control muscle group, or 
no significant main effect of the spatial filtering method 
(p = 0.855) on the CI Z score. However, significant dif-
ference was found between the SCI-left muscle group 
and the SCI-right muscle groups (p < 0.05).

The final ADI values derived from original sEMG data 
at four individual channels and spatially filtered HD-
sEMG data via different spatial filtering methods were 
summarized in Table 4. It showed that the ADI values 
of different channels might be quite different. Compar-
ing to the simply averaging HD-sEMG data without 
any spatial filtering, the PCA and NMF spatial filter-
ing methods had larger ADI values on both the SCI-left 
and the SCI-right groups. Moreover, the PCA-NMF-
based spatial filtering method outperformed other 
methods by yielding almost the largest ADI values on 
both groups of muscles following SCI.

Discussion
This study presents three spatial filtering methods for 
preprocessing HD-sEMG data to enhance the power of 
assessing neuromuscular abnormalities following SCI. 
The primary findings of the current study include: (1) 
the complex neuromuscular changes following SCI were 
revealed by the CI analysis of conventional single-chan-
nel sEMG, and the diagnostic power could be character-
ized by the variance of Z scores derived from a group of 
subjects (as shown in Fig. 4); (2) the diagnostic power was 
found to vary across positions of individual channels for 
recording sEMG data (see Fig. 4 and Table 4), and it only 
remained at a median level when all the CI values derived 
from all recording channels were simply averaged (see 
Fig. 6); (3) The application of PCA-based filtering method 
or NMF-based filtering method helped to improve the 
diagnostic power significantly, and the method with their 
combination outperformed any single method in terms 
of diagnostic power (as shown in Fig. 6 and Table 4); (4) 
A subject with SCI might have pathological changes on 
both sides of muscles in different types and at different 
degrees (see Fig. 6).

MU alterations following SCI evaluated by CI method
The CI method was traditionally used for single-channel 
sEMG analysis. Regardless of any channel (within the 
array) used for analysis, it can be observed from Fig.  4 
that each examined muscles (in both SCI-left and SCI-
right groups) tended to have a consistent decision. Fur-
thermore, all muscles from subjects with SCI exhibited 
three different CI patterns including normal and abnor-
mal increase and decrease of the CI indicator.

Four muscles of the SCI subjects had an abnormal CI 
Z score increase indicating neurogenic changes. These 
changes can be attributed to loss of MUs and subse-
quent reinnervation of denervated muscle fibers. The 
MU loss may take place after gray matter is destroyed 
at and near the lesion epicenter and it can lead to a 
decrease in the number of activable MUs and denerva-
tion of muscle fibers [3]. Complete denervation due to 
motoneuron degeneration eliminates voluntary control 
of the affected muscle fibers. Subsequently, the surviv-
ing MUs tend to undergo adaptive changes, such as 
muscle fiber reinnervation for a functional supplement, 
thus contributing to an abnormal enlargement of their 
structures [48]. These enlarged MUs lead to abnor-
mal MUAPs with large amplitude and multiple phases, 
overlying into scattered and isolated EMG signals. In 
addition, after chronic (> 1 year) SCI, MU properties of 
human hand muscles shifted towards decreased firing 
rate and increased firing synchronization [49]. Simulta-
neously, other altered MU control properties including 

Fig. 5  Mean VAF values averaged over all subjects in three groups 
(SCI-left, SCI-right, and Control group) when the number of activation 
patterns was set at 1, 2 and 3, respectively

Table 3  The ADI values for  both  SCI muscle groups 
when the number of the selected channels ranged from 14 
to 18 using the NMF-based spatial filtering method

The number of 16 leads to the maximal ADI values for both data groups (in bold)

The number ADI (SCI-left) ADI (SCI-right)

14 7.7595 3.5425

15 7.8055 3.5491

16 8.0397 3.8033
17 7.9549 3.6820

18 7.8013 3.8356
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the compression of MU recruitment threshold and 
the supplementary recruitment of enlarged MUs dur-
ing muscle contraction might also lead to an abnormal 
increase of CI [2, 50].

Eleven muscles had abnormally lower Z scores indi-
cating myopathic changes, which could be related 
to muscle fiber disuse atrophy. Atrophied and angu-
lar muscle fibers could lead to partial denervation, 
which can be indicated by intramuscular motor axon 
sprouting, an important compensatory mechanism for 
recovery of muscle innervation after death of some 
motoneurons [51]. A selective degeneration of the 
relatively larger and superficial MUs may be another 

Fig. 6  Z scores derived from four methods: a simply averaging, b PCA-based spatial filtering, c NMF-based spatial filtering, and d PCA-NMF-based 
spatial filtering. The Z scores from SCI-left group, SCI-right group and control group are shown separately. The normal range (solid line) is presented 
within ± 2.5

Table 4  The ADI values derived from different methods

Condition Left Right

CH28 6.2292 3.4041

CH31 14.0252 5.7445

CH37 7.7690 2.5341

CH64 2.3160 2.7312

Simply averaging 2.4936 2.1671

PCA-based 3.1488 3.8785

NMF-based 8.0397 3.8033

PCA-NMF-based 13.9157 11.7014
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reason. Thus the induced flatter and denser surface 
EMG signals would make decreased CI values [52].

The resultant Z scores of remaining muscles were 
located within the normal range. However, substan-
tial muscle weakness was also found in these muscles. 
Their paralyses are likely to be attributed to a deficit of 
descending central drive as a result of the severance of 
central nervous system axons and demyelination of cen-
tral or peripheral axons, while the affected muscles still 
function more or less normally [53]. Although the num-
ber of activable MUs drops, their recruitment and con-
trol property remains similar to those of healthy controls. 
Thus, these muscles could only deliver a fraction of the 
normal voluntary drive, leading to corresponding muscle 
weakness [42]. Another possible explanation for the dis-
tribution in the “normal range” might be a combined or 
cancelled effect of both neurogenic and myopathic pro-
cesses [54]. Moreover, the effect of injury on the lesion 
spinal cord segment and denervation of muscle fibers 
might be contributors to muscular weakness [49]. There-
fore, the experimentally observed CI variations in para-
lytic muscles can be viewed as the overall or collective 
effects of these different factors [47].

As a result, the experimentally observed CI abnor-
mality consists of two patterns, which lead to CI devia-
tion in two different directions, respectively. Therefore, a 
pooled analysis of a group of paralyzed muscles follow-
ing SCI can allow their CI indicators to spread from the 
centered normal range, indicating that there are complex 
neuromuscular changes following SCI. This phenomenon 
explains why there was no significant difference in group 
means of CI Z scores in the ANOVAs, and therefore the 
ADI was more appropriate to characterize the diagnostic 
power of the CI method in this study.

Examination with HD‑sEMG recording
Given the HD-sEMG recording, varied distributions of 
the CI Z scores were observed and thus different diag-
nostic decisions were made when data from different 
channels were used (see Fig.  4). Thus, it also directly 
led to different diagnostic power quantified by the ADI 
value. This confirms our previous assumption that the 
important diagnostic information is likely to be derived 
from some local regions of the electrode array due to the 
heterogeneity of the targeted muscle. This finding also 
suggest a risk of electrode placement when applying the 
routine single-channel sEMG recording, while its clini-
cal application has been increasingly investigated toward 
noninvasive examination. Depending on the placement 
of the sEMG electrode (targeting at a local region of the 
examined muscle), the CI diagnostic decision varied a lot, 
probably leading to controversial results. This may dra-
matically impact the usability of the sEMG examination. 

In addition, we also found that the channel with the high-
est diagnostic power was not always located at the center 
of the array or over the position of main muscle belly. 
Such a finding further indicates the importance of elec-
trode placement since the channel location yielding the 
most diagnostic power is usually uncertain solely relying 
on anatomical knowledge.

Taking the averaged CI value over HD-sEMG channels 
is the most straightforward method to extract the global 
information of muscle activity and eliminate the influ-
ence of the electrode position. However, unsurprisingly, 
we found that the ADI diagnostic power obtained in this 
way was only at the median level of those using individual 
channels. This shows that simply averaging may smooth 
or cancel the useful diagnostic information present in 
the local channels, which is detrimental to revealing spe-
cific abnormalities in individual muscles. In this case, the 
resultant CI indicator reflected poor understanding of 
underlying pathological muscle changes.

The advantages of spatial filtering
After the determination of appropriate settings towards 
performance optimization (see Fig.  5, Tables  2, 3), the 
improved performance yielded by the use of either PCA-
based or NMF-based spatial filtering method in terms of 
increased ADI value can demonstrate the efficiency of 
applying the spatial filters. Furthermore, the strong corre-
lations revealed by the regression analyses between indi-
vidual muscles’ Z scores derived from any spatial filtering 
method and the simply averaging approach indicate con-
sistency of their diagnostic decisions (they are able to 
produce or tend to produce the same type of abnormality 
for specific muscles). These findings suggest that the use 
of spatial filters enhances the sensitivity of HD-sEMG CI 
indicator to various neuromuscular changes.

The PCA-based filtering method was designed to delib-
erately remove PCs representing homogeneously chang-
ing and common features, and detail PCs representing 
high-frequency noise and cross-talk [29, 44]. Such pro-
cessing helps to enhance regional difference of the signal 
and is considered to be the main reason for diagnostic 
power improvement by the PCA-based spatial filtering 
method. Unlike the PCA-based method, the NMF-based 
method is equivalent to a channel-selection method by 
extracting distinguishable muscle activation patterns 
based on muscle heterogeneity [50]. The method is actu-
ally a dimensionality reduction processing that locates 
and highlights the main areas within the HD-sEMG array 
contributing into muscle activities.

According to their calculation principles, both algo-
rithms were regarded to emphasize different aspects 
of information convoyed in the raw HD-sEMG data. 
As a result of their complementary effect, it is easy to 
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explain that their combination can further improve 
the diagnostic power in comparison to sole use of the 
PCA-based or the NMF-based method.

The HD electrode array physically covers the exam-
ined muscles, providing a wealth of spatial information 
in a large area. Direct averaging these channels is not 
satisfactory for diagnostic improvement. By contrast, 
spatial filtering methods evidently improve the perfor-
mance of HD-sEMG examination, approximating to 
the maximal level of diagnostic powers when individ-
ual channels are used. Thus, the use of spatial filtering 
helps to highlight and refine useful diagnostic infor-
mation associated with heterogeneity of the muscle 
activation, and provides a necessary and convenient 
approach to pre-process HD-sEMG data for further 
examination of neuromuscular changes. In addition 
to enhancing diagnostic power, this can also mini-
mize the potential influence of electrode placement. 
The spatial filtering of HD-sEMG can facilitate sEMG 
examination, indicating the ease of reflecting potential 
abnormality in certain muscles by the means of a non-
invasive approach.

It is worth noting that the presented spatial filtering 
methods involve an unsupervised matrix factorization 
algorithm without any association with the diseased or 
the diagnostic information (no label is required). The 
filtering approach was conducted independently on 
the data recording trial or the examined muscle. Thus, 
it is straightforward to apply the proposed method to 
data from any given muscle to be examined, and the 
filtering outcome is supposed to rely on the struc-
tural nature of its HD-sEMG data. All these features 
confirm a good generalization of the proposed spa-
tial filtering method. This is also a prerequisite to its 
involvement in a standard pipeline for preprocessing 
the HD-sEMG signals towards various applications.

Difference between two sides of the subject with SCI
Since the CI analysis performed the examination 
of individual muscles, it is straightforward to com-
pare the neuromuscular changes in muscles on both 
side muscles of a subject. It was observed that the 
two side muscles of some SCI subjects showed dif-
ferent CI decisions. For example, the left muscles 
of S1, S3 and S5 were diagnosed as being ‘myopathy’ 
while their contralateral muscles were diagnosed as 
being ‘neurogenic’ changes. This may be attributed to 
the asynchrony of the left and right muscles. When 
the physiological balance is broken following SCI, it 
always overcorrects so that the left and right muscles 
may present different types of neuromuscular changes 
at different degrees.

Limitations of the current work and future expectations
This paper just focuses on the application of spatial fil-
tering and presents only three types of common spatial 
filtering methods. The use of the CI method has also 
limited performance in examining specific MU property 
alterations. More advanced methods including sophis-
ticated spatial filtering methods and more sufficient 
diagnostic indicators can be developed for improved per-
formance. In addition, the sample size used in this study 
is relatively small. It is sufficient only for technically con-
firming the benefit of using the spatial filtering methods 
in HD-sEMG diagnosis. Although the CI method would 
be applicable for examining muscles with diverse impair-
ments at any degrees, the sEMG diagnostic approach 
requires more or less voluntary contraction ability of the 
examined muscle to emit sufficient sEMG activities. This 
is the main reason for recruiting subjects with incom-
plete SCI preserving certain hand functions in this study. 
The small sample size limits clinical significance of the 
current study. In order to establish diagnostic criteria and 
reveal neural or muscular pathology, a big sample size 
from a large population of subjects with different impair-
ments is demanded. These will remain our future work.

Conclusion
This paper examined the feasibility of performing spa-
tial filtering methods using the PCA algorithm, the 
NMF algorithm and their combination, for enhancing 
HD-sEMG examination of neuromuscular changes. The 
experimental results demonstrated that spatial filtering 
of HD-sEMG can help to improve diagnostic power of 
CI method with respect to that with no spatial filtering, 
and that the combined PCA-NMF-based spatial filtering 
method yielded the highest diagnostic power in identi-
fying complex neuromuscular diseases following SCI. 
The proposed method facilitates HD-sEMG examina-
tion of neuromuscular changes and it helps to develop a 
standard pipeline for pre-processing the HD-sEMG data 
towards practical and meaningful applications.
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