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Abstract 

Background: Recent advances in wearable sensor technologies enable objective and long-term monitoring of 
motor activities in a patient’s habitual environment. People with mobility impairments require appropriate data 
processing algorithms that deal with their altered movement patterns and determine clinically meaningful outcome 
measures. Over the years, a large variety of algorithms have been published and this review provides an overview of 
their outcome measures, the concepts of the algorithms, the type and placement of required sensors as well as the 
investigated patient populations and measurement properties.

Methods: A systematic search was conducted in MEDLINE, EMBASE, and SCOPUS in October 2019. The search strat-
egy was designed to identify studies that (1) involved people with mobility impairments, (2) used wearable inertial 
sensors, (3) provided a description of the underlying algorithm, and (4) quantified an aspect of everyday life motor 
activity. The two review authors independently screened the search hits for eligibility and conducted the data extrac-
tion for the narrative review.

Results: Ninety-five studies were included in this review. They covered a large variety of outcome measures and 
algorithms which can be grouped into four categories: (1) maintaining and changing a body position, (2) walking 
and moving, (3) moving around using a wheelchair, and (4) activities that involve the upper extremity. The validity or 
reproducibility of these outcomes measures was investigated in fourteen different patient populations. Most of the 
studies evaluated the algorithm’s accuracy to detect certain activities in unlabeled raw data. The type and placement 
of required sensor technologies depends on the activity and outcome measure and are thoroughly described in this 
review. The usability of the applied sensor setups was rarely reported.

Conclusion: This systematic review provides a comprehensive overview of applications of wearable inertial sensors 
to quantify everyday life motor activity in people with mobility impairments. It summarizes the state-of-the-art, it 
provides quick access to the relevant literature, and it enables the identification of gaps for the evaluation of existing 
and the development of new algorithms.
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Background
The protocol of this systematic review was published in 
advance [1], and the following introduction is an adapted 
and extended version of the introduction of that protocol.

Open Access

*Correspondence:  fabian.rast@gmail.com
1 Swiss Children’s Rehab, University Children’s Hospital Zurich, 
Mühlebergstrasse 104, 8910 Affoltern am Albis, Switzerland
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-6152-3153
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12984-020-00779-y&domain=pdf


Page 2 of 19Rast and Labruyère  J NeuroEngineering Rehabil          (2020) 17:148 

People with mobility impairments may have dif-
ficulties in executing activities of daily living (activ-
ity limitations), or they may experience problems in 
involvement in life situations (participation restric-
tions) [2]. Rehabilitation services aim to improve these 
people’s abilities or make changes to their environment 
[3], to achieve a high level of independence and eventu-
ally increase the quality of life. Clinical assessments to 
estimate patients’ abilities and their rehabilitation pro-
gress are generally conducted in a standardized envi-
ronment at a single time. Thus, they do not incorporate 
environmental and cognitive challenges of a patient’s 
habitual environment [4] and might be inaccurate when 
the symptoms of the patient fluctuate over time [5].

Recent advances in wearable sensor technologies ena-
ble objective and long-term monitoring of motor activ-
ities in a patient’s habitual environment. They provide 
an opportunity to overcome the aforementioned limi-
tations of clinical assessments and complement their 
outcome measures. Accelerometers are the most com-
monly used wearable devices to quantify everyday life 
motor activity in clinical trials and clinical practice [6, 
7]. Conventional outcome measures of accelerometers 
are activity counts as well as intensity levels and energy 
expenditure estimations based on cut-points of these 
counts [8]. These measures provide relevant informa-
tion about whole-body physical activity, but they are 
non-specific and cannot determine movement pat-
terns and types of activities performed [9]. In contrast, 
using a combination of several inertial sensors, such as 
accelerometers and gyroscopes, together with sophis-
ticated data processing algorithms, allows estimating 
the quantity and other characteristics of everyday life 
motor activities [10]. Additional sensor technology 
such as magnetometers, barometers, wearable cameras, 
and heart rate monitors measure environmental fac-
tors or physiological responses to motor activities and 
can be combined with inertial sensors to gain further 
details about patients’ activities [11, 12]. Technological 
progress in the field of micro-electromechanical sys-
tems has made these devices small-sized, cost-effective, 
energy-efficient, and thus applicable for continuous 
long-term monitoring in unsupervised conditions [10]. 
However, continuous long-term monitoring generates 
a tremendous amount of unlabeled data that requires 
appropriate data processing algorithms to determine 
clinically meaningful outcome measures of everyday 
life motor activity. Typically, these algorithms detect 
a certain activity in unlabeled data as a first step (e.g., 
walking bouts or grasping an object) and then deter-
mine a measure to quantify the previously detected 
activity as a second step (e.g., walking speed or number 
of grasping activities).

The relevance of these outcome measures depends on 
end-users’ perspectives and may be different for people 
with mobility impairments compared to non-disabled 
individuals. For example, the amount of limping, use of 
assistive devices, and daily activity of affected limbs are 
more relevant to the former population. Altered move-
ment patterns can also be a challenge for data process-
ing algorithms [13, 14] and thus the transferability of 
algorithms which were evaluated in non-disabled indi-
viduals to people with mobility impairments could be 
limited. Therefore, this review focused on the application 
of inertial sensor technologies to quantify everyday life 
motor activity in people with mobility impairments and 
provides an overview of existing outcome measures as 
well as their underlying data processing algorithms. Spe-
cifically, the following research questions were addressed: 
(1) Which outcome measures have been used to quan-
tify everyday life motor activity of people with mobil-
ity impairments under free-living conditions, and what 
are their corresponding data processing algorithms? 
(2) Which inertial sensor technology (accelerometer 
or gyroscope), possibly in combination with additional 
wearable sensor technology, is required to assess these 
measures? (3) Where need inertial sensors be placed to 
assess these measures and minimally restrict activities of 
daily living? (4) In which patient populations were these 
measures applied, and were they and the required sensor 
system evaluated in terms of validity, reproducibility, or 
usability?

Methods
The detailed protocol of this review was published in 
advance [1] and its method section is roughly summa-
rized in the following paragraphs.

The systematic search was conducted in three data-
bases: MEDLINE, EMBASE, and SCOPUS. The selected 
search terms can be grouped into five categories: (1) 
study population (e.g., “patient”, “stroke”, etc.), (2) meas-
urement tool (e.g., “accelerometer”, “gyroscope”, etc.), (3) 
data processing algorithm (e.g., “algorithm”, “signal pro-
cessing”, etc.), (4) free-living condition (e.g., “everyday 
life”, “daily living”, etc.), and (5) two terms which incor-
porate categories three and four (“activity classification” 
and “activity recognition”). A first search was conducted 
in July 2017 and repeated in October 2019.

Title and abstracts (first step), as well as full-text arti-
cles (second step) were screened by the two review 
authors independently to identify articles that met the 
following eligibility criteria: (1) The study population 
involved children, adolescents, or adults with a diagnosed 
orthopedic or neurological mobility impairment or peo-
ple who need assistive devices in their daily life activities, 
(2) the article used a measurement tool that incorporates 
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a wearable accelerometer, gyroscope, or both, i.e., inertial 
measurement unit (IMU), and optionally includes addi-
tional sensors, (3) the article described the underlying 
data processing algorithm reproducibly or cited a pub-
licly available reference, and (4) the output of the algo-
rithm is a measure that quantifies an aspect of everyday 
life motor activity. Whole-body activity counts, as well as 
physical activity levels and energy expenditure based on 
thresholds of these counts, were not considered for this 
review, as they have already been well investigated [15, 
16].

The used outcome measures and the method of the 
underlying data processing algorithm, the type and place-
ment of required sensor technology, the study popula-
tion as well as the study design were extracted from all 
included articles. Some studies investigated more than 
one sensor setup and data processing algorithm. In that 
case, only the method with the best performance or the 
recommended method was included in this review. If 
the outcome measures were not explicitly mentioned 
or described in the article, which was often the case in 
activity classification studies, it was assumed that activity 
detection enables to determine the duration of the activ-
ity or count the number of repetitions. The measures 
were then retrospectively grouped into four categories: 
(1) Maintaining and changing a body position, (2) walk-
ing and moving, (3) moving around using a wheelchair, 
and (4) activities that involve the upper extremity. The 
sensor placements were simplified by assigning the exact 
positions to one of the following body segments: head, 
trunk, upper arm, forearm, hand, pelvis, thigh, shank, 
foot, and assistive devices. Thus, sensors that were placed 
above the lateral malleoli and on the fifth lumbar vertebra 
were assigned to the shank and pelvis segment, respec-
tively. To address the second part of the fourth research 
question, the study designs were allocated to one or sev-
eral of seven different categories: Classification accuracy 
studies investigated the performance of the algorithm to 
recognize activities, while technical validity studies deter-
mined the accuracy of activity-related measures, both 
with regard to a reference method. Clinical validity stud-
ies correlated the outcome of the sensor system with the 
outcome of a clinical assessment. Between-day reliability 
studies investigated the consistency of the outcome when 
measuring it on two different days. Case/control stud-
ies compared the outcome between the target popula-
tion and a control group. Interventional studies used the 
outcome to evaluate the effectiveness of an intervention, 
and observational studies incorporated different designs 
such as analyzing the changes of the outcome over time 
or comparing several outcomes within the same subject. 
Besides, it was determined if the studies assessed the usa-
bility of the sensor systems.

Results
Overview
The systematic search revealed 2272 hits, of which 31 
were added retrospectively through reference screening 
of the included articles. After title and abstract screening, 
473 articles remained for full-text screening, and, even-
tually, 95 articles fulfilled the predetermined eligibility 
criteria. The complete flow diagram of the screening pro-
cedure is shown in Fig. 1. The main reason for exclusion 
was the study population, with 46% of all excluded arti-
cles. Many research projects developed a new algorithm 
to monitor motor activities in daily life and conducted 
a preliminary study with healthy subjects. These studies 
were not considered in this review, except for one study 
that recruited able-bodied individuals which performed 
an activity circuit in a wheelchair [17]. The second most 
frequent exclusion criterion was the algorithm with 26%. 
It was either not described reproducibly (e.g., in cases 
of proprietary algorithms of commercial parties) or not 
applicable to unlabeled data.

An overview of the used sensor technologies, the body 
segments on which sensors were placed, the study pop-
ulation in which the sensors were applied, and the used 
study designs for evaluating the outcome measures is 
provided in Fig.  2. Note that most of the studies were 
allocated to several of the chosen categories.

Sensor technologies
All studies used an accelerometer, a gyroscope, or both 
(inclusion criteria) with a clear preference for acceler-
ometers. These sensor technologies were combined with 
a barometric pressure sensor to detect changes in alti-
tude, a magnetometer to measure the orientation rela-
tive to the earth’s magnetic field, and a reed switch on 
the spokes of the wheelchair to determine revolutions of 
the wheel. Six studies used an instrumented insole with 
force-sensitive sensors [18–23], and two studies used a 
first-person camera [24, 25], all in combination with iner-
tial sensors. These eight studies were not further consid-
ered in this review since they did not use inertial sensors 
as their primary measurement tool.

Sensor placement
The sensors were most frequently placed on the trunk, 
the pelvis, and the forearm but also on other body seg-
ments and on assistive devices. The frequency of cho-
sen sensor positions depended mainly on the outcome 
measures. Studies that used outcomes related to body 
positions preferred a sensor on the trunk or a combina-
tion of trunk and thigh sensors. In contrast, studies that 
used outcomes related to activities of the upper extremi-
ties (incl. wheeling) placed the sensors on the arms with 
a clear preference of wrist sensors. There was no clear 
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preference for sensor placement in studies with gait-
related outcomes. Sensors were placed on the trunk, the 
pelvis, the shanks, and the feet. The sensor placement, in 

general, is strongly related to the underlying algorithm 
and, therefore, more thoroughly described in the subse-
quent chapters.

Fig. 1 Flow diagram according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [120]
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Study populations
Wearable inertial sensors were most frequently applied 
in stroke survivors, in patients with Parkinson’s disease, 
and in patients with spinal cord injury. Fourteen different 
study populations were identified, which highlights the 
wide range of applications of wearable inertial sensors 

to quantify everyday life motor activity in people with 
mobility impairments.

Study designs
In terms of validity, the majority of the included stud-
ies evaluated the algorithm’s activity classification accu-
racy. The methods of these studies differed considerably. 
Measurements were conducted under laboratory or free-
living conditions. The number of sensors ranged from 1 
to 17 and the number of classes/activities from 1 to 11. 
Moreover, the methods to split the data into training and 
testing samples varied, and the studies used inconsist-
ent metrics to report their results. Technical and clinical 
validity studies were conducted less frequently. Technical 
validity studies determined predominantly the accuracy 
of gait parameters. Sensor-based outcome measures were 
compared to those of pressure-sensitive walkways, video 
recordings, stopwatches, or other validated sensor sys-
tems. In contrast, the clinical validity studies compared 
their sensor-based outcome measures to those of clinical 
assessments. These comparisons were unique for each 
clinical validity study of this review. Clinical studies were 
less frequent than validity studies. Here, sensor-based 
outcome measures were often applied in case/control 
studies, followed by observational and interventional 
studies. In terms of reproducibility, four studies deter-
mined the between-day reliability of their outcome meas-
ure. All of them evaluated gait-related outcomes, but they 
differed considerably in the chosen setting. Two studies 
assessed the usability of a sensor system by reporting 
inconvenience [26] and adverse events [27], respectively, 
while eight studies reported the wearing time of the sen-
sors in daily life [28–35].

Outcome measures and underlying algorithms
All outcomes, as well as the underlying type and place-
ment of sensors, are thoroughly described in the subse-
quent chapters. Each chapter is complemented with a 
table that provides a list of all outcome measures and how 
they were investigated in terms of study populations and 
study designs (Tables 1, 2, 3, 4). The underlying data pro-
cessing algorithms to detect activities in unlabeled data 
of this review followed either a biomechanical or a sta-
tistical machine learning approach. The former approach 
uses explicit, and a priori defined features that are spe-
cific to certain activities (e.g., the orientation of the thigh 
during sitting). The concepts of this approach are 
described in the following chapters. The latter approach 
uses many unspecific features in combination with stand-
ard machine learning algorithms. A description of these 
algorithms is provided elsewhere [36], and the detected 
activity classes, as well as the used sensor type and place-
ment, are listed in Table 5.

Trunk

Pelvis

Forearm

Shank

Thigh

Upper arm

Foot

Assistive devices

Head 3

7

11

12

18

22

29

30

31

Accelerometer

Gyroscope

Barometer

Magnetometer

Reed switch 2

9

10

44

92

Stroke

Parkinson's disease

Spinal cord injury

Arthritis

Fallers

Amputees

Cerebral palsy

Others* 18

4

4

5

5

12

18

29

Case/control

Technical validity

Clinical validity

Observational

Between-day reliability

Interventional

Number of studies

0 20 40 60 80 100

2

4

7

8

16

17

68

Sensor technology

Sensor placement

Study population

Study design

Fig. 2 Frequency distribution of the used sensor technologies, of 
the body segments on which sensors were placed, of the study 
population in which the sensors were applied, and of the used study 
designs to evaluate the outcome measures
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Maintaining and changing a body position
Activities and outcome measures
The studies of this review often detected lying [26, 35, 
37–50], sitting [26, 30, 31, 35, 37–59], and standing 
positions [26, 30, 31, 33, 35, 37–50, 52–56, 58–61] and, 
thus, estimated how long patients with mobility impair-
ments maintain these positions in daily life. Some studies 

combined lying and sitting positions as sedentary behav-
ior [33, 60–62]. One study included a measure to assess 
the knee angle during these positions [39]. Instead of 
quantifying the duration of body positions, it is also com-
mon to count the transitions between these positions. 
The transition between sitting and standing was fre-
quently investigated [40, 41, 48, 53, 57, 59, 63–73], while 

Table 3 Overview of  activities and  measures regarding  wheeling as  well as  the  corresponding study populations 
and study designs

Activity Measure Diagnosis/impairment group Study design

Moving around using a wheelchair

 Self-propelled wheeling Duration Able-bodied wheelchair users [17], spinal cord injury [32, 
62, 97–101]

Classification accuracy [17, 32, 62, 97–101]

Distance Spinal cord injury [29, 32] Clinical validity [29], technical validity [32]

Speed Able-bodied wheelchair users [17], spinal cord injury [29] Classification accuracy [17], clinical validity [29]

# of strokes/
stroke 
frequency

Spinal cord injury [102] Interventional [102], technical validity [102]

 Maneuvering Duration Able-bodied wheelchair users [17], spinal cord injury [32] Classification accuracy [17, 32]

 Playing basketball Duration Spinal cord injury [101] Classification accuracy [101]

Table 4 Overview of activities and measures regarding upper extremities as well as the corresponding study populations 
and study designs

Activity Measure Diagnosis/impairment group Study design

Non-specific hand and arm use

 n/a Duration/laterality Parkinson’s disease [40], Rotator cuff syndrome 
[30], stroke [46, 47, 58, 89, 103, 104]

Case/control [103], classification accuracy [40, 
46, 47, 58, 103, 104], clinical validity [40, 89, 
103], observational [30]

 n/a Entropy Arthritis [105] Case/control [105]

 n/a Range of motion

Shoulder Rotator cuff syndrome [56], stroke [34, 106] Observational [34, 56, 106]

Elbow Stroke [34] Observational [34]

Wrist and finger Stroke [107] Observational [107]

Specific hand and arm movements

 Reaching # and duration of 
reaching activi-
ties

Parkinson’s disease [72], stroke [34, 108–111] Classification accuracy [72, 108–111], obser-
vational [34]

Reaching distance Stroke [58] Observational [58]

Reaching direction Parkinson’s disease [72], stroke [58] Classification accuracy [72], observational [58]

 Lifting sth. to the mouth Duration Stroke [57, 108–111] Classification accuracy [57, 108–111]

 Pouring sth. (pro-/supination) Duration Stroke [108–111] Classification accuracy [108–111]

Specific hand and arm activities

 Writing and reading Duration Parkinson’s disease [42] Classification accuracy [42]

 Opening a door Duration Arthritis [87], stroke [88] Classification accuracy [87, 88]

 Hair combing Duration Stroke [57, 112] Classification accuracy [57, 112]

 Eating Duration Parkinson’s disease [42], stroke [112], miscel-
laneous [113]

Classification accuracy [42, 112, 113]

 Drinking Duration Stroke [112] Classification accuracy [112]

 Tooth brushing, shirt button-
ing, pant lifting, food cutting

Duration Stroke [57] Classification accuracy [57]
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only three studies detected the transition between lying 
and sitting [48, 57, 70]. Three of these studies further dis-
criminated between transitions and bending forward [53, 
65, 67], and two additional studies specifically detected 
sit-to-walk transitions since they aimed to compare the 
timed up and go test with transitions in daily life [74, 75]. 
Standing up was further analyzed in terms of speed [40, 
63, 64, 68, 71, 73–75], range of motion [40, 64, 71, 74, 75], 
and smoothness [74, 75]. Only one study detected trans-
fers (i.e., moving from one surface to another without 
changing body position) [62].

Description of algorithms and sensor placement
Activity classification algorithms in the literature 
detected either body positions directly or the transi-
tions between them. Both approaches are widely used 
and, eventually, enable to determine how long a specific 
position was maintained and to count the number of 
transitions.

Detection of  body positions based on  sensor orienta-
tion The orientation of different body parts are distinct 
characteristics of different body positions (e.g., the ori-
entation of the thigh is vertical during standing, while 
it is horizontal during lying and sitting). Estimating the 
orientation of body-worn sensors and applying prede-
fined thresholds is a common approach to discriminate 
between body positions in daily life. The sensors were 
placed on the thigh to distinguish between sitting and 
standing positions [31, 39, 40, 58, 60] as well as on the 
trunk [40] or shank [39, 58] to separate lying from the 
remaining positions. One study used the orientation of 
the pelvis to classify all three positions with a single sen-
sor [46]. Algorithms to estimate the sensor’s orientation 
have already been summarized [76] and are, therefore, not 
part of this review.

Detection of transitions based on trunk inclination Stand-
ing up or sitting down is usually performed by leaning for-
ward to maintain the center of mass over the feet. This 
characteristic and the trunk inclination angle can be used 
to detect transitions between sitting and standing in daily 
life. The challenge is to discriminate between sit-to-stand 
and stand-to-sit transitions. This distinction was accom-
plished by pattern recognition [26, 41, 53, 64, 65, 67], by 
the orientation of the pelvis after the transition [74, 75], 
by the orientation change of the thigh during the transi-
tion [66, 68, 70, 72], and by estimating the difference in 
elevation with double integration of the acceleration sig-
nal in vertical direction [30, 35, 56, 63, 70, 73] or with a 
barometric pressure sensor [44, 69, 71]. Lying was often 
detected via the orientation of the trunk, as described 
above. Detecting lying and the transitions between sit-

ting and standing requires only a single sensor on the 
trunk such as on the sternum [26, 26, 30, 35, 41, 44, 44, 56, 
69–71], the waist [53, 65, 67], or the fifth lumbar vertebra 
[73–75]. Other studies used a trunk and a thigh sensor 
[33, 68, 70, 72] or just a thigh sensor [66], while the latter 
cannot discriminate between lying and sitting positions.

Measures to quantify body positions and transitions The 
knee angle during lying, sitting, and standing was esti-
mated with the differential signal of two sensors that 
were placed on the thigh and the ipsilateral shank [39]. 
No other measures were used in the literature to assess 
specific characteristics of different postures in daily life. 
Standing up, however, was more thoroughly analyzed. 
The start and end point of this transition were defined as 
the minima before and after peak trunk inclination. These 
points reveal the duration and with it a measure to quan-
tify how fast patients are standing up. Five studies used 
a sensor on the sternum [40, 63, 64, 68, 71] and three a 
sensor on the fifth lumbar vertebra [73–75] to measure 
trunk inclination. Moreover, peak trunk inclination [64, 
71], peak trunk acceleration [40], the range of acceleration 
[40, 64, 74, 75], and gyroscope signals [74, 75], as well as 
measures for smoothness [74, 75] were used to quantify 
standing up in daily life.

Walking and moving
Activities and outcome measures
The studies included in this review most frequently cov-
ered detecting walking bouts in everyday life of people 
with mobility impairments [26–28, 30, 31, 33, 35, 37–58, 
60, 61, 63, 68, 70, 72, 77–94], followed by more spe-
cifically detecting turning periods while walking [49, 68, 
72, 79, 87, 88, 94, 95] and stair climbing [43–47, 50, 51, 
54, 55, 59, 60, 83, 84, 87, 88, 96]. Other, less frequently 
detected activities were walking sideways [59], walk-
ing while carrying an object [87, 88], walking on sloping 
surfaces [47, 87, 88], and running [49, 51]. Several stud-
ies detected and counted steps during walking and stair 
climbing periods [26–28, 31, 33, 35, 39, 60, 63, 77, 79, 80, 
86, 92, 93]. This in turn enables the estimation of step 
frequency and cadence. Walking bouts were further ana-
lyzed in terms of temporo-spatial gait parameters [27, 28, 
33, 40, 58, 61, 70, 81, 82, 86, 91, 93], and joint kinemat-
ics (i.e. knee angle) [33, 39]. Turning periods were further 
analyzed in terms of duration [68, 72, 79, 87, 88, 94, 95], 
turning angle [79, 94, 95], turning speed [79, 94], smooth-
ness [94], mediolateral range of trunk acceleration [94], 
and number of steps to complete a turn [79]. Stair climb-
ing was often subclassified in ascending and descending 
[43–45, 54, 60, 83, 84, 87, 88, 96], and one study devel-
oped an algorithm that recognized if stairs were climbed 
with a step-by-step or a step-over-step pattern [83].
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Description of algorithms and sensor placement
The following chapters describe the concepts of the 
underlying algorithm and the used sensor placement to 
detect and quantify walking, turning, and stair climbing 
activities. Details about the detection of walking side-
ways, walking while carrying an object, walking on slop-
ing surfaces, and running as well as stair climbing with 
a step-by-step or step-over-step can be found in Table 5.

Walking bouts and gait parameters 

Detection of walking bouts
Two approaches have been used in the studies included 

in this review to detect walking bouts of people with 
mobility impairments in unsupervised datasets. The first 
approach uses the signal magnitude or variance to dis-
criminate walking from static activities such as sitting 
and standing. The data is labeled as walking if the signal 
exceeds a predefined threshold for a certain duration. For 
this purpose, studies used the acceleration signal of the 
pelvis [27, 81, 82, 86], thigh [80], shank [68, 72], thigh 
and shank [39], or the angular rate of the pelvis [79, 94]. 
Some studies introduced additional criteria to avoid con-
fusion with other activities. During valid walking bouts, 
the orientation of the pelvis [27, 86] or thigh sensor [80] 
needs to be vertical or the hip angle, derived from the dif-
ferential signal between the pelvis and the thigh sensors, 
needs to be in an extended position [68, 72]. The second 
approach more specifically detects steps in the signal, and 
a number of consecutive steps are seen as a walking bout. 
The initial contact of each step leads to a peak in the sig-
nals and these peaks appear with a certain frequency 
that is specific to walking. Thus, peak detection and 
optionally verifying if they appear within a predefined 
frequency band is a common method to detect steps in 
unlabeled data. This method has been implemented with 
the acceleration signal of the trunk [28, 30, 35, 44, 56, 63, 
70, 78, 92], pelvis [27, 86, 92], thigh [31, 60, 80], ankle [91] 
or foot sensor [40], as well as the gyroscope signal of the 
shank [26, 33, 41, 70] or foot sensor [79]. Again, to reduce 
false-positive rates, peak detection has been combined 
with the vertical orientation of the trunk and thigh sen-
sors while walking [40]. Another method to detect steps 
is to assess the similarity of the signal to pre-established 
templates. The similarity was assessed with dynamic 
time warping of the feet’s gyroscope signal [77] and with 
cross-correlation of the shank’s acceleration signal [39]. 
A third method used the fact that the left and right foot 
are alternatively active and stationary during walking. 
Active and stationary phases were detected with a zero-
velocity algorithm and by fusing the accelerometer and 
gyroscope signal of the feet sensors [58]. Some studies 
used the first approach to detect walking bouts and the 

second to detect steps within these walking bouts, while 
two studies combined both approaches to detect walking 
bouts more specifically [53, 93]. The detection of walk-
ing bouts enables to measure the number and duration 
of walking activities in everyday life, while the detection 
of steps, further, enables to count daily steps as well as 
to determine the cadence [26, 28, 31, 78, 92], stride time 
[91], and stride time variability [28, 78] of individual 
walking bouts. Besides, the cadence was also determined 
by frequency analysis of the acceleration signal without 
detecting each step individually [92, 93].

Determination of gait parameters
Deriving temporal gait parameters from previously 

detected walking bouts, such as the duration of stance, 
swing, and double support phase requires a segmentation 
of the gait cycle by identifying the initial and final contact 
of the feet with the ground. Three different approaches 
were used in the literature to identify these gait events 
in people with mobility impairments. The first approach 
assumes that the lower leg rotates forwards during the 
stance phase and backwards during the swing phase. 
Zero-crossings of the feet’s gyroscope signal around the 
mediolateral axis before and after maximal backward 
angular rate (i.e., swing phase) were, therefore, detected 
to estimate the timing of the final and initial contacts, 
respectively [79]. As an alternative to zero-crossings, the 
maxima of forward angular rate were detected to esti-
mate the timing of the gait events. This algorithm was 
applied to the gyroscope signal of the feet [40] or the 
ankle sensors [33, 70]. The second approach used dis-
tinct features of the pelvis’ acceleration signal in a vertical 
direction. It was assumed that the initial contact corre-
sponds to peak deceleration, while the final contact does 
to peak acceleration gain [27, 86]. The third approach 
determines the start and end points of the stationary 
phase (i.e., stance phase) of the feet sensors [58]. Again, 
the stationary phase was detected with a zero-velocity 
algorithm.

Walking speed was derived directly by estimating the 
stride length and divide it by the stride time or indirectly 
by identifying a surrogate that correlates with walking 
speed. The stride length was determined with biome-
chanical models and kinematic chains to estimate the 
distance between the two feet, or with the inverted pen-
dulum model in which the stride length can be derived 
from the height change of the center of mass, or with 
double integration of the feet’s horizontal acceleration 
[40]. The biomechanical models required IMUs on both 
thighs and shanks [33, 70] as well as additionally on the 
pelvis and the feet [58], while the inverted pendulum 
model only needs the vertical acceleration signal of the 
pelvis [27, 86]. Several surrogates that are supposed to 
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correlate with walking speed were described in the stud-
ies of this review. Namely, the root mean square of the 
acceleration signal at the pelvis [93], or of the vertical 
velocity of the trunk [28, 78] as well as the stride time 
[91]. Moreover, one study recognized comfortable and 
brisk walking as two distinct classes, which enables a 
dichotomous analysis of slow and fast walking speed [61].

Walking bouts were further analyzed regarding stabil-
ity, foot clearance, and joint kinematics. Gait stability as 
a measure for risk of falling was determined with local 
dynamic stability [81, 93] and entropy measures [82] of 
the pelvis’ acceleration signal. The knee angle was meas-
ured with the differential signal between the thigh and 
ankle sensors [33, 39]. And one study estimated the foot 
clearance with the position of the foot sensor [58].

Turning Turns during walking bouts were detected 
whenever the turning angle or angular velocity around 
the vertical axis exceeded a predetermined threshold. 
The turning angle was derived from the trunk [68, 72] or 
the pelvis sensor [49, 79, 94, 95]. The detection of turns 
enables to count the number of turns in daily life. How-
ever, to derive other measures, the start and end point of 
these turns need to be detected, too. These time points 
were defined when the angular velocity of the pelvis 
sank below a predetermined threshold [79, 94], or at the 
minima before and after peak turning angular velocity of 
the trunk [68, 72], or at the minimum and maximum of 
the pelvis’ turning angle [95]. Knowing the start and end 
point of turning periods enables to determine its duration 
[68, 72, 79, 94, 95], turning angle [79, 94, 95], and turning 
speed [79, 94] as well as the smoothness [94], mediolateral 
range of trunk acceleration [94], and the number of steps 
to complete a turn [79].

Stair climbing The range of motion at the hip joint is 
higher during stair climbing compared to level walking. 
This characteristic was used in two studies to recognize 
stair climbing activities in daily life. One study used the 
orientation of the thigh sensor to discriminate between 
stair climbing and level walking [60], while another one 
used the variance of the acceleration signal at the hip [47]. 
A further distinct characteristic of stair climbing is the 
change in altitude. Several studies used a barometric pres-
sure sensor to measure the altitude change during loco-
motion and discriminated between going up and down 
stairs as well as level walking [44, 45, 84]. Usually, the 
shank is rotating forward during the stance phase of walk-
ing trials. However, while ascending a flight of stairs, there 
is a period during the stance phase, in which the shank is 
rotating backward. One study used this fact to specifically 
recognize stair ascending periods with the gyroscope sig-
nal of the shank sensor [96]. And lastly, one article used 

the timing of peak occurrence in the acceleration signal of 
the thigh sensor to discriminate between ascending and 
descending stairs [60].

Moving around using a wheelchair
Activities and outcome measures
The included articles in this review either specifically 
detected active self-propulsion of wheeling activities [97, 
98] or discriminated between active self-propulsion and 
being pushed passively [17, 29, 32, 62, 99–101]. Stud-
ies that did not distinguish between active and passive 
wheeling bouts were not included in this review since 
they did not specifically address a motor activity. Active 
wheeling was further analyzed in terms of covered dis-
tance [29, 32], speed [17, 29] as well as the number of 
strokes and stroke frequency [102]. Moreover, three 
studies allocated wheeling bouts either to maneuvering 
or covering longer distances [17, 29, 32], five studies dif-
ferentiated between hand use during self-propulsion and 
other activities of daily living [29, 62, 99–101], and one 
study detected playing basketball [101].

Description of algorithms and sensor placement
Many studies used a statistical machine learning 
approach and are already depicted in Table  5. The 
remaining concepts of the underlying algorithms and 
used sensor placements are described in the following 
section.

Wheeling bouts were detected by measuring the rota-
tion of the wheel and setting predefined thresholds. The 
rotation of the wheel was measured with a gyroscope [29, 
32] or a reed switch [102] on the spokes of the wheel-
chair. The distinction between maneuvering and longer 
wheeling bouts was accomplished with two different 
approaches. The first approach simply defined wheeling 
bouts that are shorter than 5.12 s as maneuvering and the 
remaining bouts as longer wheeling bouts [32]. The sec-
ond approach used the acceleration signal of the wheel 
sensor and predefined, incremental thresholds to distin-
guish between non-wheeling bouts, maneuvering, as well 
as normal speed and high-speed bouts [17]. Two studies 
separated active from passive wheeling propulsion when-
ever the acceleration signal of the wrist sensor exceeded a 
predefined threshold [17, 97]. Another study specifically 
counted the number of strokes within wheeling activi-
ties and, with it, estimated the stroke frequency by means 
of peak detection of the acceleration signal of the upper 
arm, wrist, or wheelchair sensor [102]. Besides, the speed 
and distance of active wheeling bouts were estimated 
by measuring the angular velocity and the radius of the 
wheel [29, 32].
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Upper extremities
Activities and outcome measures
The measures to quantify hand and arm use in daily life 
that were used in the studies of this review were allocated 
to one of the following three categories: (1) Non-specific 
hand and arm use regardless of the underlying activity, 
(2) specific hand and arm movements such as reaching, 
and (3) specific hand and arm activities that require a 
combination of movements (e.g., eating activity involves 
reaching, cutting, and lifting movements). The first cat-
egory includes measures to quantify the amount [30, 40, 
46, 47, 89, 103, 104] and diversity [105] of hand and arm 
use as well as the range of motion of shoulder [34, 56, 58, 
106], elbow [34, 58], and hand movements [107]. The sec-
ond category contains reaching [34, 58, 72, 108–111], lift-
ing [57, 108–111], and pouring (i.e. pro- and supination) 
movements [108–111], while reaching was further ana-
lyzed in terms of reaching distance [34, 58] and reach-
ing direction [72]. And the activities of the last category 
were writing and reading [42], opening a door [87, 88], 
hair combing [57, 112], eating [42, 112, 113], and drink-
ing [112] as well as tooth brushing, shirt buttoning, pant 
lifting, and food cutting [57].

Description of algorithms and sensor placement
Non-specific hand and  arm use Hand and arm use in 
daily life is often measured with activity counts that are 
derived from the accelerometer signal of the wrist sen-
sors. Applying a sensor on either side enables to estimate 
the hand use laterality, which is particularly relevant for 
people with unilateral impairments. Studies that based 
their outcomes solely on activity counts were not included 
in this review since they do not provide innovation to the 
state-of-the-art and are already well investigated and 
reviewed in the literature [114, 115]. Instead of measur-
ing the amount of hand and arm use, one study included 
in this review developed an algorithm do determine the 
diversity of hand and arm movements by calculating the 
sample entropy of the upper and lower arm accelera-
tion signals [105]. Still, the signals of sensors worn at the 
upper extremities are biased by movements of the lower 
extremity (e.g., walking leads to large numbers of activity 
counts at the wrists even though the arms are not actively 
used) and three approaches are described in the literature 
to overcome this issue. The first approach stratifies hand 
and arm use according to the underlying activity of the 
lower extremities (e.g., hand and arm use during sitting, 
standing, and walking). This enables the exclusion of pas-
sive arm swing while walking [30, 40, 46, 47]. The second 
approach directly discriminates between functional and 
non-functional hand and arm use. This distinction was 
implemented by training a classifier with machine learn-
ing techniques (see Table 5 for details about sensor type 

and placement) [103, 104] and by limiting the range of 
functional hand movement [89]. Here, functional hand 
movement was defined whenever the orientation of 
the hand was within ± 30° from the horizontal, and the 
range of hand movement in this section exceeded 30° in 
a 2 s period. The orientation of the hand was determined 
with an IMU on the wrist. And lastly, the third approach 
estimated the movement of specific joints of the upper 
extremities. Shoulder movement was determined by cal-
culating the angle between the trunk and the upper arm 
sensor [34, 58], by estimating the arm elevation with the 
orientation of the upper arm sensor [56], and by assessing 
the spatial distribution of the elbow position with a kin-
ematic model and the orientation of the upper arm sensor 
[106]. Likewise, the elbow movement was determined by 
calculating the angle between the upper and lower arm 
sensors [34, 58], while the wrist and finger movements 
were detected with an IMU (incl. magnetometer) on the 
wrist and a magnet on the index finger [107].

Specific hand and arm movements A more sophisticated 
approach to discriminate between functional and non-
functional hand and arm use is to detect particular move-
ment primitives such as reaching an object. One research 
group developed an algorithm that distinguishes between 
reaching, lifting, and pouring movements while mak-
ing a cup of tea by using a single wrist sensor [108–111]. 
Another study specifically detected lifting food towards 
the mouth [57], and three studies detected reaching 
movements [34, 58, 72]. These studies used a whole-body 
IMU system with up to 17 sensors, which raises ques-
tions about its applicability for long-term measurements 
in daily life. Reaching movements were further analyzed 
by measuring its range and direction with the difference 
between the hand and trunk positions [34, 58] and by 
classifying the movement into upwards, mid, and down-
wards reaching directions [72].

Specific hand and arm activities All but one study and 
most of the activities of this category were detected with 
a statistical machine learning approach. The details about 
sensor placement are presented in Table 5. One study used 
a pattern recognition approach with template matching to 
discriminate between hair combing, eating, and drinking 
[112]. The templates were based on the signals of seven 
IMUs (incl. magnetometer), and they were placed on the 
trunk as well as on the upper arm, forearm, and hand of 
each side.

Discussion
This systematic review focused on the application of 
inertial sensor technologies to quantify everyday life 
motor activity in people with mobility impairments and 
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provides an overview of existing outcome measures. It, 
further, describes the concepts of the underlying data 
processing algorithms as well as the types and place-
ments of required sensors to derive these measures and, 
eventually, lists the designs and populations of all studies 
that evaluated the measures in terms of validity, repro-
ducibility, and usability.

The included studies of this review covered a large vari-
ety of outcome measures and underlying data processing 
algorithms which can be grouped into four categories: (1) 
maintaining and changing a body position, (2) walking 
and moving, (3) moving around using a wheelchair, and 
(4) activities that involve the upper extremity. The validity 
or reproducibility of these outcomes measures was inves-
tigated in fourteen different patient populations, of which 
the majority comprised stroke survivors, patients with 
Parkinson’s disease, and patients with spinal cord injury. 
Most of the studies evaluated the algorithm’s accuracy to 
detect certain activities in unlabeled raw data, while oth-
ers evaluated the outcome measures in terms of concur-
rent validity, discriminant validity, or reproducibility or 
applied them in an interventional or observational study. 
The type and placement of required sensor technologies 
depends on the activity and outcome measure and are 
thoroughly described in this review. The reproducibility 
of the outcome measures and the usability of the applied 
sensor setups were rarely reported.

This review is limited to applications of wearable iner-
tial sensors that were optionally combined with other 
sensor technology. However, among the included articles, 
there were two measurement tools that have the poten-
tial to monitor everyday life motor activities without 
combining it with inertial sensors: insoles with force-sen-
sitive sensors [18–23] and first-person cameras [24, 25]. 
Even though instrumented insoles are reliable gait phase 
detectors [20], their applicability for long-term measure-
ments in daily life is limited since the user might change 
or take off the footwear during the measurement period, 
which in turn would lead to biased outcome measures. 
First-person cameras might be superior to inertial sen-
sors from a technological perspective since they also pro-
vide information about the user’s environment and social 
interactions [116]. However, the application of wearable 
cameras in daily life also raises ethical questions, and 
it remains to be seen whether this technology will be 
accepted by the end-users and the community. Other 
technologies, such as external cameras, pressure-sensi-
tive walkways, or instrumented furniture, could be used 
to quantify motor activities in daily life. Even though 
these technologies would allow for an in-depth analy-
sis of motor activities, they are all limited to a specific 
area and, therefore, not feasible to monitor the patients’ 
activities throughout the day. Consequently, we are still 

convinced that wearable inertial sensors are the preferred 
measurement tool to monitor everyday life motor activi-
ties in patients with mobility impairments. Amongst 
wearable sensors, accelerometers were the preferred 
technology in the articles of this review. Compared to 
gyroscopes, accelerometers do have a considerably lower 
power consumption [117] and are not susceptible to drift 
[12], which might explain their preference for unobtru-
sive long-term measurements in daily life.

The search strategy and eligibility criteria of this review 
were designed to get an overview of all reproducibly 
described algorithms that process unlabeled raw data 
of everyday life measurements into clinically meaning-
ful outcome measures. Despite this systematic search, 
there are three reasons why the algorithms and outcome 
measures of this review are incomplete. First, proprie-
tary algorithms of commercial devices and insufficiently 
described algorithms were not considered in this review, 
even though they might determine clinically meaning-
ful outcome measures. Transparency of scientific meth-
ods (including the data processing algorithm) enables 
other researchers to interpret the results, to validate 
the method, and to replicate the study, which is essen-
tial to the development and evolution of science [118]. 
We, therefore, encourage the scientific community to 
use open-source algorithms or at least describe the used 
algorithm reproducibly. Second, only algorithms that are 
applicable to unlabeled raw data were included in this 
review, and, especially in the field of gait analysis, there 
are many algorithms available that determine a clinically 
meaningful outcome measure out of labeled walking tri-
als [119]. These algorithms could be combined with an 
activity/walking detection algorithm and, thus, extend 
the variety of outcome measures to quantify everyday 
life motor activities. And third, algorithms that were 
evaluated in healthy subjects were not considered in this 
review, but might as well provide clinically meaningful 
outcome measures. However, whether these algorithms 
also work correctly in patients with mobility impair-
ments, has to be shown in future research.

Neither a quality assessment of the included studies 
nor a meta-analysis regarding the accuracy or reproduc-
ibility of the described algorithms and outcome measures 
were conducted in this review. Although we acknowl-
edge the benefit of these analyses, they are not feasible 
for the current review due to missing standards to assess 
the quality of activity classification studies and due to the 
large heterogeneity of the methods and data reporting of 
the studies. For example, we included two studies that 
evaluated an algorithm to detect walking and stair climb-
ing in stroke survivors [46, 84]. Even though these stud-
ies had a similar study population and study design, their 
algorithms’ performance is still not comparable since 
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their algorithms detected three and six activities, respec-
tively, and the authors chose different metrics to report 
their results. One study reported sensitivity and specific-
ity, while the other study reported F-scores. This exam-
ple demonstrates the difficulty of determining which 
algorithms are superior, and the comparability between 
studies is even more complicated when the study popu-
lation and study designs differ. We, therefore, encourage 
the scientific community to develop a standard to con-
duct such studies and to report the results consistently. 
We suggest that the study protocol either contains obser-
vations of the patients’ daily motor activities in their 
habitual environment or an activity circuit that resembles 
everyday life and comprises activities not classified by 
the algorithm. We further recommend that the confu-
sion matrix is reported, which allows determining a large 
variety of statistical measures to quantify the algorithm’s 
performance. Moreover, we would like to point out the 
difference between measurement error and activity clas-
sification accuracy. Detecting sitting position with an 
accuracy of 90%, for example, does not necessarily mean 
that the error of estimating the sitting duration of a 24-h 
measurement is 10%. In fact, a balanced occurrence of 
false positive and false negative detections would lead to 
a much smaller error. Although the measurement error is 
essential for future applications of the algorithm to daily 
life data, it is rarely reported in the literature. Therefore, 
we recommend future studies to determine the meas-
urement error of their outcome measures instead of just 
reporting the activity classification accuracy.

The usability of wearable inertial sensors was hardly 
ever assessed or at least not reported in the studies of this 
review article. This finding is somewhat surprising since 
the end user’s compliance and acceptance to wear the 
sensors throughout the measurement period is crucial 
to get comprehensive and unbiased data of the end user’s 
motor activities in daily life. We believe that the usability 
of the sensor system depends predominantly on the num-
ber and size of sensors, on the location of sensor place-
ment, and on how the sensors are attached to the body. 
Moreover, low usability of the sensor system might also 
interfere with the end-user’s behavior in daily life. How-
ever, this has yet to be shown, and we, therefore, recom-
mend that future studies consequently report the wearing 
time and the obtrusiveness of their sensor system.

Conclusions
This systematic review provides a comprehensive 
overview of applications of wearable inertial sen-
sors to quantify everyday life motor activity in people 
with mobility impairments. It lists activities and out-
come measures that have been covered in the litera-
ture and describes the concepts of the underlying data 

processing algorithms as well as the required sensor 
technologies. It, further, tabulates the study popula-
tions and the study designs of the included articles. 
This review, therefore, summarizes the state-of-the-art 
of existing sensor applications, it provides quick access 
to the relevant literature to the reader that is interested 
in quantifying certain activities in a specific patient 
population, and it enables the identification of gaps for 
the evaluation of existing and the development of new 
algorithms.

The studies of this review had a large methodological 
heterogeneity and reported their results inconsistently. 
This made it impossible to quantify and compare the 
validity, reproducibility, and usability of different sen-
sor technologies, its underlying algorithms, and their 
outcome measures. Thus, this review neither provides 
recommendations about the favored type and place-
ment of sensor technologies, nor a synthesis about the 
performance of different algorithms. Therefore, we rec-
ommend that future studies follow a standardized pro-
tocol and use consistent metrics to report their results.

In the literature, wearable inertial sensors are the pre-
ferred technology to monitor everyday life motor activ-
ities in patients with mobility impairments. We further 
expect the use of this technology to evolve substantially 
as more and more valid algorithms become available for 
patient populations that can capture different facets of 
everyday life, as can be seen in the healthy population.
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IMU: Inertial measurement unit.

Acknowledgements
Not applicable.

Authors’ contributions
FR and RL developed the search strategy for this review, screened the search 
hits for eligibility, and extracted as well as synthesized the relevant data. All 
authors read and approved the final manuscript.

Funding
This review was supported by the Walter Muggli Fund of the ACCENTUS Foun-
dation, the Anna Mueller Grocholski Foundation, and the CRPP Neuro-Rehab 
of the Medical Faculty of the University of Zurich, Switzerland. The funders 
did not have any role in the design of the study and collection, analysis, and 
interpretation of data and in writing the manuscript.

Availability of data and materials
Data sharing is not applicable to this article as no datasets were generated or 
analyzed during the current study.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.



Page 17 of 19Rast and Labruyère  J NeuroEngineering Rehabil          (2020) 17:148  

Author details
1 Swiss Children’s Rehab, University Children’s Hospital Zurich, Mühleberg-
strasse 104, 8910 Affoltern am Albis, Switzerland. 2 Children’s Research Center, 
University Children’s Hospital of Zurich, University of Zurich, Zurich, Switzer-
land. 3 Rehabilitation Engineering Laboratory, Department of Health Sciences 
and Technology, ETH Zurich, Zurich, Switzerland. 

Received: 23 March 2020   Accepted: 22 October 2020

References
 1. Rast FM, Labruyère R. Protocol of a systematic review on the application 

of wearable inertial sensors to quantify everyday life motor activity in 
people with mobility impairments. Syst Rev. 2018;7:174.

 2. World Health Organization. Towards a Common Language for Func-
tioning, Disability and Health ICF. 2002. https ://www.who.int/class ifica 
tions /icf/icfbe ginne rsgui de.pdf. Accessed 21 Mar 2017.

 3. World Health Organization. World report on disability. 2011. https ://
www.who.int/disab iliti es/world _repor t/2011/en/. Accessed 5 July 2017.

 4. Del Din S, Hickey A, Woodman S, Hiden H, Morris R, Watson P, et al. 
Accelerometer-based gait assessment: Pragmatic deployment on an 
international scale. In: Proc IEEE Stat Signal Process Workshop. 2016; p. 
1–5.

 5. Del Din S, Godfrey A, Mazza C, Lord S, Rochester L. Free-living 
monitoring of Parkinson’s disease: lessons from the field. Mov Disord. 
2016;31:1293–313.

 6. Cervantes CM, Porretta DL. Physical activity measurement among 
individuals with disabilities: a literature review. Adapt Phys Act Q. 
2010;27:173–90.

 7. Ainsworth BE. How do I measure physical activity in my patients? Ques-
tionnaires and objective methods. Br J Sports Med. 2009;43:6–9.

 8. Hey S, Anastasopoulou P, von Haaren B. Erfassung körperlicher Aktivität 
mittels Akzelerometrie—Möglichkeiten und Grenzen aus technischer 
Sicht. Bewegungstherapie Gesundheitssport. 2014;30:73–8.

 9. Bonomi AG, Westerterp KR. Advances in physical activity moni-
toring and lifestyle interventions in obesity: a review. Int J Obes. 
2012;36:167–77.

 10. Garofalo P. Healthcare applications based on MEMS technology. Adv 
Microelectron. 2012;39:24–8.

 11. Dobkin BH. Wearable motion sensors to continuously measure real-
world physical activities. Curr Opin Neurol. 2013;26:602–8.

 12. Lowe SA, Ólaighin G. Monitoring human health behaviour in 
one’s living environment: a technological review. Med Eng Phys. 
2014;36:147–68.

 13. Dobkin BH. A rehabilitation-internet-of-things in the home to aug-
ment motor skills and exercise training. Neurorehabil Neural Repair. 
2017;31:217–27.

 14. Albert MV, Shparii I, Zhao X. The applicability of inertial motion sensors 
for locomotion and posture. In: Barbieri FA, Vitório R, editors. Locomo-
tion and posture in older adults. Cham: Springer; 2017. p. 417–26.

 15. Jeran S, Steinbrecher A, Pischon T. Prediction of activity-related 
energy expenditure using accelerometer-derived physical activ-
ity under free-living conditions: a systematic review. Int J Obes. 
2005;2016(40):1187–97.

 16. Van Remoortel H, Giavedoni S, Raste Y, Burtin C, Louvaris Z, Gimeno-
Santos E, et al. Validity of activity monitors in health and chronic 
disease: a systematic review. Int J Behav Nutr Phys Act. 2012;9:84.

 17. Leving MT, Horemans HLD, Vegter RJK, De Groot S, Bussmann JBJ, van 
der Woude LHV. Validity of consumer-grade activity monitor to identify 
manual wheelchair propulsion in standardized activities of daily living. 
PLoS ONE. 2018;13:e0194864.

 18. Fulk GD, Edgar SR, Bierwirth R, Hart P, Lopez-Meyer P, Sazonov E. 
Identifying activity levels and steps of people with stroke using a novel 
shoe-based sensor. J Neurol Phys Ther JNPT. 2012;36:100–7.

 19. Fulk GD, Sazonov E. Using Sensors to Measure Activity in People with 
Stroke. Top Stroke Rehabil. 2011;18:746–57.

 20. Pappas IPI, Popovic MR, Keller T, Dietz V, Morari M. A reliable gait 
phase detection system. IEEE Trans Neural Syst Rehabil Eng Publ IEEE 
Eng Med Biol Soc. 2001;9:113–25.

 21. Sazonov ES, Fulk G, Sazonova N, Schuckers S. Automatic recognition 
of postures and activities in stroke patients. Proc Annu Int Conf IEEE 
Eng Med Biol Soc EMBC. 2009;2009:2200–3.

 22. Zhang T, Fulk GD, Tang W, Sazonov ES. Using decision trees to meas-
ure activities in people with stroke. Proc Annu Int Conf IEEE Eng Med 
Biol Soc EMBC. 2013;2013:6337–40.

 23. Hegde N, Zhang T, Uswatte G, Taub E, Barman J, McKay S, et al. The 
Pediatric SmartShoe: wearable sensor system for ambulatory moni-
toring of physical activity and gait. IEEE Trans Neural Syst Rehabil Eng 
Publ IEEE Eng Med Biol Soc. 2017;26:477–86.

 24. Zhan K, Faux S, Ramos F. Multi-scale Conditional Random Fields for 
first-person activity recognition on elders and disabled patients. 
Pervasive Mob Comput. 2015;16:251–67.

 25. Zhang K, Xiong C, Zhang W, Liu H, Lai D, Rong Y, et al. Environmental 
features recognition for lower limb prostheses toward predictive 
walking. IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med Biol 
Soc. 2019;27:465–76.

 26. Jeannet P-Y, Aminian K, Bloetzer C, Najafi B, Paraschiv-Ionescu A. 
Continuous monitoring and quantification of multiple parameters of 
daily physical activity in ambulatory Duchenne muscular dystrophy 
patients. Eur J Paediatr Neurol. 2011;15:40–7.

 27. Moore SA, Hickey A, Lord S, Del Din S, Godfrey A, Rochester L. Com-
prehensive measurement of stroke gait characteristics with a single 
accelerometer in the laboratory and community: a feasibility, validity 
and reliability study. J Neuroeng Rehabil. 2017;14:130.

 28. Brodie MA, Lord SR, Coppens MJ, Annegarn J, Delbaere K. Eight-week 
remote monitoring using a freely worn device reveals unstable gait 
patterns in older fallers. IEEE Trans Biomed Eng. 2015;62:2588–94.

 29. Brogioli M, Popp WL, Albisser U, Brust AK, Frotzler A, Gassert R, et al. 
Novel sensor technology to assess independence and limb-use later-
ality in cervical spinal cord injury. J Neurotrauma. 2016;33:1950–7.

 30. Coley B, Jolles BM, Farron A, Pichonnaz C, Bassin JP, Aminian K. 
Estimating dominant upper-limb segments during daily activity. Gait 
Posture. 2008;27:368–75.

 31. Verlaan L, Bolink SAAN, Van Laarhoven SN, Lipperts M, Heyligers IC, 
Grimm B, et al. Accelerometer-based physical activity monitoring in 
patients with knee osteoarthritis: objective and ambulatory assess-
ment of actual physical activity during daily life circumstances. Open 
Biomed Eng J. 2015;9:157–63.

 32. Popp WL, Brogioli M, Leuenberger K, Albisser U, Frotzler A, Curt A, 
et al. A novel algorithm for detecting active propulsion in wheelchair 
users following spinal cord injury. Med Eng Phys. 2016;38:267–74.

 33. Gerber CN, Carcreff L, Paraschiv-Ionescu A, Armand S, Newman CJ. 
Reliability of single-day walking performance and physical activity 
measures using inertial sensors in children with cerebral palsy. Ann 
Phys Rehabil Med. 2019.

 34. Held JPO, Klaassen B, Eenhoorn A, van Beijnum BJF, Buurke JH, Veltink 
PH, et al. Inertial sensor measurements of upper-limb kinematics 
in stroke patients in clinic and home environment. Front Bioeng 
Biotechnol. 2018;6:27.

 35. Razjouyan J, Naik AD, Horstman MJ, Kunik ME, Amirmazaheri M, 
Zhou H, et al. Wearable sensors and the assessment of frailty among 
vulnerable older adults: an observational cohort study. Sensors. 
2018;18:E1336.

 36. Preece SJ, Goulermas JY, Kenney LPJ, Howard D, Meijer K, Crompton 
R. Activity identification using body-mounted sensors–a review of 
classification techniques. Physiol Meas. 2009;30:R1-33.

 37. Kiani K, Snijders CJ, Gelsema ES. Computerized analysis of daily life 
motor activity for ambulatory monitoring. Technol Health Care. 
1997;5:307–18.

 38. Kiani K, Snijders CJ, Gelsema ES. Recognition of daily life motor activ-
ity classes using an artificial neural network. Arch Phys Med Rehabil. 
1998;79:147–54.

 39. Feldhege F, Mau-Moeller A, Lindner T, Hein A, Markschies A, Zettl UK, 
et al. Accuracy of a custom physical activity and knee angle measure-
ment sensor system for patients with neuromuscular disorders and 
gait abnormalities. Sensors. 2015;15:10734–52.

http://www.who.int/classifications/icf/icfbeginnersguide.pdf
http://www.who.int/classifications/icf/icfbeginnersguide.pdf
http://www.who.int/disabilities/world_report/2011/en/
http://www.who.int/disabilities/world_report/2011/en/


Page 18 of 19Rast and Labruyère  J NeuroEngineering Rehabil          (2020) 17:148 

 40. Zwartjes DGM, Heida T, Van Vugt JPP, Geelen JAG, Veltink PH. Ambula-
tory monitoring of activities and motor symptoms in Parkinsons 
disease. IEEE Trans Biomed Eng. 2010;57:2778–86.

 41. Salarian A, Russmann H, Vingerhoets FJG, Burkhard PR, Aminian K. 
Ambulatory monitoring of physical activities in patients with Parkin-
son’s disease. IEEE Trans Biomed Eng. 2007;54:2296–9.

 42. Jalloul N, Porée F, Viardot G, L’Hostis P, Carrault G. Activity recognition 
using multiple inertial measurement units. IRBM. 2016;37:180–6.

 43. Albert MV, Azeze Y, Courtois M, Jayaraman A. In-lab versus at-home 
activity recognition in ambulatory subjects with incomplete spinal cord 
injury. J Neuroengineering Rehabil. 2017;14:10.

 44. Massé F, Gonzenbach RR, Arami A, Paraschiv-Ionescu A, Luft AR, Amin-
ian K. Improving activity recognition using a wearable barometric pres-
sure sensor in mobility-impaired stroke patients. J Neuroeng Rehabil. 
2015;12:72.

 45. O’Brien MK, Shawen N, Mummidisetty CK, Kaur S, Bo X, Poellabauer C, 
et al. Activity recognition for persons with stroke using mobile phone 
technology: toward improved performance in a home setting. J Med 
Internet Res. 2017;19:e184.

 46. Capela NA, Lemaire ED, Baddour N, Rudolf M, Goljar N, Burger H. Evalu-
ation of a smartphone human activity recognition application with 
able-bodied and stroke participants. J Neuroeng Rehabil. 2016;13:5.

 47. Capela NA, Lemaire ED, Baddour N. Feature selection for wearable 
smartphone-based human activity recognition with able bodied, 
elderly, and stroke patients. PLoS ONE. 2015;10:e0124414.

 48. Andreu-Perez J, Garcia-Gancedo L, McKinnell J, Van der Drift A, Powell 
A, Hamy V, et al. Developing fine-grained actigraphies for rheumatoid 
arthritis patients from a single accelerometer using machine learning. 
Sensors. 2017;17:E2113.

 49. Cheng WY, Lipsmeier F, Creigh A, Scotland A, Kilchenmann T, Jin L, et al. 
Large-scale continuous mobility monitoring of Parkinson’s disease 
patients using smartphones. In: Proc Int Conf Wirel Mob Commun 
Healthc. 2018; p. 12–9.

 50. Sok P, Xiao T, Azeze Y, Jayaraman A, Albert MV. Activity recognition for 
incomplete spinal cord injury subjects using hidden Markov models. 
IEEE Sens J. 2018;18:6369–74.

 51. Teknomo K, Estuar MR. Visualizing gait patterns of able bodied individu-
als and transtibial amputees with the use of accelerometry in smart 
phones. Rev Colomb Estad. 2015;37:471–88.

 52. Albert MV, Toledo S, Shapiro M, Kording K. Using mobile phones for 
activity recognition in Parkinson’s patients. Front Neurol. 2012;3:158.

 53. Rodríguez-Martín D, Samà A, Perez-Lopez C, Català A, Cabestany J, 
Rodriguez-Molinero A. SVM-based posture identification with a single 
waist-located triaxial accelerometer. Expert Syst Appl. 2013;40:7203–11.

 54. Lonini L, Gupta A, Kording K, Jayaraman A. Activity recognition in 
patients with lower limb impairments: do we need training data from 
each patient? In: Proc Annu Int Conf IEEE Eng Med Biol Soc EMBC. 2016; 
p. 3265–8.

 55. Wade E, Lin P, Hemmati S, Sigward S. Predicting daily gait behaviors 
after anterior cruciate ligament surgery: a case study. In: Proc Annu Int 
Conf IEEE Eng Med Biol Soc EMBC. 2015; p. 6752–5.

 56. Coley B, Jolles BM, Farron A, Aminian K. Arm position during daily activ-
ity. Gait Posture. 2008;28:581–7.

 57. Roy SH, Cheng MS, Chang SS, Moore J, De Luca G, Nawab SH, et al. A 
combined sEMG and accelerometer system for monitoring functional 
activity in stroke. IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med 
Biol Soc. 2009;17:585–94.

 58. van Meulen FB, Klaassen B, Held J, Reenalda J, Buurke JH, van Beijnum 
B-JF, et al. Objective evaluation of the quality of movement in daily life 
after stroke. Front Bioeng Biotechnol. 2016;13(3):210.

 59. Recher F, Banos O, Nikamp CDM, Schaake L, Baten CTM, Buurkc JH. 
Optimizing activity recognition in stroke survivors for wearable exo-
skeletons. In: Proc IEEE Int Conf Biomed Robot Biomechatronics Biorob. 
2018; p. 173–8.

 60. Lipperts M, van Laarhoven S, Senden R, Heyligers I, Grimm B. Clinical 
validation of a body-fixed 3D accelerometer and algorithm for activity 
monitoring in orthopaedic patients. J Orthop Transl. 2017;11:19–29.

 61. Ahmadi M, O’Neil M, Fragala-Pinkham M, Lennon N, Trost S. Machine 
learning algorithms for activity recognition in ambulant children and 
adolescents with cerebral palsy. J Neuroeng Rehabil. 2018;15:105.

 62. García-Massó X, Serra-Añó P, Gonzalez LM, Ye-Lin Y, Prats-Boluda G, 
Garcia-Casado J. Identifying physical activity type in manual wheelchair 
users with spinal cord injury by means of accelerometers. Spinal Cord. 
2015;53:772–7.

 63. Najafi B, Armstrong DG, Mohler J. Novel wearable technology for 
assessing spontaneous daily physical activity and risk of falling in older 
adults with diabetes. J Diabetes Sci Technol. 2013;7:1147–60.

 64. Ganea R, Paraschiv-lonescu A, Aminian K. Detection and classification 
of postural transitions in real-world conditions. IEEE Trans Neural Syst 
Rehabil Eng Publ IEEE Eng Med Biol Soc. 2012;20:688–96.

 65. Rodríguez-Martín D, Samà A, Pérez-López C, Cabestany J, Català A, 
Rodríguez-Molinero A. Posture transition identification on PD patients 
through a SVM-based technique and a single waist-worn accelerom-
eter. Neurocomputing. 2015;164:144–53.

 66. Hemmati S, Wade E. Detecting postural transitions: a robust wavelet-
based approach. In: Proc Annu Int Conf IEEE Eng Med Biol Soc EMBC. 
2016; p. 3704–7.

 67. Rodríguez-Martín D, Samá A, López CP, Catalá A, Cabestany J, Molinero 
AR. Identification of postural transitions using a waist-located inertial 
sensor. In: Proc Int Work-Conf Artif Neural Netw. 2013; p. 142–9.

 68. Nguyen H, Lebel K, Boissy P, Bogard S, Goubault E, Duval C. Auto 
detection and segmentation of daily living activities during a Timed Up 
and Go task in people with Parkinson’s disease using multiple inertial 
sensors. J Neuroeng Rehabil. 2017;14:26.

 69. Massé F, Gonzenbach R, Ionescu A, Luft A, Aminian K. Detection of 
postural transitions using trunk-worn inertial and barometric pressure 
sensor: application to stroke patients. In: Proc 13th Int Symp 3D Anal 
Hum Mov 3D AHM. 2014; p. 147–50.

 70. Paraschiv-Ionescu A, Buchser EE, Rutschmann B, Najafi B, Aminian K. 
Ambulatory system for the quantitative and qualitative analysis of gait 
and posture in chronic pain patients treated with spinal cord stimula-
tion. Gait Posture. 2004;20:113–25.

 71. Ejupi A, Brodie M, Lord SR, Annegarn J, Redmond SJ, Delbaere K. 
Wavelet-based sit-to-stand detection and assessment of fall risk in 
older people using a wearable pendant device. IEEE Trans Biomed Eng. 
2017;64:1602–7.

 72. Nguyen H, Lebel K, Bogard S, Goubault E, Boissy P, Duval C. Using 
inertial sensors to automatically detect and segment activities of daily 
living in people with Parkinson’s disease. IEEE Trans Neural Syst Rehabil 
Eng Publ IEEE Eng Med Biol Soc. 2018;26:197–204.

 73. Pham MH, Warmerdam E, Elshehabi M, Schlenstedt C, Bergeest LM, Hel-
ler M, et al. Validation of a lower back “wearable”-based sit-to-stand and 
stand-to-sit algorithm for patients with Parkinson’s disease and older 
adults in a home-like environment. Front Neurol. 2018;9:652.

 74. Iluz T, Weiss A, Gazit E, Tankus A, Brozgol M, Dorfman M, et al. Can a 
body-fixed sensor reduce heisenberg’s uncertainty when it comes to 
the evaluation of mobility? Effects of aging and fall risk on transitions in 
daily living. J Gerontol Ser A. 2016;71:1459–65.

 75. Bernad-Elazari H, Herman T, Mirelman A, Gazit E, Giladi N, Hausdorff 
JM. Objective characterization of daily living transitions in patients 
with Parkinson’s disease using a single body-fixed sensor. J Neurol. 
2016;263:1544–51.

 76. Picerno P. 25 years of lower limb joint kinematics by using inertial 
and magnetic sensors: a review of methodological approaches. Gait 
Posture. 2017;51(Supplement C):239–46.

 77. Barth J, Oberndorfer C, Pasluosta C, Schulein S, Gassner H, Reinfelder 
S, et al. Stride segmentation during free walk movements using multi-
dimensional subsequence dynamic time warping on inertial sensor 
data. Sensors. 2015;15:6419–40.

 78. Brodie MAD, Coppens MJM, Lord SR, Lovell NH, Gschwind YJ, Redmond 
SJ, et al. Wearable pendant device monitoring using new wavelet-
based methods shows daily life and laboratory gaits are different. Med 
Biol Eng Comput. 2016;54:663–74.

 79. El-Gohary M, Pearson S, McNames J, Mancini M, Horak F, Mellone S, 
et al. Continuous monitoring of turning in patients with movement 
disability. Sensors. 2013;14:356–69.

 80. Godfrey A, Morris R, Hickey A, Del Din S. Beyond the front end: Inves-
tigating a thigh worn accelerometer device for step count and bout 
detection in Parkinson’s disease. Med Eng Phys. 2016;38:1524–9.

 81. Ihlen EAF, Weiss A, Beck Y, Helbostad JL, Hausdorff JM. A compari-
son study of local dynamic stability measures of daily life walking in 



Page 19 of 19Rast and Labruyère  J NeuroEngineering Rehabil          (2020) 17:148  

older adult community-dwelling fallers and non-fallers. J Biomech. 
2016;49:1498–503.

 82. Ihlen EAF, Weiss A, Bourke A, Helbostad JL, Hausdorff JM. The complex-
ity of daily life walking in older adult community-dwelling fallers and 
non-fallers. J Biomech. 2016;49:1420–8.

 83. Laudanski A, Brouwer B, Li Q. Activity classification in persons with 
stroke based on frequency features. Med Eng Phys. 2015;37:180–6.

 84. Leuenberger K, Gonzenbach R, Wiedmer E, Luft A, Gassert R. Classifica-
tion of stair ascent and descent in stroke patients. In: Proc Int Conf 
Wearable Implant Body Sens Netw BSN. 2014; p. 11–6.

 85. Wu X, Xu X, Wang Y, Kaiser W, Pottie G. A double-layer automatic orien-
tation correction method for human activity recognition. In: Proc Int 
Conf Wearable Implant Body Sens Netw BSN. 2016; p. 365–70.

 86. Del Din S, Godfrey A, Galna B, Lord S, Rochester L. Free-living gait char-
acteristics in ageing and Parkinson’s disease: impact of environment 
and ambulatory bout length. J Neuroeng Rehabil. 2016;13:46.

 87. Hester T, Sherrill DM, Hamel M, Perreault K, Boissy P, Bonato P. Using 
wearable sensors to analyze the quality of use of mobility assistive 
devices. In: Proc Int Workshop Wearable Implant Body Sens Netw 
BSN06. 2006; p. 4–130.

 88. Hester T, Sherrill DM, Hamel M, Perreault K, Boissy P, Bonato P. Identifica-
tion of tasks performed by stroke patients using a mobility assistive 
device. In: Proc Annu Int Conf IEEE Eng Med Biol Soc EMBC. 2006; p. 
1501–4.

 89. Leuenberger K, Gonzenbach R, Wachter S, Luft A, Gassert R. A method 
to qualitatively assess arm use in stroke survivors in the home environ-
ment. Med Biol Eng Comput. 2017;55:141–50.

 90. Popp WL, Schneider S, Bär J, Bösch P, Spengler CM, Gassert R, et al. 
Wearable sensors in ambulatory individuals with a spinal cord injury: 
from energy expenditure estimation to activity recommendations. 
Front Neurol. 2019;10:1092.

 91. Xu X, Batalin MA, Kaiser WJ, Dobkin B. Robust hierarchical system for 
classification of complex human mobility characteristics in the pres-
ence of neurological disorders. In: Proc Int Conf Body Sens Netw. 2011; 
p. 65–70.

 92. Paraschiv-Ionescu A, Newman C, Carcreff L, Gerber CN, Armand S, 
Aminian K. Locomotion and cadence detection using a single trunk-
fixed accelerometer: validity for children with cerebral palsy in daily 
life-like conditions. J Neuroeng Rehabil. 2019;16:27.

 93. Terrier P, Le Carre J, Connaissa ML, Leger B, Luthi F. Monitoring of gait 
quality in patients with chronic pain of lower limbs. IEEE Trans Neural 
Syst Rehabil Eng Publ IEEE Eng Med Biol Soc. 2017;25:1843–52.

 94. Mancini M, Weiss A, Herman T, Hausdorff JM. Turn around freezing: 
community-living turning behavior in people with Parkinson’s disease. 
Front Neurol. 2018;9:18.

 95. Pham MH, Elshehabi M, Haertner L, Heger T, Hobert MA, Faber GS, et al. 
Algorithm for turning detection and analysis validated under home-like 
conditions in patients with Parkinson’s disease and older adults using 
a 6 degree-of-freedom inertial measurement unit at the lower back. 
Front Neurol. 2017;8:135.

 96. Coley B, Najafi B, Paraschiv-Ionescu A, Aminian K. Stair climbing detec-
tion during daily physical activity using a miniature gyroscope. Gait 
Posture. 2005;22:287–94.

 97. Kooijmans H, Horemans HL, Stam HJ, Bussmann JB. Valid detection of 
self-propelled wheelchair driving with two accelerometers. Physiol 
Meas. 2014;35:2297–306.

 98. Popp WL, Richner L, Brogioli M, Wilms B, Spengler CM, Curt AEP, et al. 
Estimation of energy expenditure in wheelchair-bound spinal cord 
injured individuals using inertial measurement units. Front Neurol. 
2018;9:478.

 99. Fortune E, Cloud-Biebl BA, Madansingh SI, Ngufor CG, Van Straaten MG, 
Goodwin BM, et al. Estimation of manual wheelchair-based activities in 
the free-living environment using a neural network model with inertial 
body-worn sensors. J Electromyogr Kinesiol. 2019.

 100. Ding D, Hiremath S, Chung Y, Cooper R. Detection of wheelchair user 
activities using wearable sensors. In: Proc Int Conf Univers Access Hum-
Comput Interact. 2011; p. 145–52.

 101. Hiremath SV, Intille SS, Kelleher A, Cooper RA, Ding D. Detection of 
physical activities using a physical activity monitor system for wheel-
chair users. Med Eng Phys. 2015;37:68–76.

 102. Ojeda M, Ding D. Temporal parameters estimation for wheelchair 
propulsion using wearable sensors. BioMed Res Int. 2014;645284.

 103. Bochniewicz EM, Emmer G, McLeod A, Barth J, Dromerick AW, Lum 
P. Measuring functional arm movement after stroke using a single 
wrist-worn sensor and machine learning. J Stroke Cerebrovasc Dis. 
2017;26:2880–7.

 104. Zambrana C, Idelsohn-Zielonka S, Claramunt-Molet M, Almenara-Mas-
bernat M, Opisso E, Tormos JM, et al. Monitoring of upper-limb move-
ments through inertial sensors—preliminary results. Smart Health. 
2019;13:100059.

 105. Hurd WJ, Morrow MM, Kaufman KR. Tri-axial accelerometer analysis 
techniques for evaluating functional use of the extremities. J Electro-
myogr Kinesiol. 2013;23:924–9.

 106. Derungs A, Schuster-Amft C, Amft O. A metric for upper extremity 
functional range of motion analysis in long-term stroke recovery using 
wearable motion sensors and posture cubics. In: Proc IEEE Int Conf 
Wearable Implant Body Sens Netw BSN. 2018; p. 17–20.

 107. Rowe JB, Friedman N, Chan V, Cramer SC, Bachman M, Reinkensmeyer 
DJ. The variable relationship between arm and hand use: a rationale for 
using finger magnetometry to complement wrist accelerometry when 
measuring daily use of the upper extremity. In: Proc Annu Int Conf IEEE 
Eng Med Biol Soc EMBC. 2014; p. 4087–90.

 108. Biswas D, Ajiwibawa GJ, Maharatna K, Cranny A, Achner J, Klemke J, 
et al. Real-time arm movement recognition using FPGA. In: Proc IEEE Int 
Symp Circuits Syst ISCAS. 2015; p. 766–9.

 109. Biswas D, Corda D, Baldus G, Cranny A, Maharatna K, Achner J, et al. Rec-
ognition of elementary arm movements using orientation of a tri-axial 
accelerometer located near the wrist. Physiol Meas. 2014;35:1751–68.

 110. Biswas D, Cranny A, Gupta N, Maharatna K, Achner J, Klemke J, et al. 
Recognizing upper limb movements with wrist worn inertial sensors 
using k-means clustering classification. Hum Mov Sci. 2015;40:59–76.

 111. Biswas D, Maharatna K, Panic G, Mazomenos EB, Achner J, Klemke J, 
et al. Low-complexity framework for movement classification using 
body-worn sensors. IEEE Trans Very Large Scale Integr VLSI Syst. 
2017;25:1537–78.

 112. Lemmens RJM, Janssen-Potten YJM, Timmermans AAA, Smeets RJEM, 
Seelen HAM. Recognizing complex upper extremity activities using 
body worn sensors. PLoS ONE. 2015;10:e0118642.

 113. Seiter J, Derungs A, Schuster-Amft C, Amft O, Troster G. Daily life activity 
routine discovery in hemiparetic rehabilitation patients using topic 
models. Methods Inf Med. 2015;54:248–55.

 114. Lang CE, Bland MD, Bailey RR, Schaefer SY, Birkenmeier RL. Assessment 
of upper extremity impairment, function, and activity after stroke: 
foundations for clinical decision making. J Hand Ther. 2013;26:104–15.

 115. Braito I, Maselli M, Sgandurra G, Inguaggiato E, Beani E, Cecchi F, et al. 
Assessment of upper limb use in children with typical development 
and neurodevelopmental disorders by inertial sensors: a systematic 
review. J Neuroeng Rehabil. 2018;15:94.

 116. Tong C, Tailor SA, Lane ND. Are Accelerometers for Activity Recognition 
a Dead-end? ArXiv200108111 Cs. 2020.

 117. Leuenberger K, Gassert R. Low-power sensor module for long-
term activity monitoring. Conf Proc IEEE Eng Med Biol Soc. 
2011;2011:2237–41.

 118. National Academies of Sciences, Engineering, and Medicine. Reproduc-
ibility and replicability in science. Washington, DC: National Academies 
Press; 2019.

 119. Vienne A, Barrois RP, Buffat S, Ricard D, Vidal P-P. Inertial sensors to assess 
gait quality in patients with neurological disorders: a systematic review 
of technical and analytical challenges. Front Psychol. 2017;8:817.

 120. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS 
Med. 2009;6:6.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Methods
	Results
	Overview
	Sensor technologies
	Sensor placement
	Study populations
	Study designs
	Outcome measures and underlying algorithms

	Maintaining and changing a body position
	Activities and outcome measures
	Description of algorithms and sensor placement
	Detection of body positions based on sensor orientation 
	Detection of transitions based on trunk inclination 
	Measures to quantify body positions and transitions 


	Walking and moving
	Activities and outcome measures
	Description of algorithms and sensor placement
	Walking bouts and gait parameters 
	Turning 
	Stair climbing 


	Moving around using a wheelchair
	Activities and outcome measures
	Description of algorithms and sensor placement

	Upper extremities
	Activities and outcome measures
	Description of algorithms and sensor placement
	Non-specific hand and arm use 
	Specific hand and arm movements 
	Specific hand and arm activities 



	Discussion
	Conclusions
	Acknowledgements
	References


