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Abstract

Background: In persons post-stroke, diminished ankle joint function can contribute to inadequate gait propulsion.
To target paretic ankle impairments, we developed a neuromechanics-based powered ankle exoskeleton.
Specifically, this exoskeleton supplies plantarflexion assistance that is proportional to the user’s paretic soleus
electromyography (EMG) amplitude only during a phase of gait when the stance limb is subjected to an anteriorly
directed ground reaction force (GRF). The purpose of this feasibility study was to examine the short-term effects of
the powered ankle exoskeleton on the mechanics and energetics of gait.

Methods: Five subjects with stroke walked with a powered ankle exoskeleton on the paretic limb for three
5 minute sessions. We analyzed the peak paretic ankle plantarflexion moment, paretic ankle positive work,
symmetry of GRF propulsion impulse, and net metabolic power.

Results: The exoskeleton increased the paretic plantarflexion moment by 16% during the powered walking trials
relative to unassisted walking condition (p < .05). Despite this enhanced paretic ankle moment, there was no
significant increase in paretic ankle positive work, or changes in any other mechanical variables with the powered
assistance. The exoskeleton assistance appeared to reduce the net metabolic power gradually with each 5 minute
repetition, though no statistical significance was found. In three of the subjects, the paretic soleus activation during
the propulsion phase of stance was reduced during the powered assistance compared to unassisted walking
(35% reduction in the integrated EMG amplitude during the third powered session).

Conclusions: This feasibility study demonstrated that the exoskeleton can enhance paretic ankle moment. Future
studies with greater sample size and prolonged sessions are warranted to evaluate the effects of the powered ankle
exoskeleton on overall gait outcomes in persons post-stroke.
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Background
For individuals post-stroke, their capacity to walk is often
compromised. These individuals, compared to healthy
adults, typically walk with slower self-selected speeds [1],
greater inter-limb asymmetry [2,3] and elevated metabolic
cost [4,5]. While these gait limitations are largely due to
the abnormalities in the paretic limb, a notable contribut-
ing factor may be the impaired functions of the ankle
musculature. The paretic ankle mechanics show impaired
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joint moment and power generation [6-10]. The ankle
joint, in healthy individuals, generate more mechanical en-
ergy than any other muscle groups [11] and play a critical
role in forward propulsion and swing phase initiation [12].
The diminished ankle ‘push-off ’ in individuals post-stroke
may therefore contribute to the decreased walking speeds
[8,13] and inadequate swing phase mechanics [7,10]. Fur-
thermore, impaired ankle mechanics may lead to a series
of compensations elsewhere, including greater reliance on
the non-paretic limb [8,14]. An important goal for re-
habilitation, then, may be to enhance paretic ankle func-
tion to maximize locomotor recovery.
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Contemporary post-stroke rehabilitation approaches
may include body weight support training to offload a
portion of the body’s weight [15,16], split-belt treadmill
training [17,18] and sensory feedback presented in a
virtual environment [19-21] to improve symmetry and/
or increase walking speeds. Other approaches may in-
volve assistive robots designed to aid movement of the
lower limb joints (e.g., knee, hip) [22-27]. While these
‘global’ interventions are aimed to assist the whole-body
or several lower limb joints, more local interventions
have also improved gait outcomes by targeting the ankle
impairments. Functional electrical stimulation, for exam-
ple, has been applied to the paretic ankle plantarflexors
in attempt to restore propulsion mechanics [28-30].
Such application can increase propulsive ground reaction
forces, increase swing phase knee flexion [29], increase
self-selected walking speed and decrease metabolic cost of
transport [30]. Similarly, interventions via elastic ankle
orthoses can contribute to increased self-selected walking
speed [31] and decreased metabolic cost [32,33].
In parallel with existing ‘ankle-centric’ rehabilitation,

our goal here was to implement a powered ankle exo-
skeleton to enhance paretic limb mechanics. While this
type of device has been applied previously in persons post-
stroke [34], our focus here was to extend this technology
such that the exoskeleton interacts directly with the user’s
volitional control. An electromyography (EMG) con-
trolled exoskeleton, for example, could provide externally-
powered plantarflexion in magnitude proportional to the
user’s soleus activity [35,36]. Due to its user-controlled
interface, this powered exoskeleton may be an enticing
approach to enhance paretic ankle mechanics for post-
stroke rehabilitation.
Prior investigations of EMG controlled ankle exoske-

letons in healthy individuals have revealed valuable in-
sights onto how users interact with the device [35-38].
One study showed that such exoskeleton can increase
total ankle joint power [38], and thus could be viable for
post-stroke rehabilitation. Though, the users of EMG
controlled exoskeletons also tend to preserve an invariant
ankle moment by reducing their soleus muscle activation
[38]. This reduced muscle activity may be counterproduct-
ive when the inherent goal of post-stroke rehabilitation is
to enhance ankle mechanics. But for those with already
weakened ankle muscles due to stroke, it is unclear how
the mechanical assistance will influence user interaction.
Among a multitude of possible adaptations, we envision
one of three possibilities. First, the users could suppress
plantarflexor muscle activity to preserve an invariant total
ankle moment (i.e., similar to healthy individuals, albeit
with reduced ankle moment). Second, the users could pre-
serve the same muscle activation, and the exoskeleton as-
sistance would enhance the total ankle moment. Lastly,
the users could enhance muscle activity during assistance,
and thus amplify the total ankle moment. The specific
adaptations that the users choose could inform the via-
bility of powered exoskeleton for post-stroke rehabilita-
tion. Therefore, overall goal of this feasibility study was
to evaluate the immediate effects of a neuromechanics-
driven powered exoskeleton on post-stroke gait. While
long-term assessment and training were beyond the scope
of this study, we envision that this feasibility study will
guide future work in exoskeleton-assisted rehabilitation.
But before implementing EMG-driven exoskeleton for

post-stroke application, there is one additional factor to
consider. The performance of powered exoskeletons, at
least in healthy individuals, is notably sensitive to the
timing of mechanical actuation [39]. However, the tim-
ing of muscle activation in persons post-stroke could be
affected due to factors like spasticity, weakness, and
altered coordination [40,41]; and thus these abnormal
muscle conditions could complicate the application of
purely EMG-controlled exoskeleton. To this end, we
have developed a powered ankle exoskeleton that inte-
grates both EMG and ground reaction forces to assist
paretic ankle function. Specifically, this exoskeleton pro-
vides mechanical assistance proportional to the plantar-
flexor EMG activity only during a phase of gait when the
stance limb is subjected to an anteriorly directed ground
reaction force. In other words, this exoskeleton retains the
myoelectric controller developed previously [35-37], but
in addition, controls the timing of actuation based on the
onset of propulsion.
With this integrated control algorithm to target pro-

pulsion in the paretic limb, we expected to see improved
gait outcomes in persons post-stroke. In particular, we
hypothesized that the powered ankle exoskeleton would
increase paretic ankle plantarflexion moment and power
output compared to unassisted walking. Due to the ankle’s
role in supplying whole-body propulsion [12] and its pur-
ported importance in facilitating physiologically efficient
walking [42], we also hypothesized that the enhanced par-
etic ankle mechanics would improve propulsion symmetry
and reduce the metabolic cost of walking.

Methods
Proportional Myoelectric Propulsion (PMP) powered
exoskeleton
We fabricated a lightweight ankle exoskeleton for each
individual’s paretic limb (Figure 1). The exoskeleton con-
sisted of a custom-fitted carbon fiber shank and foot
components hinged at an ankle joint (total device mass =
532.3 ± 72.0 g). An artificial pneumatic muscle (length =
26.0 ± 6.0 cm) was attached along the posterior shank
(moment arm = 13.4 ± 1.5 cm) to provide a plantarflexion
moment about the ankle. The magnitude and timing of
the exoskeleton assistance was based on the subjects’ par-
etic soleus EMG signal (Biometrics, Newport, UK) and



Figure 1 Illustration of the proportional myoelectric propulsion
(PMP) powered exoskeleton. The soleus electromyography (EMG)
and anterior-posterior ground reaction force (GRF) from an
instrumented treadmill were collected in real-time to control the
magnitude and timing of exoskeleton actuation. The proportional
myoelectric propulsion (PMP) controller supplies plantarflexion
moment proportional to the soleus EMG activity only during a phase
of gait when the stance limb is subjected to an anteriorly directed
ground reaction force. The red highlighted region denotes the
duration in which the exoskeleton is activated.
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ground reaction force (GRF) data from an instrumented
treadmill (Bertec, OH, USA), collected and processed in
real-time. For the real-time processing (data sampled at
960 Hz), the raw EMG signal was high-pass filtered with a
2nd order dual-pass Butterworth filter (50 Hz cutoff
frequency), full-wave rectified, and low-pass filtered with a
2nd order dual-pass Butterworth filter (10 Hz cutoff
frequency), while no filtering was applied to the GRF data.
We implemented a proportional myoelectric propulsion
(PMP) control algorithm, in which the exoskeleton sup-
plied plantarflexion moment proportional to the paretic
soleus EMG signal only during the phase of stance when
the anterior-posterior GRF was greater than 0 (Figure 1).
In essence, the PMP controller attempts to enhance the
functions of the ankle plantarflexors during the propulsive
phase of gait, under the user’s volitional action (Figure 2
and Additional file 1: Movie).

Experimental protocol
We recruited 5 subjects with stroke (subject characteris-
tics are listed in Table 1). Each subject walked on an
instrumented treadmill in the following order: (1) walk-
ing without an exoskeleton (i.e., NoEXO), (2) walking
with an exoskeleton without powered assistance (i.e.,
UnPOW), and (3) walking with powered exoskeleton
assistance (i.e., POW). The exoskeleton was worn only on
the paretic limb. Each condition lasted for 5 minutes (with
5 minutes of rest in between), and each subjected repeated
the POW condition three times for a total of 15 minutes.
We set the treadmill speed to approximately 75% of the
subjects’ preferred speed. This preferred speed was
determined by instructing the subjects to ‘walk at your
comfortable speed’ over a straight walkway for 10 meters
(averaged across three repetitions). We set the gain and
threshold of the proportional myoelectric component of
the PMP controller during the UnPOW condition such
that the control signal saturated for at least three consecu-
tive steps. Once the gain and threshold were determined,
these parameters remained constant during the three
POW conditions.
For all conditions, the subjects wore an overhead

safety harness, but the harness itself was not intended to
supply body weight support. All subjects were discour-
aged from using the handrails mounted bilaterally on
the treadmill, but we note that two of the subjects were
not able to complete the protocol without support from
the handrails. During the NoEXO condition, subjects
walked with their own shoes. One subject (S4, see Table 1)
wore his clinically-prescribed ankle-foot orthosis (Allard
ToeOFF) on his paretic limb during the NoEXO condi-
tion. No other subjects in this study had a prescribed
ankle-foot orthosis.

Data analysis
We used an eight-camera motion analysis system (Vicon,
Oxford, UK) to capture kinematic data (120 Hz), and the
instrumented treadmill to collect kinetic data (960 Hz)
during walking trials. We used a 6 degree-of-freedom mar-
ker set [43] to track lower extremity motion. To analyze
the forces generated by the exoskeleton, we mounted a
compression load cell (Omegadyne, OH, USA) in-series
with the pneumatic muscle (collected at 960 Hz). We
applied a 2nd order dual-pass low-pass Butterworth filter
(6 Hz for kinematic data, and 25 Hz for kinetic data). For
all GRF, joint mechanics, and EMG outcome variables, we
analyzed the last minute (at least 10 steps of data) of each
walking condition.
All GRF variables were analyzed by normalizing to

body weight (BW). We computed the time integral of
anterior-posterior GRF to quantify the braking and pro-
pulsion impulse (BW*sec). Percent paretic propulsion
was quantified as the ratio of the paretic propulsion im-
pulse divided by the sum of the paretic and non-paretic
propulsion impulses [44].
Sagittal plane joint angle, moment (Nm kg−1), and power

(W kg−1) at the ankle, knee, and hip were computed using
Visual3D software (C-Motion, Germantown, MD). Positive
and negative mechanical work (J kg−1) performed by the
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Figure 2 Paretic limb data (three steps) from a representative subject with and without the powered exoskeleton. During the powered
walking (POWx3), the exoskeleton control signal was generated with magnitude proportional to the paretic soleus EMG (blue) only when the
anterior-posterior GRF (black) was greater than 0 (region highlighted in red). Positive GRF denotes anterior (i.e., propulsive) force. During this
phase, the exoskeleton supplied plantarflexion moment during late stance (red), contributing to the increased total ankle moment (gray) relative
to the NoEXO condition. We note that there is a delay between the onset of the control signal and the onset of the exoskeleton moment (lag of
approximately 83 ms).

Table 1 Subject characteristics

Subject Age Height (m) Body mass (kg) Paretic
limb (L or R)

Months
since stroke

Preferred
speed (m/s)

Treadmill
speed (m/s)

S1 57 1.70 99.9 L 357 1.09 0.80

S2 51 1.72 79.3 L 53 0.72 0.50

S3 82 1.78 98.0 R 134 0.57 0.40

*S4 69 1.86 89.6 L 212 0.85 0.60

S5 47 1.91 126.0 R 102 0.98 0.70

Average 61.2 1.79 98.6 171.6 0.84 0.60

Std 14.3 0.09 17.4 118.7 0.21 0.16

*S4 wore his prescribed ankle-foot orthosis (Allard ToeOFF) during the NoEXO condition.
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individual joints were computed by integrating the posi-
tive and negative portions of the joint power data with
respect to time, respectively. During the UnPOW and
POW conditions, the contribution of exoskeleton to the
total ankle moment was quantified by the product of
the forces recorded from the pneumatic muscle and the
exoskeleton moment arm. Likewise, the contribution of
exoskeleton to the total ankle power was obtained by
the product of the exoskeleton moment and the ankle
joint angular velocity.
We collected surface EMG data of soleus (SOL) and

tibialis anterior (TA) muscles from both paretic and non-
paretic limbs (collected at 960 Hz). The EMG signals were
high-pass filtered with 2nd order dual-pass Butterworth
filter (20 Hz), rectified, and low-pass filtered with a 2nd

order dual-pass Butterworth filter (10 Hz) to create a
linear enveloped EMG. We then computed the time in-
tegral of the processed EMG signal during the propulsion
phase of stance. The integrated EMG (iEMG) signal for
each muscle across all conditions was normalized to its
magnitude during the NoEXO condition.
A portable metabolic system (Oxycon Mobile, Viasys

Healthcare, CA) was used to record rates of oxygen con-
sumption and carbon dioxide production during the
walking trials. Before the walking trials, a 5 minute quiet
standing trial was collected to estimate rate of metabolic
energy consumption during standing. For standing and
all walking trials, metabolic data from the last 2 minutes
were averaged, and rates of oxygen consumption and
carbon dioxide production were converted to metabolic
power using equations Brockway’s equation [45]. Net
metabolic power (W kg−1) during the walking trials was
estimated by subtracting metabolic power during stand-
ing from metabolic power during walking [46].

Statistics
We performed statistical tests on the four dependent vari-
ables that were related to our hypotheses: (1) peak paretic
ankle plantarflexion moment, (2) paretic ankle positive
work, (3) percent paretic propulsion, and (4) net metabolic
power. One-factor (5 levels: NoEXO, UnPOW, POWx1,
POWx2, and POWx3) repeated measures ANOVA was
used to test for differences across walking conditions for
each of the four variables. F-ratios for main effect were
considered significant for p < 0.05. If a significant main ef-
fect was found, paired t-tests were used to make pairwise
comparisons across the different conditions. Due to the
exploratory nature of this feasibility study and limited
sample size, we opted not to perform any adjustments for
multiple comparisons to control for Type I errors. Add-
itionally, due to technical difficulties with two subjects’
EMG data, we only reported the means and standard devi-
ations across each condition from three subjects. For all
other gait-related variables, we reported the means and
standard deviations across each condition as supplemen-
tary data.
Results
The data for paretic ankle joint moment and work, per-
cent paretic propulsion, and net metabolic power were
based on averaged results over 5 subjects, whereas the
data from EMG were averaged results over 3 subjects.
Data from all other gait-related variables were included
as supplementary data (averaged results over 5 subjects)
including ground reaction force and spatiotemporal data
(Additional file 2: Table S1), time-series of knee joint
mechanics (Additional file 3: Figure S1), time-series of
hip joint mechanics (Additional file 4: Figure S2), and
summary of joint work (Additional file 5: Table S2).
Paretic ankle joint mechanics
While walking with the exoskeleton (powered or unpow-
ered), the subjects’ paretic ankle was in a more dorsiflexed
posture throughout the gait cycle relative to NoEXO
(Figure 3). During the POW trials, the exoskeleton re-
mained inactive for the first half of stance, and provided
mechanical assistance during late stance. Specifically, the
exoskeleton supplied plantarflexion moment of −0.25 ±
0.08 Nm kg−1during POWx1, −0.22 ± 0.05 Nm kg−1during
POWx2, and −0.24 ± 0.05 Nm kg−1during POWx3, or ap-
proximately 26%, 23%, and 25% of the peak paretic ankle
moment during NoEXO, respectively. The exoskeleton
initially performed negative work (−0.012 ± 0.018 J kg−1

during POWx1, −0.009 ± 0.008 J kg−1during POWx2,
and −0.007 ± 0.005 J kg−1during POWx3), followed by
a period of positive work (0.023 ± 0.018 J kg−1during
POWx1, 0.018 ± 0.010 J kg−1during POWx2, and 0.020 ±
0.012 J kg−1during POWx3). The exoskeleton had a sig-
nificant effect on the peak total ankle plantarflexion
moment (p = 0.02). The peak ankle moment from all
three powered conditions (−1.11 ± 0.32 Nm kg−1during
POWx1, −1.12 ± 0.29 Nm kg−1during POWx2, and −1.11 ±
0.31 Nm kg−1during POWx3) were approximately 16%
greater that of NoEXO (−0.96 ± 0.32 Nm kg−1). Despite
the increase in peak paretic ankle moment, there was
no significant effect of exoskeleton on ankle positive
work (p =0.58) (Figure 4).
Percent paretic propulsion
During the NoEXO condition, the percent paretic pro-
pulsion was 27.3 ± 11.7%, indicating that the subjects re-
lied more on the non-paretic limb for propulsion (50%
indicates perfect symmetry) (Figure 5). The exoskeleton
did not affect the percent paretic propulsion, as no sig-
nificant differences were detected across the conditions
(p = 0.81).
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in dotted blue), and contributed to the increased total paretic moment (16% increase during POW relative to NoEXO, p < 0.05).
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Net metabolic power
During the NoEXO condition, subjects expended meta-
bolic energy at a rate of 2.52 ± 0.46 W kg-1 (Figure 6).
The net metabolic power increased by 14.5% (2.87 ±
0.54 W kg-1) during UnPOW. With the addition of the
powered assistance, the net metabolic power appeared
to successively decrease with each repetition, where the
net metabolic power were 2.97 ± 0.60 W kg-1 (POWx1),
2.80 ± 0.51 W kg-1 in POWx2), and 2.67 ± 0.47 W kg-1

(POWx3). However, the differences across all conditions
were not statistically significant (p = 0.21).

Electromyography
As only three subjects’ EMG data were analyzed, no statis-
tical analyses were performed for these variables. Within
the three subjects, the exoskeleton appeared to affect the
paretic SOL muscle activation during the propulsion
phase of stance (Figure 7). The magnitude of iEMG during
UnPOW decreased by 14% relative to NoEXO. With
each POW repetition, the iEMG decreased further (24%
lower during POWx1, 31% lower during POWx2, and
35% lower during POWx3). The iEMG from all other
muscles (paretic TA, non-paretic SOL and TA) while
wearing the exoskeleton did not change by more than
12% relative to NoEXO.

Discussion
In recent years, ankle-based and/or propulsion-targeted
interventions have become a common theme in post-
stroke rehabilitation [28-30,32-34]. To our knowledge,
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this is the first study involving persons post-stroke to
apply a neuromechanics (EMG and GRF) driven ankle
exoskeleton. To assess its viability as a gait intervention
tool, we conducted a feasibility study to examine the
short-term effects of the exoskeleton on the mechanics
and whole-body energetics of walking. While we em-
phasize that the results are preliminary with a limited
sample size (n = 5), we envision that the findings will in-
form future work in exoskeleton-assisted rehabilitation.

Enhanced paretic ankle moment via exoskeleton assistance
With our exoskeleton’s inherent strategy to target the
propulsion phase of the paretic limb, we hypothesized
that the exoskeleton would enhance paretic ankle me-
chanics (moment and power) relative to unassisted walk-
ing. Indeed, we found that the exoskeleton increased the
total paretic ankle plantarflexion moment by 16%. The
magnitude of the moment generated by our exoskeleton
is similar to previous investigations of powered exoskele-
tons in healthy individuals [39], as well as studies involv-
ing persons post-stroke [34] and persons with incomplete
spinal cord injury [47]. Due to the ankle’s role in supplying
stance limb propulsion [12] and its purported importance
in facilitating physiologically efficient walking [42], we had
further hypothesized that the enhanced ankle moment
during exoskeleton assistance would lead to improved
propulsion symmetry and reduced metabolic cost of walk-
ing. Despite the enhanced paretic ankle moment, there
were no statistically significant effects of the exoskeleton
on any other gait-related outcomes (including paretic
ankle positive work, percent paretic propulsion, and net
metabolic power). While the lack of statistically significant
effects may be largely attributed to the low sample size,
other factors contributing to the results may include sub-
optimal timing of exoskeleton actuation and inadequate
adaptation during exoskeleton use.
A previous study involving healthy individuals has sug-

gested that the magnitude of exoskeleton power and its
metabolic benefit are sensitive to the timing of actuation
[39]. The effect of exoskeleton timing on the ankle joint
power generation may be conceptualized in the follo-
wing way. If the onset of actuation is too early, the pneu-
matic artificial muscle (which is designed exclusively for
generating concentric plantarflexion power) may impede
the shank’s forward progression over the foot by trigger-
ing premature plantarflexion. If the onset is too late, in
contrast, the exoskeleton may have limited time for force
production to generate adequate power [39]. It is cur-
rently unclear, however, how the exoskeleton controller
characteristics (timing and magnitude of assistance)
should be individualized for a person with propulsion
deficits post-stroke. Factors like increased passive mus-
cle stiffness [48-50], spasticity and increased agonist–
antagonist coactivation [40] may all influence the shank’s
forward progression during stance, further complicating
the application of exoskeleton-assisted interventions. In
this study, we initiated the timing of actuation at the onset
of propulsive ground reaction forces on the paretic limb,
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but we recognize that this strategy may not be optimal.
In future studies, our goal is to conduct controlled ex-
periments using a versatile exoskeleton test-bed that can
readily adapt the magnitude and timing of actuation
[51,52] to guide future patient-specific rehabilitation with
ankle exoskeletons.
We also reiterate that our protocol only applied 15

minutes of powered walking, and that the subjects may
not have received ample accommodation time to reach
a steady-state interaction with the exoskeleton. When
healthy individuals walk with EMG-controlled exoske-
letons, the users adapt and learn to delay their soleus
activation such that the exoskeleton produces exclu-
sively positive work [36]. But this adaptation required
approximately 30 minutes of familiarization (compared
to 15 minutes in our study). Furthermore, the amount
of familiarization required for metabolic benefit appears
to be influenced by the exoskeleton control algorithms
[53]. For example, triggering an actuator at a chosen
percentage of stride required approximately 20 minutes
of familiarization for metabolic reduction beyond un-
assisted walking [54], whereas a proportional EMG-based
controller required approximately 90 minutes [37]. It is
unclear how much familiarization is required for individ-
uals post-stroke using our integrated EMG and GRF con-
trolled exoskeletons. Thus, we feel that a follow-up study
with multiple repeated sessions is warranted to better
evaluate the long-term effects of our intervention.
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Viability of neuromechanics-based exoskeleton for
post-stroke rehabilitation
While intent-based control algorithms have become pro-
minent in the application of exoskeleton and rehabilita-
tion devices [22,55,56] there is a potential drawback of
such approach for post-stroke rehabilitation. In healthy
individuals, EMG-controlled exoskeleton has been shown
to promote reduced plantarflexor activation, possibly as
an inherent strategy to preserve a normal ankle moment
profile [38] or ankle angle trajectory [36]. Although our
exoskeleton was able to increase paretic ankle moment in
persons post-stroke, three of the subjects had a tendency
to reduce paretic soleus activity during use. This outcome
may be counterproductive when the goal of the interven-
tion is to enhance ankle moment and power generation.
The reduced muscular activity may also limit the potential
benefit of this particular exoskeleton for long-term re-
habilitation, as proactive user participation has been iden-
tified as a key factor in improving locomotor outcomes
following training [57,58]. While predicting long-term
outcomes based on our preliminary investigation may
be difficult, we believe that a few modifications to our
powered exoskeleton intervention are warranted in fu-
ture studies.
To more effectively engage user interaction with the

exoskeleton, one potential approach may be to integrate
real-time biofeedback. In this study, we gave no formal
instructions to educate the users in how to interact with
the exoskeleton, and consequently may have undermined
the potential benefits of the device. Thus, future modifica-
tions may include adding real-time feedback to increase
EMG activity [59,60] or propulsive ground reaction forces
[61], or more complex incentive/reward based control
schemes [52]. These efforts altogether should promote a
more proactive post-stroke rehabilitation to accentuate
the viability of exoskeleton interventions.
Another consideration is increasing the demand of

walking during the exoskeleton assistance. An important
goal for exoskeleton intervention, or any assistive tech-
nology for that matter, may be to help patients achieve
outcomes that are otherwise difficult under their own
strengths. In this study, we constrained the treadmill
speed to a fixed percentage of the subjects’ comfortable
speed (i.e., the speed at which they can walk without
assistance). We opted to fix the treadmill speed, since
myriad mechanical variables (ground reaction force,
joint moment and power) are sensitive to walking speed
[11,62-64], thereby enabling a direct assessment of the
effects of powered exoskeleton on gait performance.
Though in hind sight, constraining the treadmill speed
may have limited the effects of the intervention. One
plausible explanation for the statistically non-significant
changes to the gait outcomes (with exception of paretic
ankle joint moment) was that the subjects were already
able to walk at the particular speed, and therefore did not
need additional assistance from the exoskeleton. Other
ankle-based interventions like functional electrical stimu-
lation and elastic ankle orthoses have shown the ability to
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enable faster walking in persons post-stroke [30,32,33];
and thus we feel that the effects of our propulsion-
targeting exoskeleton could be magnified if we allowed
the subjects to walk faster during use.
While our neuromechanics-based powered exoskel-

eton in its current form may not be a viable solution as
a portable autonomous walking aid, future work could
address this issue. Although interventions like functional
electrical stimulation and elastic ankle orthoses already
exist [29,30,33,65,66], powered exoskeleton intervention
could eventually have several advantages. In functional
electrical stimulation, the assistance is bounded by the
underlying physiological properties of the muscles it acts
upon, whereas powered exoskeletons can adapt the mag-
nitude and timing of assistance with various control
algorithms and actuator property. Elastic ankle orthoses
can only respond passively to the loads exerted by the
user, whereas the neuromechanics-based exoskeletons
can offer volitional control. But to realize its potential
as a permanent walking aid, our current exoskeletons
may require modifications and future investigations.
First, the PMP control algorithm may not be ideal for

portability due to the requirements of the ground reac-
tion force. An alternative solution may be using a foot
switch to identify the propulsion phase of stance [29].
Another important consideration is that our current exo-
skeleton only assists in plantarflexion and provides no as-
sistance in dorsiflexion. As foot drop (inability to clear the
foot during swing) is a common impairment in persons
post-stroke [67], it is unclear whether this particular
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exoskeleton is suitable for persons with inadequate toe
clearance. In one of our subjects, he wore a prescribed
ankle-foot orthosis during the NoEXO condition (subject
S4). While the powered exoskeleton appeared to increase
paretic ankle moment and positive work over his pre-
scribed orthosis, the powered assistance also increased his
ankle plantarflexion angle at toe-off (Additional file 6:
Figure S3). The effects of such ankle mechanics on toe
clearance is unclear, and a recent study has shown that is-
sues related to paretic limb advancement are also affected
by the knee and hip joints [68]. Future work should thus
evaluate the influence of exoskeleton-assisted plantarflex-
ion on paretic limb advancement.

Limitations
Limitations of this study are small sample size and lim-
ited familiarization time with the powered exoskeleton
intervention. The orders of the experimental conditions
were not randomized. In addition, two of the subjects
could not complete the protocol without the use of
handrail support. Though, by analyzing the ground reac-
tion force data, we determined that the average magni-
tude of handrail support in those two subjects were less
than 3% body weight (in the vertical direction) and less
than 0.4% body weight (in the anterior-posterior direc-
tions) across all experimental conditions. Thus it is un-
likely that the handrail support significantly affected
the overall outcomes of this study. Furthermore, we
custom fabricated an exoskeleton for each individual,
and the length of the pneumatic muscle varied depend-
ing on the persons’ anatomy (e.g., shank length). The
amount of force applied by the pneumatic muscles is
largely dependent on its lengths [69], and thus, we
could not standardize the magnitude of exoskeleton as-
sistance across all subjects.

Conclusions
This feasibility study showed that our neuromechanic-
based powered exoskeleton enhanced paretic ankle mo-
ment relative to unassisted walking. Future studies with
greater sample size and prolonged sessions are war-
ranted to better evaluate the effects of the exoskeleton
on overall gait outcomes. This study will guide future
work in exoskeleton-assisted intervention for establish-
ing its viability for post-stroke rehabilitation.

Additional files

Additional file 1: Movie. A subject walking with the powered ankle
exoskeleton at 0.70 m/s. When the power turned ‘on’, the exoskeleton
assisted paretic (right) ankle plantarflexion during the propulsive phase
of stance.

Additional file 2: Table S1. Summary of ground reaction force (GRF)
and spatiotemporal data.
Additional file 3: Figure S1. Knee joint mechanics (averaged over 5
subjects). Sagittal plane data (time-normalized to 101 data points across
gait cycle) of paretic and non-paretic knee mechanics (angle, moment,
power) were analyzed from the last minute of each condition (NoEXO –
black; UnPOW – red; POWx3 – blue). For clarity, data from POWx1 and
POWx2 are not shown here. The two vertical lines define the propulsion
phase of stance (i.e., onset of propulsion and toe-off).

Additional file 4: Figure S2. Hip joint mechanics (averaged over 5
subjects). Sagittal plane data (time-normalized to 101 data points across
gait cycle) of paretic and non-paretic hip mechanics (angle, moment,
power) were analyzed from the last minute of each condition (NoEXO –
black; UnPOW – red; POWx3 – blue). For clarity, data from POWx1 and
POWx2 are not shown here. The two vertical lines define the propulsion
phase of stance (i.e., onset of propulsion and toe-off).

Additional file 5: Table S2. Summary of joint mechanics data.

Additional file 6: Figure S3. Comparison of powered ankle
exoskeleton versus prescribed ankle-foot orthosis from a single subject.
While walking with the powered ankle exoskeleton (blue), there was
greater paretic ankle range of motion (in dorsiflexion and plantarflexion)
compared to his prescribed ankle-foot orthosis (black). In addition, the
powered ankle exoskeleton showed 19% greater peak plantarflexion
moment, 95% greater peak positive power, and 154% greater positive
work compared to his prescribed AFO. The contributions of the exoskeleton
to paretic ankle moment and power are also shown (dotted blue).
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