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Abstract

Background: Cycling has been used in the rehabilitation of individuals with both chronic and post-surgical
conditions. Among the challenges with implementing bicycling for rehabilitation is the recruitment of both
extremities, in particular when one is weaker or less coordinated. Feedback embedded in virtual reality (VR)
augmented cycling may serve to address the requirement for efficacious cycling; specifically recruitment of both
extremities and exercising at a high intensity.

Methods: In this paper a mechatronic rehabilitation bicycling system with an interactive virtual environment,
called Virtual Reality Augmented Cycling Kit (VRACK), is presented. Novel hardware components embedded with
sensors were implemented on a stationary exercise bicycle to monitor physiological and biomechanical
parameters of participants while immersing them in an augmented reality simulation providing the user with
visual, auditory and haptic feedback. This modular and adaptable system attaches to commercially-available
stationary bicycle systems and interfaces with a personal computer for simulation and data acquisition processes.
The complete bicycle system includes: a) handle bars based on hydraulic pressure sensors; b) pedals that monitor pedal
kinematics with an inertial measurement unit (IMU) and forces on the pedals while providing vibratory feedback; c) off
the shelf electronics to monitor heart rate and d) customized software for rehabilitation. Bench testing for the handle
and pedal systems is presented for calibration of the sensors detecting force and angle.

Results: The modular mechatronic kit for exercise bicycles was tested in bench testing and human tests. Bench tests
performed on the sensorized handle bars and the instrumented pedals validated the measurement accuracy of these
components. Rider tests with the VRACK system focused on the pedal system and successfully monitored kinetic and
kinematic parameters of the rider's lower extremities.

Conclusions: The VRACK system, a virtual reality mechatronic bicycle rehabilitation modular system was designed to
convert most bicycles in virtual reality (VR) cycles. Preliminary testing of the augmented reality bicycle system was
successful in demonstrating that a modular mechatronic kit can monitor and record kinetic and kinematic parameters
of several riders.
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Background

Cycling has been used in the rehabilitation of individuals
with both chronic conditions such as stroke [1,2], multiple
sclerosis (MS) [3] and chronic obstructive pulmonary dis-
ease [4] as well as post-surgical populations such as heart
[5], hip [6] and knee surgery. The proposed and partially
documented benefits of cycling are many and include im-
proved aerobic fitness [5,7], increased muscle strength
[1,8,9] and even transfer to other activities such as walking
[7,8]. Cycling has been performed in isolation, or in com-
bination with electrical stimulation [1,7,8], and augmented
with virtual reality [10].

A classic presentation for individuals with both chronic
and post-surgical conditions is lower limb asymmetries in
strength, coordination and functional use. These asymmet-
ries have been documented for individuals with MS [11]
and unilateral total hip replacement [12]. Asymmetries have
also been identified in stair climbing for individuals with
osteoarthritis (OA) of the knee that are asymptomatic
[13]. Furthermore, when individuals with motor control
asymmetries bicycle for rehabilitation they do so with an
asymmetrical pattern. This has been shown for various
populations such as individuals with anterior cruciate liga-
ment deficiency [14] as well as individual post-stroke [15].
These difficulties are in part reversed when cycling is
coupled with functional electrical stimulation (FES). How-
ever, provision of FES is not always possible. Therefore,
among the challenges with implementing bicycling for re-
habilitation is the recruitment of both extremities, in par-
ticular when one is weaker or less coordinated.

Feedback in the form of virtual reality augmented cyc-
ling may serve to address the requirement for efficacious
cycling; specifically recruitment of both extremities. Bicyc-
ling systems interfaced with virtual reality augmentation
are few. They have been used to improve sitting balance
and symmetry [16] and assessed for their psychological
benefits to the riders [10]. A bicycling system augmented
by virtual reality has not been used however to promote
limb symmetry.

Innovations in bicycle hardware have facilitated a more
realistic cycling experience by increasing the range of mo-
tion of the stationary bicycle or handles [17-22]. Mechan-
ical linkages and dampers allow the handles and bike
frame to lean in the coronal and transverse planes to
simulate uneven rocky terrain. Developments to address
interfacing existing exercise equipment with a computer
or electronic device to either translate the rider’s actions
as an all-purpose controller or specifically copy their mo-
tions into a virtual environment using selected gains have
been reported in [23-25]. Heart rate as a surrogate for the
rider’s level of exertion has been used in isolation to con-
trol the difficulty of a game interfaced with the bicycle
[26]. The interfacing of a Virtual Environment (VE) with
bicycle however, has not been approached from a multi-
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modal perspective where physiological and biomechanical
measurements are combined and applied to impaired
participants.

Instrumented bicycle pedals have been used in evaluat-
ing kinetic/kinematic capabilities for subjects with both
healthy and plegic lower extremities [27-31]. Experimental
setups for pedal force sensing have involved a variety of
strain-gauge based designs [32] and piezoelectric elements
[30,33]. Using an inertial measurement unit (IMU) for de-
tecting pedal angle has not been used before in a clinical
setting for stroke rehabilitation. In stationary bicycle
pedals the most frequent angle detection methods have
been mechanical [34] or optical-encoder based [20,27]. An
IMU requires no hardware linkage connections which
means decreased mechanical complexity and likelihood of
component failing.

Adding games to stationary bikes has been used to cre-
ate several virtual reality cycling systems [17,18]. These
systems were designed for fitness of active individuals, ra-
ther than rehabilitation of fitness and motor control defi-
cits of individuals with disabilities. Representative existing
systems are prohibitively expensive for a rehabilitation
population and provide insufficient feedback to the user.
Those systems with proprietary software have the poten-
tial to transmit exercise information to the screen and to
store information, while others can only drive existing
games, controlling only speed or direction. While these
systems can perform well for healthy individuals, most of
them are too expensive for small clinics and homes.

Although there has been extensive design evolution on
bike pedal instrumentation, there has been limited research
on incorporating handle bar sensors alongside the pedal
sensors for assessing the gripping forces. Furthermore,
there are no sensorized exercise bicycle systems that are
modular and have the capability of using physiological
(heart rate) and biomechanical (kinetics and kinematics) in-
puts to drive a virtual environment while at the same time
collecting performance data. Evaluation of the current
commercially comparable devices necessitates a low cost,
state of the art system with diverse measurement func-
tionality, immersion, and adaptability to any current sta-
tionary bicycle.

In this paper the Virtual Reality Augmented Cycling Kit
(VRACK), a virtual reality mechatronic bicycle rehabilita-
tion system is presented. VRACK was designed as a modu-
lar system that can convert most bicycles into virtual reality
(VR) cycles. Novel hardware components embedded with
sensors were implemented on a stationary exercise bicycle
to integrate physiological and biomechanical parameters of
participants immersed in a virtual environment (VE)
providing the user with visual, auditory and haptic feed-
back. This modular and adaptable system attaches to
commercially-available stationary bicycle systems and
interfaces with a personal computer for simulation and
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data acquisition processes. Among the attributes of the
VRACK is bike navigation task in which force transduc-
ers in the pedals are linked to the verticality of the rider,
specifically designed to promote symmetry. In addition
heart rate monitoring and feedback are used to promote
exercise intensity suitable for health and fitness.

System overview

The virtual reality augmented cycling kit (VRACK), shown
in Figure 1, consists of novel hardware components em-
bedded with sensors that are used to enhance the use of a
typical stationary exercise bicycle. Its modular sensor sys-
tem has been mounted to a standard exercise bicycle as
seen in Figure 1. The complete instrumentation includes
two sensorized handlebar modules, two instrumented pedal
modules, a heart rate monitoring system, and additional
electronics for signal conditioning, power, and connection
to a laptop via USB and an interactive virtual environment
designed for rehabilitation. The parameters monitored by
these systems are communicated to a practitioner’s inter-
face to customize the therapeutic intervention and monitor
quantitative performance of each parameter.

In the virtual environment, a pace rider is displayed as a
visual target to motivate the patient. The patient is
instructed to catch the pace rider, who rides at the patient’s
target heart rate (HR). Previous systems have not used this
dynamic velocity tool for HR and used either fixed HR to
induce a level of patient exertion or HR scaling to level the
playing field between human players of different fitness
level [35]. The REO7L Wireless Receiver Module and T31
coded elastic chestband (Polar Electro Inc., Lake Success,
NY, USA) was selected for HR measurement. The chest-
band is worn during exercise with the transmitter in skin

Figure 1 Bicycle system complete overview: A: handlebar module;
B: heart rate monitor; C, D: pedal modules; E: practitioner interface;
F: virtual environment. Copyright Rivers and Mechatronics Labs.
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contact just below the center of the sternum, and outputs a
pulse for each heart beat.

Instrumented handlebar module

Riders may have motor control and sensory deficits, which
impact their ability to comfortably grasp the bicycle handle-
bar. Combined with the range of hand anthropometries this
can be challenging for designs that use discrete points or
even dense arrays of force sensing elements. The handle
system in Figure 2 is a novel type of hydraulic dynamom-
eter, which measures applied force to control dynamic mo-
tion of the rider in the virtual environment. This module
has two sensing surfaces on each hand to provide informa-
tion to the practitioner virtual interface (V1) of which hand
and which side of that hand is applying a greater force. This
avoids the convolution in determining whether the affected
side is exercising or is being overpowered by the unaffected
side, as is the case with some previous work which com-
bines all of these variables into a single net torque measure-
ment about the front fork. The handle housing was
designed with a diameter to provide the greatest ergonomic
comfort for grasping whilst allowing the user to comfort-
ably maximize their isokinetic strength [36-38].

The surfaces contacting the tubing are designed after a
simply supported beam where the sum of the support re-
action forces equals the loads from the hand as the tubing
compression forces. This tubing configuration is designed
to keep the paddle contacting the hand self-balancing
since it is supported by two sections of the same chamber.
This way a force applied at any location between the tube
sections is distributed evenly across the entire chamber
and transmitted to the hydraulic pressure sensor (Model
PX 35, Omega Engineering). The liquid inside the tube is
a medium-density mineral oil which is non-reactive and
stable for ranges of room temperature.

Instrumented pedal module

Asymmetry in pedalling is a frequent presentation fol-
lowing conditions such as a stroke that predominantly
affect one side of the body. It is important to independ-
ently measure each foot to eliminate the unaffected side
overcompensating for the affected side.

The pedal module, shown in Figure 3, is designed to at-
tach to the crankshaft of a bicycle, stationary bicycle. This
system does not require any specialized footwear from the
rider, is adjustable to a range of shoe sizes, and covers
more surface area than conventional cleated pedals to
constrain the foot. Flow Flite 4 snowboard bindings (Flow,
San Clemente, USA) provide attachment to the pedal.
These adjust across the dorsal side of the wearer’s foot
from the base of the internal and middle cuneiform down
to the middle of the metatarsals. Two different sizes of
bindings and ratcheting buckles accommodate two groups
of anthropometric variability.
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Figure 2 Instrumented handlebar: A: top & bottom handle surface on bike frame; B: CAD model compression with paddle lifted; C: View of
functional components; D: physical prototype of handlebar top; E: handle prototype mounted on stationary bicycle; F: Handle in Operation.

Pressure Sensor.

ContactPaddle  pydraulic

Tubing

The forces on the plate are measured by a single-axis
low profile compression load cell (LC302-500, Omega,
Stamford, CT, USA). Four bolt & spring assemblies pro-
vide a collective 50 1b (222.4 N) pre-load compression
on the pedal system to enable the single-axis load cell to
detect tensile forces in the pedal. The resulting offset for
the load cell voltage is zeroed in software. This enables
measurement of tensile force up during pedalling to this
pre-load max, and compressive forces up to 450 Ibs
(2001.7 N).

The pedal tilt of the ankle is monitored by an inertial
measurement unit (IMU), which contains an accelerom-
eter and gyroscope to detect tilt in dorsi and plantarflex-
ion. The raw data from the accelerometers and gyroscope
are collected from the practitioner interface and then ana-
lysed using a Kalman Filter [39,40]. The rate gyroscopes
are used to determine the angular velocity () of the crank
corrected each revolution by the infrared interrupters. In-
frared reflectors (IR) were implemented to control the
drift of the IMU as well as measure the number of rounds
per minute (RPM) of the crank. Every time the crank arm
passes in front of the pedal-mounted sensor, this indicates
that the pedal is perpendicular to the crank which is used
as a reference to zero the drift from the IMU. At the same

time, two small IR sensors are mounted on the body of
the stationary bike, one to face each pedal. These body-
mounted IR posts detect the number of times the crank
passes the top-dead-center position and thus calculate
the RPM.

To provide haptic feedback to the rider’s feet, vibration
elements (Precision Microdrives 310—101, Precision Micro-
drives, London, UK) were implemented in the pedal bind-
ings. Two of these elements were encased and attached to
the inside of the bindings with Velcro so can be relocated
anywhere on the dorsal shoe surface. They are activated
manually to augment sensory input to the foot.

Data acquisition & user interfaces

A LabVIEW Virtual Instrument (VI) was created for the
sensors of the bike system to interface with the Virtual En-
vironment (VE). Signals are acquired using a PCI DAQ
card for hardware timing, this allows for more reliable tim-
ing between the discrete signals being gathered. The
sampling frequency is 500 Hz, with a cut-off frequency of
250 Hz. Low-pass analogue RC filters and digital Chebyshev
filters were used to condition the signals from the pedal
load cells, pedal IMUs, and handlebar pressure sensors.
The communication between the VI and the Virtual Reality
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A: Foot Binding

B: Foot plate

C: IR sensor

D: Force plate

E: Load cell

F: IMU sensor

G: Electronics Cover
H: SVGA Signal Plug
I: Static Block (x2)

J: Mobile Block (x2)

A: Ergonomic foot binding; B: Detachable vibration element; C: Reinforce foot plate
D: Electronics safety enclosure; E: High-flexibility double shielded cable

Figure 3 Instrumented pedal module CAD and cross-sectional view (top); Prototype and prototype in operation (bottom).

J

Software was achieved utilizing the User Datagram Protocol
(UDP). The flow of information throughout the system is
outlined in Figure 4.

Practitioner interface

The Practitioner Interface (PI) displays simultaneously all
measured signals from the sensor modules and allows
complete control over their logging and activation/transla-
tion to the virtual environment for the patient. This ability
to retain selected inputs and ‘autopilot’ the others allows
the patient’s exercise regime to become customized to
focus on key neural and musculoskeletal parameters.
Upper extremity motor function can be trained with just
the handlebars steering through the course, with a fixed
pedal velocity. Focus on lower extremity symmetry retrain-
ing, is achieved by deactivating the handlebars and concen-
trating only on pedal force symmetry. For riders with
impaired upper extremity isokinetic grip strength the gain
of the handlebar signal can be increased. The PI is shown
in Figure 5.

Each handlebar has a single signal displayed on the PI
for the magnitude of the net force, but the near and far
surfaces of each handle are being recorded separately and
summed for the net force. The sign of this magnitude is
the direction indicating towards or away from the rider.
The filler bar is used to adjust the gain of the handlebars

( Computer \
Practitioner Virtual .
. Virtual
Reality |« ;
Environment
Software
Practitioner m
Interface
_| LabVIEW |
Software

 —

Figure 4 Information communication diagram.
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Figure 5 The Practitioner Interface (Pl) allows quantitative viewing of the sensors’ data and complete control to scale & activation for
when they are sent to the Virtual Environment (VE). Signals are grouped for handlebars (A), pedals (B), crank RPM (C), heart rate & vibration

impact in the VR simulation. The scaling operation
takes place after being displayed in the PI and only af-
fects the VE.

Each pedal has its output displayed as a single net
force, with the sign indicating compression or tension.
Patients with lower extremity strength or coordination
asymmetries cannot isolate the performance of the un-
affected side compensating for the affected side. Since
current stationary bikes (and also higher-end systems)
record output power measurements from the flywheel at
the middle of the two bonded crank arms this convo-
lutes the output. Separating pedal force sensing compo-
nents for each foot is the only way to remove this
convolution effect of the unaffected side compensating
for the affected side. The pedal angle is displayed using
two gauges that span from 90° to —90°.

Each heart beat illuminates a light on the PI and heart
rate (beats per minute) is displayed. The vibration mode
can be toggled between automatic and manual (intensity —
frequency controlled by the practitioner individually for
each foot). Locating the vibration elements on the surface
of the rider’s feet allows testing for sensation of the af-
fected vs. unaffected sides.

Virtual environment & sensor mapping
The purpose of the virtual environment (VE) is to engage
the user by providing multi-sensory and performance

feedback as well as shape their motor behavior. The upper
right corner of the simulation displays a map of the virtual
environment, and below it the instantaneous heart rate of
the rider is displayed (Figure 6). The virtual environment
is divided into two regions: the sandy tan path that the
user traverses and the green rough that surrounds it. Data
are sent from the UDP Sub VI of the interface to the VR
simulation to control the virtual rider. The heart rate data
control the speed, the handlebar force data control the
heading, and the pedal kinetics control the tilt of the rider.
Symmetry of the motor behavior is promoted by displaying
a real asymmetry with visual feedback from the rider (tilt-
ing to the weaker side when lower extremity forces are
asymmetrical on the pedals; or errors in steering with
asymmetry of the handle bars). These can be over-ridden
completely by the clinician or tempered by manipulating
the input gain into the VE. The dark muddy patches on
the trail slow down the rider and may be avoided or trig-
ger the rider to pedal harder. Vibration is activated in the
pedals when the rider is off the path and on the green. This
serves as an error signal to correct the cycling path and is
consistent with theories about the role of sensory integra-
tion being enhanced by processing multi-sensory input.

The practitioner also has the flexibility to customize
the VE bike map for course trajectory, path width for
rider error margin, and frequency of obstacles for avoid-
ance. Depending on the exercise regime the balance of
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Figure 6 The virtual rider (in red) must stay with the pace rider (seen ahead on the left figure). Copyrighted by the Rivers Lab.

these elements can focus the patient on a particular mo- Depending on the gear ratio of a real bicycle, the an-
tion or exercise. These initial parameters are set on the  gular velocity of the crank leads to a different linear vel-
VR Simulation Menu before a session begins. Figure 7  ocity of the bicycle. Without a gear transmission in the
shows the range of challenge for the course in terms of  software, a set ratio multiplies the crank velocity. The
width, obstacle avoidance, and road curvature. Path  arc length per time is the multiplication factor for deter-
width can be adjusted in real time. mining linear velocity using Equation 1, where R is the

Physical Action Virtual Environment Mapping

Rider Lean

Bike Turn

Target Heart
Rate

Pedal Vibration

Figure 7 Functions mapped between the avatar in the VE and the physical rider. Copyrighted by the Rivers and Mechatronics Labs.
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crank radius; 0 is the angle change between time mea-
sured; t is the time increment:

Linear Velocity = (R*0)/t (1)

Within the simulation the handlebars control the trajec-
tory of the virtual rider and differential forces from the left
and right handles are subtracted after being acquired in the
practitioner’s interface. The final net force steers the virtual
bicycle through the simulation. The net force from the two
pairs of surfaces will be either a clock-wise or counter clock-
wise moment with respect to the position of the front fork
of the bicycle. Each of the four sensing surfaces is applied a
sign based on the moment it generates. The four individual
values are recorded as well as the net from each handle.

For steering within the virtual environment it is import-
ant to mimic the reactions from a real bicycle closely to
promote user immersion. However, even for a consistent
smooth turn there are some oscillations in the handle tra-
jectory, which could be visually disturbing if not set cor-
rectly in the simulation visuals. This necessitates an
artificial dead zone in the software for the handles to avoid
sudden and erratic motions of the virtual rider. Even
straight, level pedalling regular motion causes slight oscil-
lations in the upper trunk and handlebar trajectory. The
pedalling movement transferred to the arms from the legs
has been shown to induce roughly a 2.5° periodic sway
even in healthy riders for properly fitted handlebars on a
track bicycle [29]. This must be accounted for to deter-
mine the dead zone implemented in the software so that it
does not affect the data collection, only the visual feedback
of the simulation. However this does not have to include
the counter-steering effect (occurring during controlled
turning of a real bicycle or motorcycle) because the torque
experienced prior to the turn is already negligible [41].

The calculations for net handle turning direction and
magnitude are shown in Equations 2, 3, 4 while the
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condition for applying handlebar value to virtual rider is
defined by Equation 5:

[Left Hand Net + Right Hand Net] * [gain selected by practitioner]

= Turn direction and Magnitude

(2)

Left Hand Net = Left Front — Left Back (3)
Right Hand Net = -Right Front + Right Back (4)
|Turn direction and Magnitude| > Dead Zone Value (5)

System integration

The capability of integrating the VRACK system and its
modules in different commercially available exercise bicy-
cles was demonstrated by attaching the handlebar, pedal
and heart rate monitor modules in two different bicycles: a
recumbent and an upright exercise bicycle (SRC 945-120,
Biodex, Shirley, NY; and Precor 842, Precor, Woodinville,
WA) as shown in Figure 8. The attachment procedure for
all types of exercise bicycles is identical. The instrumented
handlebars clamp around the current range of stationary bi-
cycle handlebar diameters using adjustable Velcro fasteners.
The raceway of the instrumented pedals uses a 9/16”
thread, standard for most stationary exercise bicycle pedals
and readily replaces them without specialized tooling. For
the instrumented pedal, non-specialized sports footwear
may be worn for both types of exercise bicycle. The pedal
fit was successfully examined with shoe sizes from 6 to 13
(USA men’s sizes). The performance of the sensorized
handlebar module is the same on both types of exercise
bike, only the mounting orientation changes as a result of
the rider switching to an abducted power grasp when using
a recumbent bike. All electrical connections are modular
fittings which use standard VGA cables.

Mechatronics Labs.

Figure 8 VRACK system implemented successfully on recumbent (left) and upright (right) exercise bicycles. Copyrighted by the Rivers and
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Figure 9 Linear dynamometer system layout with detail at tension load cell interface for dynamic testing of handlebars.

Results

The modular mechatronic kit for exercise bicycles was
tested in bench testing and rider tests. Results from these
tests are described in this section.

Bench tests
Sensorized handlebar dynamic testing
The sensorized handlebars were calibrated first and then
evaluated for dynamic testing using a simple one degree
of freedom device where a linear actuator was applying a
known, controllable force on the handlebar as shown in
Figure 9. The linear dynamometer testbed can apply a static
or dynamic force profile using an electromagnetic actuated
Servotube (XSL-230-18, Copley Controls, MA) to deliver a
compression force to the sensorized unit under testing,
with an off-the shelf tensile load cell (Omega Engineering,
Stamford, CT) in series for measuring applied input force.
The linear actuator was under position or force control de-
pending on the experiments performed. The calibration
was carried out by correlating the input force as recorded
by the load cell against the output of the handlebar sensors.
To validate the calibration procedure of the handlebars
we performed a series of dynamic tests that included vari-
ous periodic force patterns such as sinusoid, square, and

sawtooth with varying amplitudes (between 2 and 30 N)
and frequencies (between 0.4 to 4 Hz). Each dynamic test
lasted 1 minute and the handle was allowed 1 minute be-
tween trials to rest. Sample data series obtained from these
tests are shown in Figure 10. The data collected using the
handlebar sensor matched very well the force curves ob-
tained using the load cell of the test-bed as shown in
Figure 10.

In addition, we performed a manual test to verify the
ability of the handlebar to measure the forces applied by a
human subject. With the handlebar still on the testbed, a
load profile was applied by hand from a healthy adult male
with no previous upper extremity physical deficits. The
manual input was a load applied to the servotube by pull-
ing the tension load cell in series with the hydraulic han-
dle. As shown in Figure 11, the forces measured by the
handlebar sensor match very closely those measured by
the load cell of the testbed.

Pedal static force tests

The Pedal assembly was calibrated and then validated
using static loading conditions for compressive and tensile
force measurement (420 N, 120 N) as shown in Figure 12.
For compression testing the pedal was mounted via a pin

f t a3
[ 1000 2000 3000 4000 5000
Time (ms)

Sinusoida‘l Response Hydraulic Ha,qdlebars at 0.4 Hz

Sinusoidal Response HydraulicHandlebars at 1.6 Hz

Figure 10 Sinusoidal response of handlebars for 0.4 and 1.6 Hz force profiles.
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Figure 11 Handlebar sensor data (in blue) can accurately depict forces applied by a human subject as they match the data obtained
from the testbed'’s load cell (in red).

joint to a crank arm and weights hung underneath, with a
rigid bar contacting the footplate surface. This setup was
important to also assess the impact of the moment bending
on the crank raceway. The load was incrementally in-
creased taking into account the weight of the rigid bar and
chains. For tension the pedal was reversed and the load was

applied to the ventral surface of the bindings just as in ap-
plication of the ‘lifting’ force during the upstroke. Weights
were allowed 30 seconds to settle once loaded, and between
loads the resting voltage was also measured to check for
drift. Results from these calibration tests, shown in
Figure 13, are averaged for 4 loading trials per pedal.

Figure 12 Static loading tension and compression for calibration of instrumented pedals: left and right respectively; A: mounting
conditions identical to stationary bike; B: loading surface (s); C: static loading in line with load cell and foot placement.
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IMU Calibration and validation using a specially
design testbed
A testbed was built for calibrating and validating the pedal
IMU as shown in Figure 14. The test-bed is a two-degree
of freedom structure similar to a universal joint. The IMU
is placed on a platform in the middle of the structure
while each one of the revolute joints is equipped with a
servo motor for applying controllable angular motions at
this joint and a rotary potentiometer for measuring the
joint’s angular position and velocity. An Arduino Duemila-
nove microcontroller (www.arduino.cc) was added to the
assembly to control the servomotors and to collect data
from the IMU and rotary potentiometers.

In calculating the angle of the pedal the signals needed
from the 5 DOF IMU were those from the X and Z

accelerometers and the Y gyroscope. A Kalman filter algo-
rithm used the accelerometer and gyroscope readings to
provide an estimate of the pedal angle based on the method
presented in [40]. Figure 15 shows an example of the IMU
validation tests. The IMU readings/Kalman filter algorithm
produced pedal angles that matched very accurately those
measured independently by the potentiometer on the IMU
test bed.

Rider testing

Characterization of the VRACK instrumentation beyond
bench testing is necessary to validate both the hardware
and the software with individuals riding the bicycle. In
this paper we present data obtained from the instru-
mented pedals when they were manually moved and
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the pedal conditions (right).

Figure 14 Two degree of freedom (DOF) testbed for IMU calibration and validation (left) and IMU testbed in a configuration emulating

with individuals riding the bicycle. In a recent study we
have also validated VE features such as optic flow effects
on riders cycling performance [42].

The focus of the rider experiments presented in this sec-
tion was to validate the data (ie. pedal angle and pedal
forces) obtained using the left and right instrumented
pedals during a cycling session. During these experiments
we concurrently collected kinematic data with both the
VRACK IMU and a Peak Motus motion capture system
and compared them. Kinetic data were collected using the
pedal force sensors and compared with similar data re-
ported in literature.

A six camera Peak Motus motion capture system was
used to record the kinematics at 60 Hz during pedaling
on a recumbent bicycle (Biodex, SRC). Simultaneously the
VRACK system collected the data from the bicycle’s pedal
IMU at 100 Hz using a real-time Labview program as de-
scribed in Figure 4. Data from the Peak were re-sampled
to 100Hz to match the IMU sampling frequency. Data
were synchronized by matching the peak pedal angle with
the first five seconds of the trial. The pedal marker data
from the Peak Motus system were used to measure the
pedal orientation and cycling RPM. The marker data were
processed and gaps were filled using smoothing spline
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40

the potentiometer of the IMU testbed.
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Figure 15 Pedal angle calculated using the IMU measurement and the Kalman filter (line in red) vs. the pedal angle measured using
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function post collection. The orientation of the line joining
the marker in the front and back of the pedal was calcu-
lated to obtain the pedal angle. The data from the VRACK
system were analyzed to extract the pedal orientation and
forces.

Experiment 1 - hand driven pedal motions

The bike pedals were instrumented with three markers
each on the front, middle and back. The middle marker
had an extension so it would not be obscured by the front
and back markers. The experimenter knelt on the left side
of the bike and slid his hand into the right pedal when col-
lecting data for the right pedal. The crank was placed at
top dead center. Data were collected in two separate trials
for each pedal. The pedal was turned manually, clockwise
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three times, and then counter clockwise three times, from
0-90 degrees in one trial and then from 0—45 degrees in a
second trial. The same procedure was repeated for the
other pedal. There was good agreement between the pedal
angles measured by the Peak and the IMU on the VRACK

as shown in Figure 16.

Experiment 2 - riders biking in the VE
Five healthy participants (18—35 years) without any mobil-
ity, functional, or cardiovascular disorders provided their
informed consent and participated in the study. The study
was approved by the Institutional Review Board at the
UMDNJ.

Following an orientation to the protocol, subjects were
seated on the bike and positioned with 50 degrees of knee
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Figure 16 Experiment 1 - Hand driven pedal motions - Pedal angle
measured using the Peak Motus motion capture system.
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Left pedal angle during cycling

angle measured using the Peak Motus motion capture system.
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Figure 17 Experiment 2 - Rider biking in the VE at 30 RPM - Pedal angle calculated using VRACK’s IMU measurement vs. the pedal

flexion when the pedal was at bottom dead center and
parallel to the ground. The power on the bike was set to a
constant 20 watts. Subjects warmed up by pedaling at a
comfortable speed for 3 minutes. They were instructed to
pedal at their slow and comfortable speeds, keeping both
hands on the handle-bars, and looking in front of them.
Pedals were instrumented with three reflective pedal
markers; one each on the center, back, and front lateral
edge of each pedal. Data were collected for three trials of
thirty to forty-five seconds each.

A representative result is shown in Figure 17 where left
pedal angles during a rider’s slow pedaling (30 RPM) are
measured using the VRACKs' IMU and the PEAK system.
Both measurements demonstrate good agreement as shown
below. Representative results from the forces collected by
the VRACK are presented in Figure 18. The forces gener-
ated while the subject pedaled at 55 RPM indicate good
correspondence between the two sides. The pattern of

pedal forces is comparable but the magnitude of the pedal
forces is lower than those reported in the literature [43,44].
The forces collected from VRACK showed a peak force
of approximately 115 N (25 pounds as shown in the fig-
ure) when pedalling at 30 RPM with a workload of 20
Joules. In [43], where the authors used a more upright
cycle and higher workload, reported, a peak pedal force
of approximately 190 N when pedaling at 25 RPM with
a workload of 80 J. Although in [44] the authors used a
recumbent bike their participants were adolescents who
cycled at a higher RPM (60) and they reported peak
pedal forces of approximately 200 N. The magnitude of
pedal forces generated in this setup were slightly smaller
compared to [43] due to seating on the recumbent cycle
and lower power setting used for the study. Therefore
the lower peak forces collected on the VRACK can be
explained by lower workloads, cycling speed and rider-
to-bike biomechanics.
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Conclusions

In this paper the virtual reality augmented cycling kit
(VRACK), a mechatronic rehabilitation system with an
interactive virtual environment, was presented. VRACK
consists of sensorized pedals, handlebars and a heart
rate monitor interfaced with a virtual biking environment.
VRACK was designed to benefit users with riding asym-
metry by using quantitative measures to dynamically direct
their attention. Work with individuals post-stroke who are
present with fitness deficits and riding asymmetry is under-
way and the preliminary findings are encouraging [45].

VRACK and its modules offer several possibilities to
augment existing home-based exercise equipment or used
separately as stand-alone modules depending on what ex-
ercise is prescribed. The hydraulic chamber design of the
handles could also be separated into smaller arrays of
sensing regions to monitor more surfaces across the hands
for either healthy or impaired individuals. For low ranges
of upper extremity loading it could function as a computer
interface/virtual reality device or dexterity training tool.
For medium ranges of loading the design can be modified
to map force distribution for power grasping pull tasks like
lifting a briefcase or moving objects.

The VRACK system includes signals from 15 different
sensors. This large number of sensors necessitates the
need for robust signal acquisition hardware and software
with proper filtering. Making the handle and pedal mod-
ules wireless will ease installation and reduce potential
tripping hazard from the tethered modules. This will also
be pragmatic for groups of VRACK systems to operate
side by side for group exercise sessions in a clinical setting.
Ultimately the VRACK’s relevance will be established
when riders can modify their cycling kinetics from asym-
metrical to symmetrical patterns, improve their fitness
and more importantly transfer the benefits from training
in the VE to real world mobility.
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