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Abstract

Background: Although significant progress has been achieved in developing sensory augmentation methods to
improve standing balance, attempts to extend this research to locomotion have been quite limited in scope. The
goal of this study was to characterize the effects of two real-time feedback displays on locomotor performance
during four gait-based tasks ranging in difficulty.

Methods: Seven subjects with vestibular deficits used a trunk-based vibrotactile feedback system that provided
real-time feedback regarding their medial-lateral (M/L) trunk tilt when they exceeded a subject-specific predefined
tilt threshold during slow and self-paced walking, walking along a narrow walkway, and walking on a foam surface.
Two feedback display configurations were evaluated: the continuous display provided real-time continuous
feedback of trunk tilt, and the gated display provided feedback for 200 ms during the period immediately following
heel strike. The root-mean-square (RMS) trunk tilt and percentage of time below the tilt thresholds were calculated
for all locomotor tasks.

Results: Use of continuous feedback resulted in significant decreases in M/L trunk tilt and increases in percentage
times below the tilt thresholds during narrow and foam trials. The gated display produced generally smaller changes.

Conclusions: This preliminary study demonstrated that use of continuous vibrotactile feedback during challenging
locomotor tasks allowed subjects with vestibular deficits to significantly decrease M/L RMS trunk tilt. Analysis of the
results also showed that continuous feedback was superior.
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Findings
Introduction
Sensory augmentation technologies were first developed
as real-time balance aids for individuals with vestibulopathies.
Proof of concept was demonstrated by using vibrotactile
[1-6], electrotactile (lingual) [7,8], auditory [9-11], or visual
[12] feedback displays. To date, however, few locomotor-
based studies have been conducted. Dozza et al. [13] and
Horak et al. [14] demonstrated reduced medial-lateral
(M/L) trunk tilt during heel-to-toe walking with trunk-
based vibrotactile biofeedback in subjects with unilateral
vestibular loss. Hegeman et al. [15] reported that auditory
biofeedback was not effective in reducing M/L sway
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during most gait tasks tested. The goal of this study
was to compare the effects of two trunk-based vibro-
tactile feedback displays on M/L trunk tilt during a series
of dynamic locomotor tasks performed by vestibulopathic
subjects.
Methods
Seven subjects (1 female, 6 males; 53.6 ± 12.9 yrs) with
vestibulopathies diagnosed by a staff otoneurologist
(Table 1) were recruited. All had used an earlier version
of the vibrotactile feedback device [3-5]. Institutional
Review Board approval conforming to the Helsinki Dec-
laration was obtained and each subject gave informed
consent prior to the study.
The vibrotactile feedback device (Figure 1) comprised

a Honeywell HG1920 inertial measurement unit (IMU)
mounted on the subject’s lower back, a central processing
unit built on a PC104 platform communicating wirelessly
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Table 1 Subject demographics

Subject demographics Computerized dynamic
posturography

Rotation test Classification

Subject
ID

Age at
clinical test

Age at
research test

Gender SOT
score

SOT 5 SOT 6 MCT
score

VOR Midrange
gain

Time constant (s) UVH or BVH

1 56 61 M 73 35, 63, 70 56, 61, 45 148 0.786 7.76 UVH

2 56 61 M 70 52, 61, 69 17, 71, 46 155 0.856 6.54 UVH

3 31 32 M 46 Falls, Falls, Falls Falls, Falls, Falls 151 0.514 0.44 BVH

4 50 66 F 49 Falls, Falls, Falls Falls, Falls, Falls 161 0.86 N/A UVH

5 60 61 M 70 Falls, 52, 64 66, Falls, 79 140 1.016 3.85 BVH

6 54 55 M 49 Falls, Falls, Falls Falls, Falls, Falls N/A 0.109 N/A† BVH

7 37 39 M 46 Falls, Falls, Falls Falls, Falls, Falls 138 0.625 0.27 BVH

Legend:
SOT Sensory Organization Test, Normal mean composite scores are 80 for 20-59 years old (yo) & 77 for 60-69 yo; 5th percentile (abnormal limits) scores are 69
for 20-59 yo & 70 for 60-69 yo.
MCT Motor Control Test, Normal mean composite scores are 143 for 20-59 yo & 152 for 60-69 yo; 5th percentile (abnormal limits) scores are 161 for 20-59 yo &
171 for 60-69 yo.
N/A Not available.
VOR Vestibuloocular reflex, as tested by 50 deg/sec peak sinusoidal vertical axis rotation, 0.01-1 Hz.
Midrange gain (0.2-1 Hz) and time constant estimated with parametric fit to gain and phase data (based on Dimitri et al., 1996).
† Response was too low for accurate estimation of time constant; classified as BVH by low VOR gain and low bilateral ice water calorics.
UVH or BVH, diagnostic classification as unilateral or bilateral vestibular hypofunction.
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with an external laptop, and a vibrotactile display. The
IMU reported sway angles in the M/L and anterior-
posterior (A/P) directions, and their vector sum (sway).
The electromechanical actuators, referred to as tactors
(Tactaid, Cambridge, MA), were activated at a frequency
of 250 Hz. Columns of three tactors were mounted verti-
cally on the left and right sides of the trunk to display
M/L tilt in the corresponding directions. A tilt exceed-
ing 1° (0.75° for one subject) activated the lowest tactor
(low level), whereas a tilt exceeding 50% of the subject’s
M/L limit of stability activated all three tactors (high
level). Subjects were instructed to move in the direction
opposite to the vibration to correct trunk tilt. In addition
to the no vibrotactile feedback (tactors off) control condi-
tion, two vibrotactile feedback display configurations were
evaluated: continuously displayed feedback (continuous),
and feedback only for 200 ms beginning at the heel strike
Figure 1 Vibrotactile feedback device. The vibrotactile display,
elastic corset, IMU, PC104, and battery pack.
as detected by a predefined vertical acceleration threshold
(gated). The gated feedback display, informed by Bent
et al. [16], was designed to leverage the heel strike phase-
dependent modulation of vestibular information during
locomotion.
Prior to testing, subjects participated in a 45-minute

training session. The tasks included self-paced walking
(dimly lit visual target positioned at eye-level beyond
end of walkway), slow-paced walking (fixed pace of
50-60 steps per minute maintained by a metronome),
walking with narrowed base-of-support (20.5 – 30 cm
wide), and walking across foam (7.3 m walkway of 10 cm
thick medium density Sunmate Foam, Dynamic Systems,
Inc., Leicester, NC). Subjects typically completed a set of
three trials with the display off (baseline) followed by sets
with continuous and gated feedback. A fourth set of trials
was performed with tactors off for the narrowed and foam
surfaces. The gated display was occasionally omitted from
the foam surface protocol because heel strikes were not
consistently detected when subjects gingerly placed their
feet on the walkway.
Post-processing was performed using MATLAB (Math-

Works, Natick, MA). The IMU raw data was low-pass
filtered using a 4th order Butterworth filter (filtfilt.m).
Gait initiation and termination were excluded prior to
calculating all parameters. The root-mean-square (RMS)
of M/L and A/P tilt and overall sway was calculated over a
fixed distance for each trial. Percentage of time spent in
each of the tactor activation zones (null, low, high) was
also calculated on a trial-by-trial basis. Pacing information
was approximated from the number of hand-counted gait
cycles and the sampling rate. Individual repetitions com-
prising sets of similar display configurations were averaged
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on a subject-by-subject basis for each locomotion task.
Parameter values were normalized for each subject as the
percentage change from baseline (tactors off), and paired
t-tests determined the effect of each display.

Results
Figure 2 shows the data for subject 1. Without vibrotac-
tile feedback (top panel), this subject showed consider-
able lean toward the side of his lesion (right); with
feedback (middle and bottom panels) he decreased his
M/L tilt. In both feedback conditions, he was able to stay
within the high threshold of ±2° (the threshold ranged
from 1.5° - 3.5° across subjects).
No significant differences were observed between diag-

nostic groups, except for the percentage of time spent in
the null and low zones combined during the walking
with narrowed base-of-support task. UVH subjects had
lower scores without feedback (p < .05) and greater
improvements with feedback (p < .01) than their BVH
counterparts. Due to the small number of subjects and
the paucity of differences, the groups were pooled for
the remaining analyses.
Figure 3 shows that, regardless of display type, M/L

RMS tilt decreased for all locomotor tasks when feedback
was provided. Improvements were more pronounced as
the task difficulty increased, and were statistically sig-
nificant for narrow (p < .05) and foam (p < .01) surfaces.
RMS sway demonstrated a similar pattern, whereas the
effects on A/P tilt were inconsistent. Percentage of time
spent in the null zone as well as in the null and low
zones combined increased with feedback, and significantly
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Figure 2 Sample data from subject 1 during self-paced walking show
(middle panel), and gated feedback (bottom panel).
improved for the narrow and foam tasks (p < .05). Feed-
back benefits were apparent for all subjects, with each re-
ducing M/L RMS tilt by more than 25%, and increasing
null zone time by more than 15% during at least one of
the difficult tasks (narrow and foam). For each task, pace
changed by less than 2% with feedback (group average),
which was insignificant. Overall, pace increased above
baseline with feedback for 50% of subjects and 41% of
trials. In general, continuous feedback showed greater
improvements than gated feedback, but these differ-
ences were not statistically significant. Performance
improved overall for the second set of trials without
feedback in comparison with the first set; however, this
difference was not statistically significant.

Discussion
Vibrotactile feedback improved subjects’ control of M/L
tilt without sacrificing pace, which suggested that subjects
had adequate time to perceive, process, and respond to
the vibrotactile cues given the training received. Improved
control was more apparent during the more difficult tasks
(narrow and foam), most likely due to the greater room
for improvement on the baseline metrics. Since these two
“difficult” tasks were performed near the end of the ses-
sion, some of the improvement was attributed to subjects’
increased experience.
The continuous display configuration has the advan-

tage of delivering information during both single and
double support phases, which allows postural corrections
to be implemented throughout the complete gait cycle. The
gated feedback display configuration provided information
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Figure 3 Mean values for RMS roll, pitch, and tilt, as well as percentage of time with tilt less than the low threshold (Null) and less
than the high threshold (Null+Low) for each of the four tasks (slow-paced and self-paced walking, walking on a narrow surface, and
walking on foam). Error bars indicate ±1 standard error of the mean. Displays with no feedback (N), continuous feedback (C), and gated
feedback (G) were used for slow-paced and self-paced tasks. Narrow and foam surfaces were tested without feedback both before (N1) and after
(N2) feedback trials. Statistical comparisons were made between the initial baseline values (N or N1) and the other displays (C, G, or N2).
Significant effects are indicated for p < .05 (*) and p < .01 (#).
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about M/L tilt such that an M/L foot placement correction
could be made on the subsequent step. Bent et al. [16], who
delivered galvanic vestibular stimulation (GVS) during heel
strike, mid-stance, and toe-off, found the largest changes in
foot placement when GVS was delivered at heel strike. It
should be noted that shorter delays are associated with
GVS than with receiving, processing, and acting on vibro-
tactile tilt information provided to the trunk. Additionally,
the response to GVS is involuntary, whereas responding to
vibrotactile feedback is assumed to be mainly voluntary.
Subjects expressed a slight preference for continuous

feedback across all locomotor tasks. They verbally indi-
cated an increased level of confidence when tilt informa-
tion was continuously displayed. In fact, they questioned
the device’s status during the gated display trials when
no vibrotactile cue was received when walking more
than a few steps. Subjects’ preference for the gated feed-
back was based on the notion that their attention could
be focused on the device only when a balance crisis
occurred. Subjects preferring the continuous display
stated that they felt more comfortable because they were
receiving the most complete information.
One drawback of the gated display was the simple

threshold-based algorithm for detecting the elevated ver-
tical accelerations of the trunk at the heel strike events.
This algorithm worked reliably during self-paced trials.
However, when subjects employed a slower gait during
slow-paced walking and narrow stance walking, the ver-
tical accelerations decreased and the threshold was less
sensitive. The worst case occurred during foam walking
because the foam dampened the vertical accelerations.
Vertical accelerations were also dependent on the amount
of cushioning in a subject’s footware. Study limitations
included a small sample size and a short training ses-
sion. Given the small sample size, the UVH and BVH
results were combined; in practice, clinicians may treat
these patients differently with respect to compensation,
adaptation, and substitution strategies [17].
During the training sessions, stiffening in the coronal

plane, i.e., rigid and awkward gait, was observed, espe-
cially among subjects who were intent on preventing the
device from vibrating. Extra time and coaching had to
be provided to ensure that they used the vibrotactile
feedback to augment their natural gait. This condition
was a primary reason for using the lowest row of tactors
to indicate a slight tilt, and the stronger stimulus (all
three rows activated simultaneously) to indicate a more
severe tilt. Subjects were told that they could expect, and
should feel, the lower level activating twice per gait cycle.
Conclusion
This preliminary study showed that individuals with ves-
tibular deficits can decrease M/L RMS trunk tilt during
challenging locomotor tasks with the use of real-time
vibrotactile feedback.

Abbreviations
A/P: Anterior-posterior; BVH: Bilateral vestibular hypofunction; GVS: Galvanic
vestibular stimulation; IMU: Inertial measurement unit; M/L: Medial-lateral;
RMS: Root-mean-square; UVH: Unilateral vestibular hypofunction.
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